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Abstract. Nowadays there is a lack of experimental data describing the physical process of 

drop spreading on a solid metal surface for developing wetting and spreading theory. The 

experimental data obtained by using the high speed video-recording will allow to identify 

unknown previously spreading modes as well as the change of the dynamic contact angle and 

the three-phase contact line. The purpose of the work is to determine the effect of the drop 

growth rate and the copper substrate surface roughness on the dynamic contact angle and the 

three-phase contact line speed at distilled water drop spreading. Shadow and Schlieren methods 

are used to obtain experimental data. Three drop spreading modes on the rough surfaces were 

identified. Time dependences of the dynamic contact angle and contact line speed were 

obtained. Experimental results can be used for assessing the validity of the developed 

mathematical models of wetting and spreading processes in the field of micro- and nano-

electronics, ink jet printing, thin-film coatings, spray cooling, and optoelectronics. 

1. Introduction 

The surface microstructure and conditions of drop formation (growth rate) are well known [1-6] to 

influence the hydrophobic and hydrophilic properties of materials. The theory of wetting and 

spreading processes is not developed at a level providing an opportunity of heat exchangers’ 

construction with a patterned surface that intensifies heat transfer. One of the factors suppressing the 

development of scientific achievements in this sphere is an insufficient number of experimental results 

describing the spreading process taking into account the droplet formation conditions. Experimental 

data of the dynamic contact angle (DCA) and the three-phase contact line speed can be used to assess 

the validity of the developed mathematical models of wetting and spreading processes. 

The purpose of the presented work is to obtain experimentally dependences on DCA and the three-

phase contact line speed from the drop growth rate and the surface roughness of copper substrates. 

2. Research technique 

Research was conducted by using the experimental setup (figure 1) consisting of the equipment for 

shadow and Schlieren methods implementation [7, 8]. 

In the shadow optical method light source 3 with lens (placed in the widest part of the light source 

case) was used to produce a beam of plane-parallel light illuminating the drop on the substrate. The 

distance between the lens and the object under investigation must be greater or equal to the focal length 

(h ≥ F). 
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In Schlieren method incoherent light source 4, ground glass 10 and coding filter 11 were used for a 

light flux with a stepped decrease of intensity on the space. A light beam from source 4 passed through 

collimating lens 5, which transformed it into a plane-parallel one. Then it was reflected from beam 

splitter 9, fell on to the substrate, passed to lens 8 and projected on the sensor of the high-speed video 

camera 7. The transparent shield with an opening 6 is set for reducing the influence of external light 

sources. 

 

 

Figure 1. A schematic view of the experimental setup: 1 – photographic 

camera; 2 – macro lens; 3 – light source of Shadow method; 4 – light 

source of Schlieren method; 5 – collimating lens; 6 – transparent shield 

with an opening; 7 – high-speed video camera; 8 – lens; 9 – beam 

splitter; 10 – ground glass; 11 – coding filter. 
 

Video recording of spreading drops on the surface was carried out simultaneously in two 

coordinate directions. The equipment for Schlieren method implementation was used to control the 

drop symmetry. If the drop lost symmetry, the experiment was repeated. 

Three copper substrates (54 mm in diameter and 4 mm thick) with a through opening (1 mm in 

diameter) located on the center were used. The surface microstructure of two substrates was formed by 

bombardment with Al2O3 10 and 100 µm sized particles. The third substrate was made of the flexible 

copper.  

According to results of the preliminary experiment, the values of influencing factors were defined 

(table 1). 

Table 1. The main influencing factors. 

Parameter Value 

Drop volume (ml) 0.3  

Drop growth rate (is 

controlled by syringe pump, 

Figure 5) (ml/s) 

0.005; 0.02; 0.04; 0.08  

Substrate material Copper  

Roughness parameter of 

surface – Ra (µm) 

Sample № 1 – flexible copper with Ra 0.591; 

Sample № 2 – copper with Ra 5.190; 

Sample № 3 – copper with Ra 6.210; 

Wetting liquid nondeaerated distilled water 
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Surfaces of substrates were investigated on the profilometer "Micro Measure 3D station" and 

microscope TM-3000. The parameter of roughness (arithmetic average roughness Ra) and 

microstructure were defined. Surfaces microstructure and substrates view are presented in figures 2-4. 

 

  

(a) (b) 

Figure 2. Sample No 1 – flexible copper Ra 0.591 [µm]: (a) - surface microstructure 

(Magnification: x3000); (b) - substrate view. 

 

  

(a) (b) 

Figure 3. Sample No 2 – copper Ra 5.190 [µm]: (a) - surface microstructure (Magnification: 

x2000); (b) - substrate view. 

 

  

(a) (b) 

Figure 4. Sample No 3 – copper Ra 6.210 [µm]: (a) - surface microstructure (Magnification: 

x2000); (b) - substrate view. 
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The roughness of the sample No 1 (flexible copper) is formed by longitudinally arranged grooves. 

The roughness of the samples No 2 and No 3 (copper substrates) is formed by chaotically arranged 

asperities and cavities.  

The drop was formed on the surface by the syringe pump (Cole-Parmer Touch Screen) (Figure 5). 

The nondeaerated distilled water was squeezed on the surface through the channel placed in the 

substrate. This bottom-up methodology of droplet formation in comparison with the known by syringe 

dispenser [9, 10] facilitates a precise control of droplet formation and size, as well as allows to reduce 

the error at maintaining the initial volume. 

 

 

Figure 5. The bottom-up methodology of droplet formation on the surface. 

 

The drop profile was obtained by the Shadow method. The equipment for implementation of this 

method includes the high-speed video camera (FastVideo-500M) and the light source (МI-150 

Edmund). Geometrical parameters (contact diameter, height and contact angle of the drop) were defined 

at processing images in Drop Shape Analysis (DSA) software (KRUSS Company).  

According to the obtained experimental data, the contact line speed was calculated. This parameter 

describes the rate of spreading drops on a surface and is determined from the following equation: 
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where C is a frame capture speed, frame/s; d1, d3 are droplet diameters in the previous and the next 

moment, mm; n1, n3 are numbers of the frame at previous and the next moment in time, frame.  

3. Results and discussion 

Time dependences on DCA and the three-phase contact line speed at the drop growth rate from 0.005 to 

0.08 ml/s are shown in figure 6. 

Three drop spreading modes on the rough copper surfaces were conditionally subdivided. The first 

mode is characterized by an abrupt increase in the three-phase contact line speed. The advancing DCA 

and speed decrease monotonously in the second mode. The equilibrium contact angle at the constant 

wetted area is formed in the third mode.  

Duration of identified modes in experiments from all time of spreading equaled: the first – 1-2%, the 

second – 39-50%, the third – 48-60%. 

According to the data obtained by the authors [11, 12], the spreading process after collision of a 

drop with a solid occurs simultaneously in the two modes. The first mode is the movement of liquid 

within the grooves of a roughened surface. The second is spreading liquid over the grooves of a surface. 

At high velocities of collision the first mode dominates. At low velocities the movement over the 

grooves prevails. It is obvious, that these modes are implemented at drop spreading under the gravity 

force without collision with a substrate. However, when applied the syringe pump at drop placing 

(bottom-up method), at high drop growth rate (above 0.010 ml/s) the movement of liquid over the 

grooves is dominant. In this case cavities of microstructure are filled with gas, and the contact of liquid 
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with a solid substrate represents a heterogeneous interphase "liquid-solid-gas". So that, the liquid drop 

moves over "air cushion" [13]. At low drop growth rate (0,005ml/s) the dominant mode is the motion of 

liquid within the grooves, and the interphase is "liquid-solid". 
 

  

(a) (b) 

  

(c) (d) 

Figure 6. Time dependences on DCA and the three-phase contact line speed. The drop growth rate, 

ml/s: a – 0.005; b – 0.02; c – 0.04; d – 0.08. The advancing DCA:  – sample No 1;  – sample No 

2;  – sample No 3. The three-phase contact line speed:  – sample No 1;  – sample No 2;  – 

sample No 3. Spreading modes are shown by Roman numbers: I, II, III. 

 

During the second mode slight increase in DCA was observed at drop spreading on the surface of 

sample No1 (flexible copper) with the drop growth rate 0.005 ml/s. According to the "model of parallel 

grooves" proposed in [14-16], at a parallel arrangement of contact line relative to the grooves on the 

surface, a great number of pinning is possible. The increase in DCA on the surface with parallel 

grooves can be explained as follows: by increasing roughness, firstly, natural decrease of θd is found, 

but when cavities becomes deep enough, there is a complex structure with lower energy barriers, the 

value of θd increases. 

It was found that the increase in the drop growth rate at spreading on the surface with Ra=5.190 µm 

(Sample No 2, Figure 3) led to increasing the maximum value of DCA of 30%; on the surface with 

Ra=6.210 µm (Sample No 3, Figure 4) of 37%. DCA increasing on the surface with Ra=0.591 µm 

(Sample No 1, Figure 2) equaled no more than 8%. 
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According to the analysis of the experimental results, it was established that non-wetting is 

replaced by wetting at drop spreading on the copper substrates. The advancing DCA during the contact 

line movement decreases and after a while (depending on the drop growth rate and the surface 

microstructure) the contact angle becomes smaller than 90 °. 

At high drop growth rate (0.8ml/s) change of the contact line speed occurs non- monotonically. 

Since at the movement on surface the drop loses an equilibrium state and oscillates.  

Random error is calculated based on the experimental results and equals to 3.9% for contact angle 

and to 1.87% for the contact line speed. Three experiments at fixed factors were performed. 

Systematic error was measured by syringe pump error Cole Parmer ± 0.355%. 
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