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Abstract

An approximate F-form of the Lagrange multiplier test for serial correlation in dynamic regression models is
compared with three bootstrap tests. In one bootstrap procedure, residuals from restricted estimation under the
null hypothesis are resampled. The other two bootstrap tests use residuals from unrestricted estimation under
an alternative hypothesis. A �xed autocorrelation alternative is assumed in one of the two unrestricted bootstrap
tests and the other is based upon a Pitman-type sequence of local alternatives. Monte Carlo experiments are
used to estimate rejection probabilities under the null hypothesis and in the presence of serial correlation.

Keywords: Bootstrap; Serial correlation; Lagrange multiplier test

L. G. Godfrey

Department of Economics, University of York, Heslington, York YO10 5DD, UK.
Tel: +44-1904-433754
Fax: +44-1904-433759
E-mail: lgg1@york.ac.uk



1 Introduction

The importance of testing for serial correlation in the error terms of a linear regression model has

been recognized for many years. In general, the presence of serial correlation invalidates the classical

formula for the variance-covariance matrix of ordinary least squares (OLS) estimators and leads to the

inconsistency of these estimators if the regressors include lagged values of the dependent variable. The

best-known and most widely reported test for serial correlation is the procedure proposed in Durbin

and Watson (1950, 1951). However, as pointed out in many texts, e.g., Davidson and MacKinnon

(2004, pp. 280-1) and Maddala (2001, p. 230), the Durbin-Watson (hereafter DW) test is subject

to several limitations. In particular, the DW test uses a �rst-order autoregression as the alternative

model and cannot be used when the regressors include lagged values of the dependent variable. While

the emphasis on a simple �rst-order alternative may be justi�ed when estimation is based upon annual

data, as was probably often the case when the DW test was derived, there is the risk that power

will be low when seasonal autocorrelation is present; see Godfrey and Tremayne (1988). Many time

series regressions are now estimated using quarterly or monthly data so that this potential weakness is

important. The second limitation is also important because, e.g., autoregressive distributed lag models

are popular in applied work.

It is now standard practice to use the Lagrange Multiplier (LM) tests of Breusch (1978) and Godfrey

(1978) when it is desired to allow for higher-order alternatives and the presence of lagged dependent

variables in the regressors. The LM tests use the results of restricted estimation, i.e., estimation under

the null hypothesis, but do not require the unrestricted estimation of the alternative model. Thus they

have the convenient property of being based upon OLS results. However, the LM tests su¤er from the

drawback that they are only asymptotically valid and the asymptotic �2 critical values have sometimes

been found to give inadequate control of �nite sample signi�cance levels; see, e.g., Kiviet (1986).

Fortunately there is also evidence that improved control can be gained by a very simple modi�cation

of the original LM statistics.

As is widely known, LM tests for serial correlation can be interpreted as tests for omitted variables.

The equation under test serves as the null model and lagged values of the residuals from its estima-

tion are the additional variables that are to be tested for joint signi�cance in an arti�cial alternative

regression; see Breusch and Godfrey (1981) and Davidson and MacKinnon (2004, Section 7.7). The

standard F test is not only a natural choice for this purpose, but it has also been found in Kiviet (1986)

to lead to improved �nite sample performance relative to asymptotic �2 variants. However, there have

been enormous advances in the power of computers since the work of Kiviet (1986) and it is now

feasible to consider the application of resampling methods to improve upon the approximation given

by asymptotically valid critical values.

Resampling approaches to controlling the �nite sample rejection rates of tests have been discussed

for several di¤erent types of checks of the speci�cation of regression models. Important examples

of such checks are the information test of White (1982) and the J-test of Davidson and MacKinnon

(1981). For both of these tests, evidence has been produced to show that bootstrap critical values

are much more reliable than those obtained from asymptotic theory; see, e.g., Horowitz (1994) on the

bootstrap information test and Godfrey (1998) for the bootstrap J-test. It is, therefore, not surprising

that the bootstrap has been applied to the serial correlation tests proposed in Breusch (1978), Durbin

(1970) and Godfrey (1978) for use in dynamic regression models.
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The �rst such application seems to be Rayner (1993). Rayner uses a form of unrestricted (alternative

hypothesis) residual resampling. The choice of the estimation method used to obtain unrestricted

residuals for bootstrap schemes requires care when the regressors include lagged dependent variables.

In the standard theory that underpins the bootstrap test, as discussed in Beran (1988), it is assumed

that estimators of nuisance parameters are consistent. However, under the serial correlation alternative,

OLS estimators are usually inconsistent when the regressors include lagged values of the dependent

variable. Consequently OLS residuals are generally inappropriate for resampling under the alternative.

Rayner uses an instrumental variable (IV) technique that is consistent whether or not there is serial

correlation; see the Appendix of Rayner (1993) for details. After conducting Monte Carlo experiments,

Rayner �nds evidence that asymptotic critical values are inadequate and bootstrap-based tests are well

behaved under the null hypothesis.

An approach to obtaining an unrestricted bootstrap scheme that does not require IV estimation is

proposed in Mantalos (2003); also see Mantalos (2005). The unrestricted residuals used in Mantalos

(2003) are not derived from the actual alternative model that has been speci�ed but instead from the

arti�cial regression mentioned above that is used to calculate the test statistic. The latter model is

locally equivalent to the former in a sense that is explained below. Encouraging results on this simpler

approach are reported in Mantalos (2003).

The alternative hypothesis used in Mantalos (2003) and Rayner (1993) is the classical �rst-order

autoregressive error model. This alternative is also adopted with a dynamic regression equation in

an experiment reported by MacKinnon; see MacKinnon (2002, pp. 623-624). In MacKinnon�s work,

restricted residuals from OLS estimation of the null model are used for the bootstrap. It is found

that asymptotic critical values can be quite unreliable while bootstrap critical values produce good

performance.

Overall, given the existing results, it appears that, whether restricted or unrestricted residuals are

used, bootstrap versions of serial correlation tests are well-behaved under the null hypothesis. Moreover,

power comparisons seem to give some support to the use of unrestricted residuals in preference to

restricted residuals; see Mantalos (2003). However, there are issues that indicate the need for additional

research and the following are addressed in this paper.

First, the existing studies have concentrated on experimental designs in which, under the alternative,

the errors are normally distributed and follow a �rst-order autoregression. This restrictive error model

is, however, the one used in Durbin and Watson (1950, 1951). There seems little justi�cation for

adopting it when examining bootstrap versions of LM tests that were developed for use in more

general circumstances. One purpose of this paper is, therefore, to provide evidence for higher-order

autocorrelation models with nonnormal disturbances.

Second, the comparison and implementation of restricted and unrestricted bootstrap tests also merit

further consideration. It is argued below that when using checks for misspeci�cation, such as serial

correlation tests, it must be acknowledged that it is unlikely that there will be precise information about

the alternative hypothesis and moreover that a given LM statistic could be derived from any member of

a family of locally equivalent alternatives. These points have relevance when an unrestricted bootstrap

is used. In the unrestricted bootstrap algorithm used in Jeong and Chung (2001) and in Rayner (1993),

an autoregression of the same order as the selected alternative is �tted to the OLS residuals to derive

the terms to be used in resampling. It is possible that the order of the selected alternative will be
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incorrect. Moreover, even if the order has been selected correctly, the use of an autoregression may lead

to misleading inferences if the true error process is moving average. Consequently it is important to

investigate the robustness of autoregression-based unrestricted bootstrap methods to misspeci�cation

of the alternative model.

The plan of the paper is as follows. The models and tests are discussed in Section 2. The design

of simulation experiments is described in Section 3. The results from the experiments are summarized

in Section 4. Finally, Section 5 contains some concluding remarks.

2 Regression models and serial correlation tests

Suppose that data are generated by the stable dynamic linear model

yt = Y 0t �+X
0

t� + ut =W 0

t + ut; (1)

where: Y
0

t = (yt�1; :::; yt�L) with L � 1; �
0 = (�1; :::; �L) has elements such that the roots of

zL � �1z
L�1 � :::� �L = 0;

are all strictly inside the unit circle; Xt is an M -vector of regressors that are strictly exogenous;

W 0

t = (Y 0t ; X
0

t); and 
0 = (�0; �0): Let K = L +M denote the number of regression coe¢cients in

(1) and N denote the number of observations available for estimation. The errors ut are assumed to

be covariance stationary with zero mean and variance �2, with common cdf Fu. It is not assumed

that the errors are normally distributed. As in Breusch (1978), Durbin (1970) and Godfrey (1978), it

is convenient to assume that

plimN�1

NX

t=1

WtW
0

t

is a �nite positive-de�nite matrix. It is, however, possible to allow the exogenous regressors to be

nonstationary without compromising the asymptotic validity of serial correlation tests; see Wooldridge

(1999).

The null hypothesis to be tested is that the errors ut are serially uncorrelated. All tests are

constructed using the results of OLS estimation of (1). Let ̂0 = (�̂0; �̂
0

) denote the OLS coe¢cient

estimator for (1) and the terms ût = yt�W
0

t ̂ be the corresponding residuals; t = 1; :::; N . Under the

assumptions and the null hypothesis, the OLS estimators are consistent with (̂�) being Op(N
�1=2):

Whether the alternative is a Gth-order autoregression, denoted by AR(G) and written as

ut =
GX

j=1

�jut�j + �t; �tiid(0; �
2

�); (2)

or a Gth-order moving average, denoted by MA(G) and written as

ut =
GX

j=1

�j�t�j + �t; �tiid(0; �
2

�); (3)
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a suitable LM test can be computed as test of � = (�1; :::; �G)
0 = 0 in the augmented model

yt = Y 0t �+X
0

t� + Û
0

t�+ ut =W 0

t + Û
0

t�+ ut; (4)

in which Û 0t = (ût�1; :::; ût�G) and ût�g is set equal to zero for t � g: Let the OLS estimators for (4)

be ~ = (~�0; ~�
0

)0 and ~�: The LM test is then a check of the joint signi�cance of the elements of ~�: A

large sample test based upon the �2G distribution is used in Breusch (1978) and Godfrey (1978), but

the results in Kiviet (1986) indicate that the (asymptotically valid) standard F-test of (1) versus (4) is

better behaved in �nite samples. The latter test is denoted by LMF .

Since the limit null distribution of LMF is �
2

G=G, the F-statistic of Kiviet (1986) is asymptotically

pivotal, i.e., its asymptotic distribution is independent of the nuisance parameters, which are taken

to include the error distribution function Fu. The results of Beran (1988), therefore, indicate that

bootstrap tests may yield more accurate inferences than the asymptotic checks. A general bootstrap

scheme can be written as

y�t =
LX

j=1

y�t�j ��j +X
0

t
�� + u�t ; t = 1; :::; N; (5)

in which: (i) presample values of y� are set equal to those of y; (ii) under the null hypothesis,

�� = (��1; :::; ��L)
0 and �� are both consistent; and (iii) under the null hypothesis, the distribution

function of the bootstrap errors u�t converges in an appropriate (Mallows) metric to that of the true

errors ut: The choice of consistent estimator for the regression coe¢cients and the choice of scheme

used to obtain u�t may both have small sample e¤ects that cannot be neglected. The approaches

adopted in the literature can be summarized as follows.

First, perhaps the most natural way in which to mimic the true data process under the null hy-

pothesis is to use the OLS estimators �̂ and �̂ from (1) for �� and ��, respectively, with the bootstrap

errors u�t being obtained by simple random sampling with replacement from the empirical distribution

function

F̂ ru : probability
1

N
on ût; t = 1; :::; N: (6)

This combination gives the restricted (null hypothesis) bootstrap model

y�t =
LX

j=1

y�t�j�̂j +X
0

t�̂ + u
�

t ; t = 1; :::; N; (7)

with u�t being derived using (6). If (1) does not contain an intercept term, the sample mean of the

OLS residuals should be subtracted from each ût before it is used in (6). Mean-adjustment is also

required if the OLS residuals ût are modi�ed by being divided by the square root of (1� htt), where

htt is the leverage value.

In contrast to the OLS-based approach of (7), IV estimators are used in Rayner (1993) for ��

and �� with the instruments consisting of current and lagged exogenous variables. With this choice

of instruments, the estimators are also consistent under a �xed alternative hypothesis, i.e., in the

unrestricted model. Under a �xed AR(G) (resp. MA(G)) alternative, at least one of the coe¢cients

�j of (2) (resp. �j of (3)) is a nonzero constant. In general, the statistic LMF is Op(N) under such

an alternative so that the asymptotic rejection probability tends to unity for any �nite critical value.
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Let the IV parameter estimators and residuals be denoted by ��, �� and �ut, respectively. In order to

derive an unrestricted bootstrap scheme, it remains to specify how to obtain u�t . An AR(1) alternative

is assumed in Rayner (1993) and a generalization for the AR(G) case involves applying OLS to

�ut = �
1
�ut�1 + :::+ �G�ut�G + et: (8)

Let the residuals derived from OLS estimation of (8) be denoted by �et: The unrestricted (alternative

hypothesis) bootstrap model is

y�t =
LX

j=1

y�t�j ��j +X
0

t
�� + u�t ;

with u�t being obtained by simple random sampling with replacement from the empirical distribution

function
�Fuu : probability

1

N
on �ect ; t = 1; :::; N; (9)

where �ect is the centred (demeaned) version of �et. The bootstrap test LM
�

F is then calculated using

these arti�cial observations y�t and the bootstrap counterparts of (1) and (4).

Since this unrestricted bootstrap requires both IV and OLS estimation of (1), and the OLS �tting

of (8), it has a higher computational cost than the restricted bootstrap. The asymptotic theory of

Beran (1988) does not predict that the unrestricted method will enjoy any advantage in terms of

approximating the required signi�cance level. (Indeed, in a study of parametric bootstrap tests applied

to asymptotically normal pivots, Lee and Young argue that nuisance parameters should be replaced

by their restricted estimates; see Lee and Young, 2005.) As noted in MacKinnon (2002, p. 621),

some researchers have argued that unrestricted bootstrap schemes will produce tests with better power

than those from restricted schemes, but the available Monte Carlo evidence is mixed. Also there are

di¢culties with applying such arguments to tests for serial correlation (and more generally to tests for

misspeci�cation).

In the unrestricted bootstrap model approach of Rayner (1993), the parameters of the conditional

bootstrap law are estimators from observed data that are consistent in the speci�ed unconditional �xed

alternative model. This feature might be thought to yield residuals that give a better approximation to

the distribution of the error terms under the alternative. However, it is well-known that there is more

than one alternative that leads to LMF ; see, e.g., Godfrey (1988, Section 4.4.1). Consequently the use

of the �tted autoregression (8) may be invalid under �xed alternatives. If the ut were generated by a

MA(G) process, the residuals �ect used in (9) would be inappropriate; see Schwert (1987) for comments

on the dangers of relying on pure autoregressions. Ramsey�s criticism of the use of speci�c alternative

models seems pertinent in the context of serial correlation tests; see Ramsey (1983, p. 243-244). Thus

there must be doubts about the general usefulness of the unrestricted bootstrap of Rayner (1993).

These doubts expressed about the use of an unrestricted bootstrap with LMF , or with any other

test for misspeci�cation, should not be taken as applying to the procedures studied in van Giersbergen

and Kiviet (2002). The alternative model in van Giersbergen and Kiviet (2002) is a regression model

such as (1) and the null model is derived by imposing linear restrictions on its coe¢cients. In this

framework, there is no need to worry about a family of locally equivalent alternatives and the paucity

of information to guide the correct choice from this family.

The second type of unrestricted bootstrap to be considered is based upon a scheme described in
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Mantalos (2003). The alternative used in Mantalos (2003) is the AR(1) model. A generalization that

allows for the Gth-order alternative consists of the following steps.

1. Estimate (1) by OLS to obtain �̂, �̂ and the residuals ût:

2. Estimate (4) by OLS to obtain ~�, ~�, ~� and the residuals ~ut:

3. Draw e�
1
; :::; e�N by simple random sampling with replacement from the empirical distribution

function
~Fuu : probability

1

N
on ~uct ; t = 1; :::; N; (10)

where ~uct is the centred (demeaned) version of ~ut: asymptotically negligible modi�cations of the latter

residuals (as described, e.g., by MacKinnon, 2002, p. 620) are used in Mantalos (2003).

4. Given e�
1
; :::; e�N from step 3, generate the bootstrap errors u�t recursively using

u�t =
GX

j=1

~�ju
�

t�j + e
�

t ; (11)

with required starting values set equal to zero.

5. Generate bootstrap data using

y�t =
LX

j=1

y�t�j ~�j +X
0

t
~� + u�t ; t = 1; :::; N; (12)

in which the bootstrap errors are given by (11).

6. The bootstrap value of the Breusch-Godfrey LMF statistic, denoted by LM
�

F ; is then obtained

by testing H�

0
: � = ~�; not H0 : � = 0; in the bootstrap counterpart of (4); see van Giersbergen

and Kiviet (2002, Section 1.2). The OLS estimators of the coe¢cients of the bootstrap version of the

arti�cial alternative (4) are denoted by ~� and ~�
�

.

In the version of an unrestricted bootstrap given by steps 1 to 6, there is no need to employ IV,

as well as OLS, estimation. This saving re�ects the fact that (4) is being used as an approximation

to the speci�ed alternative. The approximation is asymptotically valid under local alternatives in

which parameters that are under test are O(N�1=2), rather than O(1); see Godfrey (1981). Thus the

coe¢cients that determine the pattern of error autocorrelation are given by a Pitman-type drift, rather

than being �xed constants. Under an arti�cial sequence of alternatives that are drifting towards the

null model at the speci�ed rate in the unconditional (real world) law, the OLS estimators for (4) are

consistent and, in particular, ~� tends to a null vector so that (11) represents a local alternative in the

conditional (bootstrap) world. However, the local asymptotic theory of Pitman drifts may provide a

poor approximation to actual behaviour in �nite samples drawn from the bootstrap population when

observed serial correlation is not weak; see Eastwood and Godfrey (1992, Section 4.2) for a pilot Monte

Carlo study on such approximations for the actual population.

In order to gain some insight into the possible e¤ects of poor approximations in the scheme of

Mantalos (2003), consider the consequences of interpreting ~� in the bootstrap world as being a �xed

vector of constants, rather than being O(N�1=2). As is clear from steps 4 and 5, the bootstrap data

are generated using a model that is characterized by population coe¢cient vectors of ~ = (~�0; ~�
0

)0 in

the regression mean function and ~� in the AR(G) error model. The combination of serial correlation

generated by (11) and lagged dependent variables y�t�j included as regressors in (12) implies that,
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under �xed autocorrelation alternatives, the OLS estimators of the bootstrap counterpart of (4) are

inconsistent with.

plim�~�
�

6= ~�;

in which plim� denotes a bootstrap probability limit taken as N �! 1 under (11) and (12). As a

result of this inconsistency, the bootstrap test statistic LM�

F is O
�

p(N) when H
�

0
: � = ~� is true, where

O�p(�) denotes a stochastic order of magnitude in the bootstrap world. In contrast, under H0 : � = 0,

LMF is Op(1) with its limit null distribution being �
2(G)=G: Thus, if �xed autocorrelation model

parameters were assigned to the bootstrap world, the conditional law probability that LM�

F exceeds

LMF would tend to unity as N �! 1, along almost all sample sequences. Since H0 : � = 0 is to

be rejected when the estimated p-value of LMF is small, the unrestricted procedure based on steps

1-6 may lead to the true null hypothesis being rejected less frequently than desired in �nite samples,

if asymptotic local theory fails to provide a good approximation in the bootstrap world.

3 Monte Carlo design

The Monte Carlo data generation process corresponding to (1) is obtained using L =M = 2; so that

K = 4: It is written as

yt = �1yt�1 + �2yt�2 + �1 + �2xt + ut; t = 1; :::; N; (13)

in which N is either 40 or 80. Under the null, the ut are iid(0; �
2). This process has been used in

Dezhbakhsh (1990), Dezhbakhsh and Thursby (1995) and Godfrey and Tremayne (2005); parameter

values in (13) are speci�ed as in these earlier papers. The values of (�1; �2) are (0.5, 0.3), (0.7, -0.2),

(1.0, -0.2), (1.3, -0.5), (0.9, -0.3) and (0.6, 0.2), which all satisfy the conditions for dynamic stability.

The value of (�
1
; �

2
) is (1, 1) in all cases. The values of �2 are 1, 10 and 100. The OLS estimates

of the parameters of (13) are denoted by �̂1; �̂2; �̂1 and �̂2.

The null hypothesis of serially uncorrelated errors is tested with G = 4; so that the test model

corresponding to (4) is

yt = �1yt�1 + �2yt�2 + �1 + �2xt +
4X

j=1

�j ût�j + error; (14)

in which the terms ût�j are the lagged residuals from the OLS estimation of (13). The OLS estimate

of (�1; �2) from (14) is denoted by (~�1; ~�2). A test of (13) against (14) corresponds to the kind of

serial correlation check that might be used when working with quarterly data.

Genuine data are used for values of the exogenous regressor xt in Rayner (1993). However, this

approach implies that this regressor is �xed in repeated sampling over the Monte Carlo replications.

Given that the aim is to obtain Monte Carlo evidence relevant to non-experimental regression data

analysis, this implicit conditioning seems undesirable. As in several other studies, xt is generated by a

stable AR(1) process, i.e.,

xt = �xxt�1 + �t; j�xj < 1; �t NID(0; �
2

�): (15)
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In experiments that are not reported here, it is found that using a simple AR(4) model,

xt = �xxt�4 + �t; j�xj < 1; �t NID(0; �
2

�); (16)

does not lead to important di¤erences in results. The results discussed below are obtained using

�x = 0:7 and �2� selected so that V ar(xt) = 1: In order to obtain IV estimators for (13) that

are consistent under a serial correlation alternative, xt; xt�1; xt�2 and an intercept term are used as

instruments. The corresponding IV estimate of (�1; �2) from (13) is denoted by (��1; ��2).

The error terms ut of (13) are generated by special cases of the mixed autoregressive-moving

average ARMA(5, 5) model

ut =
5X

j=1

�jut�j + �t +
5X

j=1

�j�t�j ; (17)

in which the �t are independently and identically distributed (iid) with zero mean and variance �
2

� : All

pre-sample values for (17) are set equal to zero. Similarly starting values for y and x are set equal to

their respective unconditional means. The e¤ects of this standard computational device are reduced

by generating N + 50 observations and then using the last N of them.

Model (17) is su¢ciently general to provide evidence about several aspects of the performance of the

asymptotic and bootstrap tests derived from (13) and (14). By appropriate choices of the coe¢cients

of (17), rejection rates can be estimated: under the null hypothesis; under an AR(4) scheme, as is

used in the unrestricted bootstrap tests; and under serial correlation models that are not AR(4).

The iid error term �t of (17) is drawn from three distributions. Following the previous studies of

restricted and unrestricted bootstrap serial correlation tests, the Normal distribution is used. The other

two choices give symmetric and asymmetric nonnormal distributions. The former involves drawing iid

terms from a t(5) distribution and then transforming them to have the required population mean and

variance. For the latter, the �2(8) distribution is the source of the drawings that are transformed.

Tests are implemented in p-value form. The p-value for the procedure of Kiviet (1986) is

FPV = Pr(F(4; N � 8) � LMobs
F );

for N = 40; 80, in which LMobs
F is the observed value of LMF . The estimated p-values for the

restricted, Mantalos-type unrestricted and Rayner-type unrestricted bootstrap tests are denoted by

RES; MUR and RUR, respectively. These bootstrap p-values are calculated using 1000 bootstrap

samples. Rejection rates are obtained by comparing calculated p-values with nominal signi�cance levels

of 5% and 10%. Estimates of rejection probabilities are based upon a maximum of 25000 replications.

The asymptotic test of Kiviet (1986) is available in every replication. However, some replications

are not suitable for computing bootstrap tests. The problem is that estimates of (�1; �2) may fail

to satisfy the conditions for dynamic stability and so cannot be used to de�ne covariance stationary

bootstrap data generation processes. The Monte Carlo results concerning this problem and the �nite

sample rejection rates of the various tests under null and alternative hypotheses are discussed in the

next section.
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4 Monte Carlo results

In the discussion of the Monte Carlo results, it is useful to have a code for combinations of (�1; �2)

and the error distribution. The code system is given in Table 1. For example, a case with code 2B has

(�1; �2) = (0.7, -0.2) and errors derived from the t(5) distribution.

Table 1
Codes for combination of (�1; �2) and error distribution
1 (�1; �2) = (0:5; 0:3)
2 (�1; �2) = (0:7;�0:2)
3 (�1; �2) = (1:0;�0:2)
4 (�1; �2) = (1:3;�0:5)
5 (�1; �2) = (0:9;�0:3)
6 (�1; �2) = (0:6; 0:2)

A error distribution from Normal
B error distribution from t(5)
C error distribution from �2(8)

Before examining estimates of signi�cance levels, consider �rst the results that shed light on how

frequently bootstrap tests are applicable. The proportion of replications in which the estimates of

(�1; �2) required for de�ning the bootstrap population are consistent with stationarity is an obvious

index of applicability. Such proportions, measured in percentage terms, are referred to as applicability

ratios. Perusal of the results indicates that applicability ratios are not very sensitive to the choice of

error distribution from A, B and C of Table 1. As a representative sample, results on applicability for

cases with Normal errors are reported in Table 2. Table 2 has 18 groups of results, each corresponding

to a combination of bootstrap test (3 types), N (2 values) and �2 (3 values). There are 6 applicability

ratios in each group, corresponding to the combinations of (�1; �2) in Table 1.
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Table 2
Applicability ratios (percentages) for Normal errors
N = 40 with �2 = 1 �2 = 10 �2 = 100

RES 100.0,100.0,100.0, 99.9,100.0,100.0, 99.8,100.0,100.0,
test 100.0,100.0,100.0 100.0,100.0,99.9 100.0,100.0,99.9

RUR 90.9,96.6,92.1, 49.7,58.7,53.7, 33.4,38.2,35.5,
test 86.9,95.0,92.4 49.7,57.7,51.4 36.3,38.0,33.6

MUR 97.8,99.8,99.4, 72.3,79.7,79.8, 58.3,63.7,64.5,
test 99.7,99.8,98.4 86.0,82.8,73.7 75.3,68.5,58.1

N = 80 with �2 = 1 �2 = 10 �2 = 100
RES 100.0,100.0,100.0, 100.0,100.0,100.0, 100.0,100.0,100.0,
test 100.0,100.0,100.0 100.0,100.0,100.0 100.0,100.0,100.0

RUR 98.7,99.6,99.1, 63.2,74.1,67.1, 36.5,42.3,39.0,
test 96.0,99.2,99.0 62.0,71.3,65.4 38.7,41.8,36.2

MUR 99.9,100.0,100.0, 85.7,91.1,92.1, 65.2,67.6,72.1,
test 100.0,100.0,100.0 95.8,92.8,87.6 84.1,74.9,65.3

As can be seen from Table 2, there are important di¤erences between the applicability ratios for

the three di¤erent bootstrap tests. The restricted bootstrap check RES is almost always available

whatever the combination of N and �2. The unrestricted bootstrap tests, however, fail to match this

level of performance. Instead the value of �2 is associated with substantial e¤ects. As �2 increases

so does the relative frequency with which estimates of (�1; �2) imply dynamically unstable bootstrap

data processes. The problems with the IV-based procedure RUR derived from Rayner (1993) are so

marked that it is di¢cult to recommend it as a tool for general use in applied work. The applicability

of the Mantalos-type test MUR is not so severely impaired by error variance increases, but the e¤ects

of such increases are not negligible.

The sensitivity of unrestricted bootstrap tests to variations in �2 can be discussed after rewriting

(13) as

yt = 	(B)st + �	(B)at; (18)

in which: B is the backward shift operator, with Bjyt = yt�j ; 	(B) = 1 +  
1
B +  

2
B2 + ::: =

(1� �1B � �2B
2)�1; st = �

1
+ �

2
xt; and at = ��1ut: In this representation of the data process, st

and at are uncorrelated with V ar(st) = V ar(at) = 1 in all experiments. It follows that, as � increases,

the importance of the exogenous component 	(B)st decreases relative to �	(B)at:

In the experiments, Rayner�s version of the unrestricted bootstrap test uses xt�1 and xt�2 as

instruments for yt�1 and yt�2. From (18), these instruments are only correlated with the component

	(B)st�j of yt�j ; j = 1; 2, Hence, as increases in � make the exogenous components less and less

important, a type of weak instruments problem is approached and it is not surprising that IV estimates

are not close to the corresponding true parameter values.

A di¤erent explanation is required for the sensitivity of the Mantalos-type check because it does not

use IV estimation. The unrestricted bootstrap test that is proposed by Mantalos uses OLS estimators of
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(14) to de�ne the bootstrap process. Under the null hypothesis, the estimators from (14) are ine¢cient

relative to those for (13): the latter provide the parameter values for the restricted bootstrap. The

degree of asymptotic variance in�ation depends upon the extent to which yt�1 and yt�2 are "explained"

in linear regressions by ut�1; ut�2; ut�3 and ut�4. Consequently (18) implies that the e¤ects of

asymptotic variance in�ation increase as � increases. These e¤ects may be re�ected in �nite samples

by the greater frequency with which (~�1; ~�2) from (14) imply nonstationary AR(2) regression models.

The fact that the test MUR is available more often than the test RUR is not su¢cient to imply

that the former is either well-behaved or superior to the latter. It is important to investigate the

di¤erences between actual and desired null rejection probabilities. When the Monte Carlo data process

is such that all tests are usually available, the estimates for MUR are persistently below the desired

values and the estimates for RUR suggest much closer agreement. The possibility of low rejection

rates for MUR was discussed above and it appears that, in these experiments, AR error processes

in the bootstrap world are not adequately approximated by the arti�cial alternative derived by adding

lagged residuals to the original regression model. Table 3 contains results that illustrate these �ndings.

Table 3
Estimated null rejection probabilities, with
�2 = 1 and nominal signi�cance level of 5%

N = 40 N = 80
24114 > # replications > 21707 24899 > # replications > 23994

FPV RES RUR MUR FPV RES RUR MUR
Case 1A 4.6 4.2 4.3 2.3 5.3 5.1 5.1 2.9
Case 1B 4.5 4.2 4.2 2.3 4.8 4.9 4.9 2.7
Case 1C 4.5 4.3 4.3 2.3 4.8 4.8 4.8 2.6
Case 2A 4.5 4.6 4.6 2.0 4.9 5.0 5.0 2.7
Case 2B 4.2 4.6 4.5 1.9 4.5 4.9 4.9 2.7
Case 2C 4.2 4.4 4.3 1.9 4.6 5.0 4.9 2.6
Case 3A 5.1 4.8 4.7 2.8 4.9 4.8 4.7 3.2
Case 3B 4.4 4.3 4.1 2.5 4.6 4.8 4.7 3.3
Case 3C 4.6 4.4 4.3 2.5 4.8 4.8 4.8 3.2
Case 4A 5.0 4.3 4.3 3.3 5.1 4.9 4.9 4.4
Case 4B 4.7 4.3 4.2 3.4 4.7 4.7 4.8 4.1
Case 4C 4.9 4.3 4.3 3.4 4.9 4.9 4.8 4.1
Case 5A 4.7 4.7 4.6 2.2 4.7 4.7 4.8 2.9
Case 5B 4.1 4.3 4.2 2.2 4.7 5.0 5.0 3.2
Case 5C 4.3 4.6 4.3 2.0 4.4 4.7 4.6 2.8
Case 6A 5.3 4.9 4.8 2.6 4.9 4.8 4.8 2.7
Case 6B 4.6 4.4 4.2 2.4 4.8 5.0 4.9 2.8
Case 6C 4.8 4.5 4.5 2.3 4.8 5.0 4.9 2.6

Note: The case codes given in the �rst column are derived from the codes of Table 1.

The results in Table 3 are for the data processes de�ned by combining the cases of Table 1 with

�2 = 1: The use of �2 = 1 implies that all tests are available with quite high frequency. Only
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replications in which all tests are available are used to obtain the results of Table 3. Consequently the

number of replications varies with case and sample size. The smallest and largest numbers of such

replications are shown for each sample size in Table 3. At worst, there are over 21000 replications, so

that estimation should be su¢ciently precise for practical purposes.

Rejection rates in Table 3 are derived with �2 = 1 so that all four tests can be compared. However,

these results cannot be assumed to be representative of those for more general situations in which

unrestricted bootstrap tests are not free of applicability problems. Attention is therefore also given to

estimates for FPV and RES derived using all three values of �2: Table 4 contains estimates for RES

and FPV for all values of �2, with N = 40. As indicated by Table 2, RES is almost always available

and no estimate for this test in Table 4 is based upon fewer than 24948 replications (many are based

upon the full set of 25000 replications). It is clear that RES performs well in the experiments. There is

no indication of it being either persistently undersized or persistently oversized and �uctuations about

the nominal size of 5% are small. Every estimate for RES is in the range 0.9�5% = 4.5% to 1.1�5%

= 5.5%; so that all satisfy the stringent criterion of robustness given in Serlin (2000). The F-test

approach of Kiviet (1986) does not seem to provide such good control of �nite sample null rejection

probabilities. Estimates for FPV fall on both sides of 5% when �2 = 1; but these estimates exhibit a

greater degree of variability than the corresponding values for RES. For the two larger values of �2,

the estimates for FPV provide evidence of a tendency for the test to be undersized, with the absolute

value of the error in rejection probability increasing with �2: Comparison of the last two columns of

results in Table 4 shows that the restricted bootstrap can be useful in correcting the test FPV , which

relies upon the standard F-distribution for approximations.

Repeating the experiments of Table 4 with N = 80 does not lead to important changes. The same

general patterns emerge and, for example, the average of estimates for FPV corresponding to those

of the last column of Table 4 is 4.4%, compared with 4.3% when N = 40. The restricted bootstrap

test has a slightly better performance when N = 80, with the largest di¤erence between an estimate

and the target value of 5% being 0.3%, compared with 0.4% when N = 40.

To sum up, consideration of the results for experiments in which the null hypothesis is imposed leads

to the following conclusions. First, the use of critical values from an approximating F-distribution, as

suggested in Kiviet (1986), can lead to underrejection relative to desired levels. Second, doubt is cast

upon the general usefulness of the two unrestricted bootstrap tests either because of the possibility

of being frequently inapplicable or because of excessively low rejection rates. Third, the restricted

bootstrap leads to good control of �nite sample null rejection rates.
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Table 4
Estimated null rejection probabilities, with
N = 40 and nominal signi�cance level of 5%
�2 = 1 �2 = 10 �2 = 100

RES FPV RES FPV RES FPV
Case 1A 5.2 5.6 5.0 4.6 4.6 4.0
Case 1B 4.8 4.9 4.9 4.4 4.7 4.1
Case 1C 5.2 5.3 5.0 4.5 4.6 4.0
Case 2A 5.2 5.0 5.3 4.7 5.1 4.4
Case 2B 5.0 4.6 5.4 4.7 5.2 4.6
Case 2C 4.8 4.4 5.0 4.4 5.1 4.5
Case 3A 5.2 5.6 5.2 4.9 5.1 4.5
Case 3B 4.9 5.1 4.9 4.5 4.9 4.4
Case 3C 5.0 5.2 4.7 4.4 4.8 4.2
Case 4A 5.4 5.9 5.2 5.2 5.0 4.6
Case 4B 4.9 5.3 4.9 4.5 4.8 4.2
Case 4C 4.8 5.2 5.1 4.9 5.1 4.5
Case 5A 5.2 5.1 5.2 4.6 5.0 4.3
Case 5B 5.1 4.8 5.3 4.7 5.0 4.3
Case 5C 4.8 4.6 5.0 4.4 5.1 4.4
Case 6A 5.2 5.5 5.1 4.7 5.0 4.3
Case 6B 5.1 5.1 4.8 4.4 4.7 4.2
Case 6C 5.0 5.0 5.0 4.6 4.9 4.2
Note: The case codes given in the �rst column are derived from the codes of Table 1.

Findings concerning estimates obtained under the null hypothesis have implications for comparisons

of estimates derived under alternative hypotheses. In order to make sensible comparisons of power,

there should not be important di¤erences in estimates of null rejection probabilities. There is strong

evidence that, when the null hypothesis is true, MUR rejects less frequently than RES, RUR and

FPV , all three of which have estimates that are closer to desired levels than those forMUR; see Table

3. It is therefore not surprising that MUR fails to detect serial correlation as frequently as the other

tests when nonzero coe¢cients are used in (17). Given the arguments of Horowitz and Savin (2000),

it was decided to exclude MUR from power comparisons, rather than to attempt to "size-correct"

this test. Estimates for the remaining tests, viz., RES, RUR and FPV; are reported in Tables 5-7.

These estimates are representative of the full set derived with various serial correlation models that are

special cases of (17).

Table 5 contains results for regression models with errors generated by

(1� 0:7B + 0:17B2 � 0:017B3 + 0:0006B4)ut = �t; �tiid(0; 1); (19)

which has the same AR(4) structure as the version of (8) used to generate residuals for implementing

the unrestricted bootstrap test RUR. The polynomial in B used in (19) can be factorized as

(1� 0:3B)(1� 0:2B)(1� 0:1B)2:

Tables 6 and 7 contain estimates for regression models with errors generated by schemes that are

not special cases of the AR(4) model; so that the version of (8) used to obtain RUR is misspeci�ed.
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Estimates in Table 6 are calculated from simulated data obtained with the serial correlation model

(1� 0:3B)(1� 0:3B4)ut = (1� 0:3B � 0:3B
4 + 0:09B5)ut = �t; �tiid(0; 1); (20)

which is a restricted version of an AR(5) model. For the cases of Table 7, errors are generated by

ut = (1 + 0:3B
4)�t; �tiid(0; 1); (21)

i.e., by a simple MA(4) scheme. The coe¢cients of these and the other serial correlation models are

selected by trial and error with the aim of avoiding power estimates that are close either to nominal

signi�cance levels or to 100% in all cases.

Table 5
Estimated rejection probabilities for the error model

(1� 0:7B + 0:17B2 � 0:017B3 + 0:0006B4)ut = �t; �tiid(0; 1);
with N = 80 and nominal signi�cance level of 10%

RES RUR FPV
Case 1A 55.6 55.2 55.8
Case 1B 58.2 58.0 57.7
Case 1C 56.8 56.6 56.6
Case 2A 69.2 69.2 68.8
Case 2B 70.3 70.3 69.4
Case 2C 69.7 69.8 69.2
Case 3A 73.7 73.7 74.2
Case 3B 73.8 73.9 73.7
Case 3C 73.8 73.9 73.8
Case 4A 93.8 94.0 94.2
Case 4B 94.3 94.4 94.4
Case 4C 93.8 93.8 93.9
Case 5A 79.0 79.0 78.9
Case 5B 79.5 79.6 78.9
Case 5C 79.5 79.6 79.2
Case 6A 52.9 52.4 52.9
Case 6B 53.9 53.7 53.5
Case 6C 53.2 53.1 53.1
Notes: a. The case codes given in the �rst column are derived from the codes of Table 1.

b. The estimates of this Table are obtained with 24956 > # replications > 23433.

It is clear from Table 5 that, whatever the combination of (�1; �2) and the error distribution,

di¤erences between power estimates are small and do not reveal a consistent ranking of RES, RUR

and FPV . Consequently the results do not suggest that the unrestricted (�xed alternative hypothesis)

bootstrap test RUR has better power than the restricted (null hypothesis) bootstrap test RES. The

�ndings derived from Table 5 are corroborated by the estimates of Table 6 and Table 7.
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Table 6

Estimated rejection probabilities for the error model

(1� 0:3B � 0:3B4 + 0:09B5)ut = �t; �tiid(0; 1);

with N = 80 and nominal signi�cance level of 10%

RES RUR FPV

Case 1A 59.3 59.3 59.8

Case 1B 59.8 60.0 59.7

Case 1C 58.7 58.7 58.6

Case 2A 67.0 67.1 66.7

Case 2B 68.1 68.2 67.3

Case 2C 67.3 67.5 66.7

Case 3A 62.7 62.7 63.3

Case 3B 63.8 63.7 63.6

Case 3C 62.7 62.9 62.9

Case 4A 66.8 67.0 67.7

Case 4B 67.4 67.4 67.6

Case 4C 67.1 67.3 67.6

Case 5A 68.1 68.2 68.0

Case 5B 69.2 69.3 68.5

Case 5C 68.6 68.7 68.1

Case 6A 58.4 58.2 58.6

Case 6B 59.0 59.0 58.9

Case 6C 58.3 58.3 58.2

Notes: a. The case codes given in the �rst column are derived from the codes of Table 1.

b. The estimates of this Table are obtained with 24947 > # replications > 24240.
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Table 7

Estimated rejection probabilities for the error model

ut = (1� 0:3B
4)�t; �tiid(0; 1);

with N = 80 and nominal signi�cance level of 10%

RES RUR FPV

Case 1A 46.2 46.2 46.7

Case 1B 46.2 46.2 45.9

Case 1C 46.1 46.1 46.0

Case 2A 47.5 47.6 47.0

Case 2B 47.7 47.8 46.8

Case 2C 47.9 47.9 47.0

Case 3A 47.1 47.2 47.5

Case 3B 47.2 47.2 46.9

Case 3C 47.5 47.3 47.2

Case 4A 45.8 45.8 46.5

Case 4B 46.4 46.3 46.2

Case 4C 45.7 45.5 45.8

Case 5A 46.4 46.5 46.2

Case 5B 46.8 47.0 45.9

Case 5C 47.0 47.0 46.3

Case 6A 47.0 47.2 47.5

Case 6B 47.2 47.3 47.0

Case 6C 47.2 47.1 47.2

Notes: a. The case codes given in the �rst column are derived from the codes of Table 1.

b. The estimates of this Table are obtained with 24857 > # replications > 23812.
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5 Conclusions

Evidence concerning the behaviour of tests for serial correlation has been obtained using Monte Carlo

designs that are more general in terms of dynamic speci�cation, error distribution and alternative hy-

pothesis than those previously employed. The F-test approach of Kiviet (1986) provides an appropriate

asymptotic test in an intuitively appealing and simple fashion. However, the evidence reported above

indicates that the use of an F-distribution as a source of approximate critical values can lead to an

undersized test.

Three approaches to bootstrapping the F-statistic form of the Lagrange multiplier statistic in order

to improve control of �nite sample signi�cance levels have been examined. The approaches di¤er in the

treatment of the parameters of the serial correlation model, which can be treated as �xed constants,

as drifting towards zero values as the sample size increases, or set equal to zero values.

The unrestricted bootstrap test RUR of Rayner (1993), based upon a �xed alternative, is vulnera-

ble to estimation problems that a¤ect its availability. Instrumental variable estimators of the regression

model are needed for consistency under �xed alternatives and sample values of these estimators can

quite frequently be at odds with the requirement that the bootstrap data generation process be dy-

namically stable. It is sometimes argued that unrestricted bootstrap tests can enjoy superior power

but the results obtained in the Monte Carlo experiments with serially correlated errors do not support

this view.

The bootstrap test MUR of Mantalos (2003) is derived by considering local, rather than �xed,

alternatives. By using the local equivalence of the test model and the corresponding serial correlation

alternative, it is possible to justify the use of OLS, as opposed to instrumental variables, in the unre-

stricted bootstrap with serially correlated errors. However, the results obtained show that asymptotic

local equivalence can provide a poor approximation in �nite samples and MUR can be seriously un-

dersized. This failing under the null hypothesis leads to relatively low rejection rates in the presence

of serially correlated errors.

A restricted (null hypothesis) bootstrap is used for the test RES. This test is available with very

high frequency in the experiments and gives very good control of �nite sample signi�cance levels.

Moreover, the power estimates for RES match those of other tests. The overall conclusion that is

drawn from the simulation evidence is, therefore, that a simple restricted bootstrap should be used

when testing for serial correlation after OLS estimation of models with lagged dependent variables as

regressors.

The emphasis in this study has been on how best to use a single level of bootstrapping to obtain

reliable and e¤ective tests for serial correlation in dynamic regression models. The results in Beran

(1988) suggest that further improvements might be derived by using a double bootstrap approach.

However, the double bootstrap described in Beran (1988) has a relatively high computational cost. In

recent work, Davidson and MacKinnon propose a fast double bootstrap (FDB) that is much cheaper

to implement; see Davidson and MacKinnon (2006). Monte Carlo results on using a FDB test for serial

correlation in a dynamic regression model are reported in Davidson and MacKinnon (2006). These

Monte Carlo results are obtained from experiments in which only the one-period lag of the dependent

variable is combined with strictly exogenous variables to form the regressor set and the alternative

error model is a �rst-order autoregression. It would be interesting to examine the application of FDB

methods in the context of the more general models described in Section 3 above.
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