ЛИТЕРАТУРА:

- 1. Галанин А.Д. Введение в теорию ядерных реакторов на тепловых нейтронах. – 2-е изд., перераб. и доп. – М.: Энергоатомиздат, 1990. – 536 с.
- 2. Энциклопедия нейтронных данных, Росфонд (Российская библиотека файлов оцененных нейтронных данных), Обнинск 2006 г.

Научный руководитель: С.В. Лавриненко, ст. преподаватель каф. АТЭС ЭНИН ТПУ.

ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНОГО СОСТОЯНИЯ ГРАФИТОВОЙ КЛАДКИ РЕАКТОРА РБМК-1000

М.П. Виноградов Томский политехнический университет ЭНИН, АТЭС, группа 5011

Цель работы

Расчетные исследования характеристик стационарного температурного состояния графитового замедлителя реактора РБМК в зависимости от концентрации элементов в газовой смести.

Общие сведения

Важную роль в реакторах типа РБМК играет его графитовая кладка. Графит выполняет функции замедлителя нейтронов. Сама кладка служит несущей конструкцией для элементов активной зоны реактора.

Основным фактором, влияющим на работоспособность кладки, а значит и на безопасность эксплуатации реактора, является температура графита, определяющая величину и характер радиационной деформации элементов кладки. В практике принято, что на всех режимах работы реактора РБМК максимальная температура графита не должна превышать 800-850°C.

Вместе с тем существует прямая связь между средней температурой графита и реактивностью, так как реакторы типа РБМК обладают существенным положительным эффектом реактивности по температуре замедлителя.

В реакторе РБМК доля генерируемого в графите тепла составляет 5...6% общей тепловой мощности. В существующих конструкциях

водографитовых реакторов отвод этого тепла осуществляется к теплоносителю, охлаждающему тепловыделяющие элементы.

Для интенсификации теплоотвода от графита в зазорах между трубами ТК и графитовыми блоками прокачивается продувочный газ 2 штатного состава 90 % гелия + 10 % азота (по объему).

Термическое сопротивление зазора труба ТК- графитовый блок зависит и от состава продувочной смеси, так как гелий при одинаковой температуре имеет теплопроводность примерно в 6 раз больше, чем азот.

Таким образом основными факторами, определяющими, температуру графитового замедлителя реактора РБМК являются: мощность реактора, неравномерность распределения энерговыделения по объему активной зоны, теплопроводность графита и состав продувочной смеси.

Математическая модель

Характеристика математической модели:

- 1. Стационарная задача;
- 2. Уравнения энергии;
- 3. Модель турбулентности k-epsilon.

Рис. 5. Схематический разрез топливного канала с блоком графитовой кладки.

Граничные условия

$$v_0 = 1\frac{M}{c}; t_0 = 265^{\circ}C; p_0 = 7M\Pi a; q_v = 3\frac{MBm}{M^3}.$$

Допущение: в графитовых кольцах нет тепловыделения.

Рис. 6. Граничные условия Табл. 1. Теплофизические свойства материалов

Расчет теплофизических свойств газовой смеси Массовые доли компонентов:

$$M(N_2) = 14 \frac{\kappa^2}{\kappa_{MOЛb}};$$

$$M(He) = 2\frac{\kappa^2}{\kappa_{MOЛb}}.$$

Массовый состав смеси:

$$g(N_2) = \frac{M(N_2) \cdot x(N_2)}{M(N_2) \cdot x(N_2) + M(He) \cdot x(He)};$$

$$g(He) = \frac{M(He) \cdot x(He)}{M(N_2) \cdot x(N_2) + M(He) \cdot x(He)}.$$

Плотность смеси:

$$\rho^{CM} = \rho^{N_2} \cdot g(N_2) + \rho^{He} \cdot g(He).$$

Средняя молекулярная масса смеси:

$$M^{CM} = \frac{1}{\frac{g(N_2)}{M(N_2)} + \frac{g(He)}{M(He)}}.$$

Массовая теплоемкость смеси:

$$c_p^{CM} = \frac{c_p^{N_2} \cdot x(N_2) \cdot M(N_2) + c_p^{He} \cdot x(He) \cdot M(He)}{M^{CM}}.$$

Коэффициент теплопроводности смеси:

$$\lambda^{CM} = \lambda^{N_2} \cdot x(N_2) + \lambda^{He} \cdot x(He).$$

Результаты

Рассмотрим профиль температур по пяти сечениям.

Рис. 7. Сечения рассматриваемой модели

Рис. 8. Распределение температур по сечениям, xN2=0% Табл. 2. Зависимость средней температуры оболочки ТК в разных сечениях от концентрации азота

	feminin of hondenipudini usofu											
	xN,%	0	5	10	15	20	30	40	50	70	90	100
$T^{CP}_{06}, \circ C$	Линия №1	285,9	285,5	285,1	284,7	284,4	283,6	282,8	281,9	280,2	278,4	277,4
	Линия №2	296,2	295,9	295,6	295,3	295,0	294,5	293,8	293,2	291,9	290,6	289,8
	Линия №3	367,4	367,6	367,8	368,0	368,1	368,5	369,0	369,4	370,3	371,2	371,7
	Линия №4	379,5	379,8	380,0	380,2	380,5	381,0	381,5	382,0	383,1	384,2	384,8
	Линия №5	361,3	361,4	361,5	361,6	361,7	361,9	362,1	362,3	362,7	363,2	363,4

Табл. 3. Зависимость средней температуры газового зазора в разных сечениях от концентрации азота

	сечениях от концентрации азота											
xN,%		0	5	10	15	20	30	40	50	70	90	100
	Линия №1	421,6	422,0	422,4	422,7	423,1	423,9	424,7	425,6	427,3	429,2	430,2
°,C	Линия №2	419,7	420,1	420,4	420,8	421,2	422,0	422,8	423,6	425,3	427,2	428,1
	Линия №4	554,4	555,4	556,5	557,6	558,7	560,9	563,2	565,6	570,6	575,9	578,7
Tre	Линия №5	546,5	547,5	548,5	549,5	550,6	552,7	554,9	557,2	562,0	567,2	569,9

Табл. 4. Зависимость средней температуры графитового кольца в раз-

		-			
HLIX	сечениях	OT	конце	нтрании	ASOTA
IIDIA		υı	концо	прации	uJUIU

xN,%		0	5	10	15	20	30	40	50	70	90	100
	Линия №1	567,6	568,8	570,0	571,3	572,6	575,2	577,9	580,6	586,4	592,6	595,9
T ^{CP} ,∘C	Линия №2	556,4	557,6	558,7	559,9	561,1	563,5	566,0	568,6	574,0	579,7	582,8
	Линия №3	502,0	502,8	503,6	504,4	505,2	506,8	508,5	510,3	513,9	517,8	519,9
	Линия №4	436,9	437,2	437,6	437,9	438,3	439,0	439,7	440,5	442,1	443,8	444,7
	Линия №5	404,9	405,0	405,1	405,2	405,3	405,5	405,7	405,9	406,4	406,8	407,1

Табл. 5. Зависимость средней температуры графитового блока в раз-

ных сечениях от концентрации азота												азота
xN,9	6	0	5	10	15	20	30	40	50	70	90	100
	Линия №1	727,4	729,1	730,8	732,5	734,3	737,9	741,6	745,4	753,5	762,1	766,6
,°C	Линия №2	728,2	729,9	731,6	733,3	735,1	738,7	742,4	746,3	754,4	763,0	767,6
	Линия №3	732,0	733,7	735,5	737,2	739,0	742,7	746,5	750,4	758,6	767,4	772,1
	Линия №4	739,1	740,9	742,7	744,5	746,4	750,2	754,1	758,1	766,6	775,7	780,5
$T_{\rm B}^{\rm CI}$	Линия №5	744,0	745,8	747,7	749,5	751,4	755,3	759,3	763,5	772,2	781,5	786,4

Вывод

Рассмотрено температурное поле графитовой кладки, при различных концентрациях компонентов продувочной смеси.

Установлена линейная зависимость увеличения средней температуры графитовой кладки, при увеличении концентрации азота в продувочной смеси.

ЛИТЕРАТУРА:

- Батурин О.В., Батурин Н.В., Матвеев В.Н. Расчет течений жидкости и газа с помощью универсального программного комплекса Fluent - Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2009. - 151с.: ил.
- 2. Афанасьев В.Н., Недайвозов А.В. Методические указания к выполнению учебных заданий по курсу "Термодинамика": Электронное учебное издание. - М.: МГТУ имени Н.Э. Баумана, 2013. 26 с.

Научный руководитель: А.В. Воробьев, к.т.н., доцент каф. АТЭС ЭНИН ТПУ.

ЭВОЛЮЦИЯ МАТЕРИАЛОВ ТЕПЛООБМЕННЫХ ТРУБ ПАРОГЕНЕРАТОРОВ АЭС

Г.А. Китаев Томский политехнический университет ЭНИН, АТЭС, группа 5022

Парогенераторы (ПГ) АЭС с ВВЭР, это теплообменные аппараты, передающие тепло от первого контура во второй контур и вырабатывающие пар, который приводит в действие турбогенераторы АЭС.

Конструктивно парогенераторы представляют корпусные сосуды с несколькими тысячами труб. Теплоноситель первого контура проходит внутри теплообменных труб и нагревает воду до образования пара.

ПГ является барьером между первым радиоактивным контуром и водо-паровой средой, имеющей контакт с окружающим пространством, в связи с чем этот барьер должен быть надёжным.

Для того чтобы тонкостенные теплообменные трубы (TOT) парогенератора исполняли функции этого эффективного барьера, они не должны иметь больших или сквозных дефектов.