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Abstract. The paper demonstrates the results of TDI1-200k/25SN-P pseudospark switch (PSS) 

developed by Russian company "Pulsed Technologies Ltd" application. PSS was used in 

pulsed power unit intended for electric-discharge fracture of rocks and concrete blocks and 

splitting off from monolith. The pulsed power unit has a pulse current generator with the 

capacity of 560 µF, stored energy of up to 63 kJ, operating voltage of up to15 kV, current pulse 

amplitude of up to 200 kA and pulse duration more than 200 µsec. The study also shows the 

current waveforms determined in the short-circuit experiment of the pulse current generator 
and in the experiments of the electric-discharge fragmentation of concrete at the charging 

voltage of 13 kV. PSS was operated in ringing single-pulse mode with the exceedance of more 

than two maximum permissible parameters: current pulse amplitude, current pulse duration and 

maximum pulse energy. Internal electrode erosion of PSS is shown and possible reasons of 

asymmetric current feed are discussed. 

1. Introduction 

The recent decades demonstrate increasingly growing interest to the development of new 

environmentally friendly technologies, which is due to severe complication of environmental 

problems. In most cases, the green technologies are preferred, even though they are less effective than 

conventional technologies. Such technologies are especially in demand, if their usage reduces the 

amount of manual labor and operating staff risks. Electric-discharge technologies are considered to be 

a promising option for their application to various processes in mining and building industry. 

Therefore, many large laboratories in the developed countries are working on the research and 

implementation of electric-discharge technologies for fragmentation of large rocks, splitting off blocks 

from monoliths of natural and artificial origin, digging or expanding tunnels, electric-discharge 

drilling in hard rocks, crushing and grinding ore, etc. [1-5]. 

The development of electric-discharge technologies and their successful application in industry 

depend on the availability of durable, reliable and affordable equipment and its components. A high-

voltage switch is one of the basic component in the majority of electric-discharge facilities. The high-

voltage switch shall meet a number of strict requirements that are determined by operating parameters 

of the equipment. The progressive types of switches are TDI and TPI thyratrons with cold cathode, 

also known as pseudospark switches operating on the left-hand branch of the Paschen’s curve in a 

wide range of anode voltages between 1 kV and 150 kV and the switched current of up to 200 kA [6–

9]. The article describes the experience of pseudospark TDI-type switch operation that was developed 

by the Russian innovation-industrial company “Pulsed Technologies Ltd”. 
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2. Experimental 
The specialists of the Department of High Voltage Engineering and Electrophysics of Tomsk 

Polytechnic University have designed and built a mobile unit for high-voltage and high-current 

studies. The main application of the mobile unit is electric-blast splitting off from monolith and 

fragmentation of rock and concrete lumps. The unit is based on a high current pulse generator (HCPG) 

with the operating voltage of up to 15 kV and the stored energy in the capacitor bank of up to 63 kJ, 

the current in load can be increased up to 200 kA [10]. In the initial design of the HCPG a custom 

high-pressure trigatron switch was used. The switch had flat graphite electrodes kept in argon-krypton 

gas mixture, which enabled the switching currents of up to 500 kA. Despite a considerable operating 

current, the switch had relatively low triggering stability and required constant pressure monitoring, 

which affected to productivity of rock destruction. 

In order to increase the efficiency of power transmission and reduce resistive losses in discharge 

circuit, the high-voltage trigatron switch was replaced by TDI1-200k/25SN-P thyratron. PSS TDI1-

200k/25SN-P is designed for pulse switching of capacitive energy storage in submicrosecond and 

microsecond duration range. In the operating state, the switch is filled with a buffer deuterium gas at 

the pressure of 20–60 Pa. This modification of thyratron has a hollow anode and it is intended for 

ringing mode operation. The operating and maximum permissible electrical parameters of PSS are 

shown in Table 1. 

Table 1. Electrical parameters of TDI1-200k/25SN-P switch 

 

Parameter description Optimum value 
Maximum 

permissible value 

Actual 

operating value 

Anode voltage, kV 3–20 3–25 5–13 

Amplitude of anode current, kA 150 200 150–250 

Pulse repetition rate, Hz 0.5 300 ≤0.5 

Switched energy, kJ 10 40 45–47 

Duration of anode current pulses, µsec 0.1–100 0.1–1000 250–500 

Amplitude of reverse anode current, kA up to 90% of Iа up to 98% of Iа up to 90% of Iа 

   

Figure 1. Components of High Current Pulse Generator. (a) arrangement of the thyratron: 1) TDI1-

200k/25SN-P; 2) copper buses; 3) coaxial cable; 4) high voltage divider; 5) automatic grounding 

device; 6) Rogowski coil.( b) capacitor bank: 1) K75-01-15kV-14mkF capacitor; 2) copper buses; 3) 

fuse. 

 

(а) (b) 
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The High Current Pulse Generator includes a capacitor bank that consists of ten modules. The 

modules were connected by copper buses in such manner that the current path length from each 

module to the high voltage switch was practically equal. For reliable operation during the service life 

of PSS, the manufacturer recommends to provide balanced and symmetrical current feed to the flange 

of the switch. If the current distribution is asymmetric, then this promotes electrode erosion, which 

leads to early failure of the device [11]. The arrangement of pseudospark switches and capacitor bank 

is shown in Fig. 1. 

The stored energy was transferred to load by RK50-17-17 coaxial cable. To reduce the equivalent 

inductance and equivalent resistance of cable the parallel connection of eight cables was used. All 

cables were divided into two bundles with 4 cables in each. The busses were connected in parallel to 

reduce the resistance and inductance of the circuit. The symmetrical electric current feed was 

implemented by connecting two equal sections of capacitor bank from opposite sides to the high-

voltage switch (Fig. 2a). For the purpose of balanced current division, in the lower copper flange an 

incision was made, which divided the flange into several current feed elements (Fig. 2b).  

 

 

3. Equipment Testing  

The amplitude of current pulse is the most important parameter of electric discharge. Its value directly 

depends on the resistance and inductance of discharge circuit that are determined by the design 

parameters of the HCPG. The inductance and resistance of the electrode system can vary according to 

the configuration and length of the electrode. The values of inductance and resistance were determined 

in short-circuit experiment by the damping decrement of the current waveform at the charging voltage 

of 4 kV (Fig. 3a); the operating current was determined in the experiment of concrete monolith 

splitting at the charging voltage of 13 kV and the electrode length of 50 cm (Fig. 3b). 

 

   
Figure 2. Connection of the pseudospark switch with bus bars. (a) PSS structure: 1) anode; 2) cathode; 

3) injection holes; 4) trigger unit; 5) insulator; 6) copper buses. (b) copper flange for current feed. 

   
Figure 3. Current waveforms. (a) short-circuit experiment, (b) operating mode. 

(а) (b) 

(а) (b) 
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After a short running life, less than 50 pulses, the pseudospark switch failed to start, while there 

was no external visible damage. Maintenance work did not lead to the restoration of PSS normal 

operation. The manufacturer guarantees the satisfactory operation of the PSS and the running life of at 

least 510
4
 coulomb of total switched charge, when the thyratron operates in modes without exceeding 

the maximum permissible parameters. According to Table 1, the actual values of electrical parameters 

significantly exceed the maximum permissible values. In the experiments of electric-discharge blast of 

rock and concrete, the PSS worked in the mode with the exceedance of two or more electrical 

parameters, which probably caused the early failure of the device. 

 

4. PSS Internal Structure Analysis 

To detect the internal damage and determine the cause of the failure, PSS was disassembled. The 

surface condition of the electrodes is shown in Fig. 4. Both electrodes demonstrate the surface erosion 

of the central region. Fig. 4a shows the cathode; Fig. 4b depicts the anode. In our opinion and 

according to the information from the manufacturer, this is a normal effect [11].  

 

 

Although the energy of a single pulse was 47 kJ, which is 17.5% higher than the maximum 

permissible value, and the duration of current pulse was about 200–300 µsec, the overheating or deep 

surface melting was not observed. "Linking" of the discharge to a certain injection hole (outlined by 

dashed lines in Fig. 4a) also did not occur. Thus, the excess of three electrical operating parameters, 

     
 

     
Figure 4.  Internal structure of TDI1-200k/25SN-P 

(а) (b) 

(c) (d) 
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current amplitude, switched energy and pulse duration in one-pulse mode could not be the reason for 

the early failure of the thyratron; however, this can seriously reduce the service life of the device. 

Turned out, the actual reason of the thyratron failure was an asymmetric current feed. A significant 

damage of the wall (Fig. 4а and 4c), the gradient electrode (Fig. 4d) was identified, which were caused 

by the effect of electric arc. Localization of the discharge on periphery of the electrodes near the 

lateral surface led to its thinning and the depressurization of PSS. These processes were conditioned 

by the Lorentz force that pushes the discharge channel out from the central part to the periphery. Thus, 

the actions taken to implement the balanced current feed and uniform current collector occurred to be 

ineffective. Hence, this testifies the demand of more buses connected circumferentially to the 

thyratron’s flange as shown in [11]. In future work, we will use the coaxial inclusion of PSS with the 

application of external conductive screens. 

 

5. Conclusion  
We have replaced the high-voltage trigatron switch that was implemented in the mobile electric-

discharge blasting unit for splitting and breaking rocks and concrete blocks by TDI1-200k/25SN-P 

pseudospark switch. The main parameters of the discharge circuit were determined in short-circuit 

experiment by the damping decrement of the current curve. Due to the operation of the PSS in the 

mode with the exceedance of two or more electrical parameters, the lifetime of the switch reduced. As 

a result of the exceeding current pulse amplitude, the current pulse duration and maximum pulse 

energy, the electrodes of thyratron were subjected to increased erosion. However it was not the reason 

of such early failure of the thyratron. Damage of the switch occurred because of the concentration of 

discharge in the periphery of electrodes due to the asymmetric and unbalanced current feed, which 

ultimately lead to the depressurization of the thyratron.  
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