brought to you by 🐰 CORE

Секция 4 ЭНЕРГЕТИКА: ЭФФЕКТИВНОСТЬ, НАДЕЖНОСТЬ, БЕЗОПАСНОСТЬ

Проект осуществлен при поддержке Некоммерческого партнерства «Глобальная энергия». Список литературы:

- 1. http://www.sunhome.ru/journal/519237
- 2. Способ контроля электромагнитной безопасности: пат. 2476894 Рос. Федерация. № 2011113569/28; заявл. 07.04.2011; опубл. 27.02.2013, Бюл. № 6. 14 с.

Рентгенофазовый анализ тонколистового проката из стали 08X18H10T-ГР Фисенко Р.Н., Туманов М.С.

Национальный исследовательский Томский политехнический университет, Россия, г. Томск tumanov mihail@mail.ru

Введение. Хромоникелевые аустенитные стали нашли достаточно широкое применение в энергетике и промышленности [1]. Принято считать, что значительное количество никеля в их составе позволяет получать устойчивый аустенит в достаточно широком температурном интервале (в том числе и при низких температурах). Как правило, эти материалы не обладают магнитными свойствами [2].

В данной работе исследовалась пластина размерами 76,5×72×4 мм из стали марки 08Х18Н10Т-ГР, вырезанная с помощью гильотинных ножниц (ориентировочное время после выплавки – 2..3 года). За основной метод её изучения был выбран рентгенофазовый анализ (РФА). Последний является единственным прямым методом измерения кристаллической решётки [3].

Первичный анализ (конец 2014 года) показал, что исследуемая сталь состояла из двух фаз (γ-Fe – 85,4 %, остальное, предположительно, – α-Fe). Параллельно была проведена оценка магнитных свойств пластины. Они обнаруживались в местах удара гильотинных ножниц, что свидетельствовало о возникновении магнитной фазы в результате давления. В центре образца магнитные свойства были значительно слабее.

В этой связи представляет интерес изучение фазового состава (и оценка зональных напряжений), как в центре данного образца, так и на его периферии.

Краткая характеристика исследуемой марки стали. Сталь марки 08X18H10T-ГР (ГР – газокислородное рафинирование) выплавляется в дуговых электропечах. Она немагнитна и является одной из самых используемых марок высоколегированных нержавеющих сталей. Её микроструктура в закаленном состоянии представляет собой аустенит. При нагревании сталь данной марки склонна к межкристаллитной коррозии, также немного снижаются пластичные свойства [2].

В имеющемся сертификате на данный образец отмечается, что он:

а) является прокатом тонколистовым, коррозионностойким, жаростойким и прочным;

б) имеет химический состав: Cr - 17,75 %; Ni - 9,08 %; Ti - 0,27 %; Mn - 0,45 %; V - 0,022 %; Cu - 0,15 %; Mo - 0,19 %; W - 0,0587 %; Si - 0,46 %; S - 0,002 %; P - 0,033 %; C - 0,12 % и остальное Fe.

Эту сталь переплавляют достаточно часто. При этом основные легирующие элементы (Cr, Ni и Ti) подвержены выгоранию. Титан может выгорать полностью и для решения этой проблемы его необходимо дошихтовывать при переплавке [2].

Методика эксперимента. РФА проведён с помощью дифрактометра ДРОН (λCuK_{α} ; $\lambda_{cp} = 1,54178$ Å). Концентрация каждой фазы (*C*, %) оценивалась по интенсивности дифракционных линий (110) для α -Fe и (111) для γ -Fe. Параметр элементарной ячейки (a_i , Å) определялся с использованием уравнения Вульфа-Брэггов с учётом λ_{cp} . Зональные напряжения (σ_I , МПа) оценивались на основании закона Гука:

$$\sigma_I = \frac{\Box a}{a} \cdot E = \frac{a_i - a_0}{a_0} \cdot E,$$

где E – модуль нормальной упругости, МПа [1]; a_0 – эталонный значение параметра элементарной ячейки (для α -Fe: a_0 =2,882 Å; для γ -Fe: a_0 =3,597 Å).

Химический состав исследуемого образца определялся с помощью рентгенофлюоресцентного анализатора SKYRAY EDX 2800.

Экспериментальные результаты и их анализ. Анализируемый образец листовой стали (рис. 1) распилен на несколько частей (линии реза показаны утолщенными.)

Секция 4

Рис. 1. Схема исследуемого образца с нумерацией зон, подвергнутых РФА

Результаты элементного анализа образца в зонах 9, 11, 12 и 13 представлены в таблице 1.

№ зоны	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Nb	Мо	W
9	0,0	0,079	18,38	0,54	71,83	0,304	8,501	0,172	0,0	0,186	0,011
11	0,0	0,068	18,42	0,556	71,77	0,396	8,357	0,200	0,0	0,182	0,055
12	0,0	0,066	18,39	0,533	71,74	0,465	8,265	0,312	0,0	0,179	0,048
13	0,0	0,064	18,32	0,638	71,74	0,478	8,238	0,308	0,0	0,182	0,035

Таблица 1. Элементный состав исследуемого образца, %

Обращает на себя внимание отсутствие титана во всех исследованных зонах.

Результаты РФА и оценка σ_l представлены в таблице 2.

Известно, что γ-Fe немагнитно. Однако, как отмечалось выше, магнитные свойства в исследуемом образце не только обнаруживаются, но и от центра к периферии значительно возрастают, что указывает на двухфазность системы, содержащей α-Fe. При этом можно предположить, что по направлению от центра пластины к её периферии содержание α-Fe должно возрастать. Экспериментальные результаты рентгенофазового количественного анализа (табл. 2) это предположение не подтвердили.

«Несмотря на то, что метод РФА достаточно давно разработан и постоянно совершенствуется, однако, до сих пор не решён вопрос о том, как избежать влияния кристаллической текстуры (преимущественной ориентировки) на результаты анализа» [3]. В этой связи по относительным интенсивностям дифракционных линий была проведена оценка текстурированности образца (табл. 3) [4]. Полученные данные отличаются от справочных, что говорит о наличии значительных текстур, образовавшихся при прокатке листа (а возможно и при фазовых превращениях).

Таблицы 2 и 3 показывают, что текстуры не могут удовлетворительно объяснить поведение магнитных свойств исследуемого образца (магнитные свойства изменяются очень сильно, а при рентгеносъёмке в различных (взаимно перпендикулярных) плоскостях не обнаруживается существенного изменения фазового состава).

Известны четыре фазы железа: α -Fe (a = 2,86647 Å), β -Fe (a = 2,906 Å – 797° C), γ -Fe (a = 3,637 Å – 1097° C), δ -Fe (a = 2,936 Å – 1427 C) [4]. Из них магнитна только первая. Все кроме третьей имеют объёмно-центрированную кубическую решетку (ОЦК), решетка γ -Fe – гранецентрированная кубическая (ГЦК). Основные легирующие компоненты анализируемой стали это Cr (ОЦК, a = 2,885 Å) и Ni (ГЦК, a = 3,5238 Å). С учётом намагниченности и по данным количественного анализа можно предположить, что в процессе распада γ -Fe преимущественно образуется β -Fe. При температурном или сильном механическом воздействии (за счёт различных процессов, в том числе диффузионных – миграция хрома) β -Fe может перейти в α -Fe. Это

предположение полностью объясняет данные РФА анализа и распределение магнитных свойств в различных зонах образца.

N⁰	Фазовый с	остав, %	<i>a</i> ,	Å	$σ_I$, ΜΠα		
зоны	α-Fe**	γ-Fe	α-Fe**	γ-Fe	α-Fe**	γ-Fe	
1	53,11	46,89	2,884	3,599	128	107	
2	50,00	50,00	2,886	3,596	309	-34	
3	56,50	43,50	2,883	3,594	46	-165	
3*	57,25	42,75	2,885	3,598	195	42	
4	65,34	34,66	2,884	3,596	137	-76	
5	59,95	40,05	2,888	3,596	424	-74	
6	58,03	41,97	2,886	3,593	263	-201	
7	51,52	48,48	2,887	3,597	387	0	
7*	24,72	75,28	2,882	3,591	0	-327	
8	61,29	38,71	2,884	3,597	139	0	
9	70,19	29,81	2,883	3,598	68	75	
10	60,00	40,00	2,884	3,597	128	0	
11	52,70	47,30	2,884	3,593	178	-249	
11*	20,61	79,39	2,876	3,596	-451	-31	
12	53,97	46,03	2,885	3,595	187	-105	
12*	15,28	84,72	2,874	3,592	-607	-304	
13	57,89	42,11	2,885	3,596	187	-60	
13*	41,96	58,04	2,878	3,592	-283	-259	
13*	66,90	33,10	2,883	3,596	96	-49	
14	53,50	46,50	2,886	3,598	278	43	
15	70,77	29,23	2,886	3,597	293	0	
16	42,56	57,44	2,884	3,597	150	0	
17	49,02	50,98	2,884	3,595	134	-90	
18	62,50	37,50	2,884	3,597	144	0	
19*	62,29	37,71	2,884	3,596	117	-49	

Таблица 2. Количественный фазовый анализ. Зональные напряжения первого рода

* – РФА выполнен в плоскости, перпендикулярной наибольшей поверхности пластины;

** – обозначение условное, так как предположительно это может быть смесь α- и β-Fe.

Таблица 3. Оценка относительной интенсивности дифракционных линий [4]

	Относительная интенсивность дифракционной линии, %							
Зона исследования		(HKL) α-Fe		(HKL) γ-Fe				
	(110)	(200)	(211)	(111)	(200)	(220)		
Справочные данные	100	15	38	100	50	32		
Эксперимент. Зона 3	100	5,1	14,6	100	25,4	9,3		
Эксперимент. Зона 13	100	7,5	17,2	100	40,7	17,6		
Эксперимент. Зона 19	100	5,5	14,3	100	38,5	17,4		

Значения параметра элементарной ячейки, полученные в экспериментах (табл. 2), находится в диапазоне 2,882...2,888 Å. Однако, обнаружились три зоны (11, 12, 13), где этот параметр равен 2,874...2,878 Å. Эти зоны находятся в местах удара гильотинных ножниц. Можно предположить, что уменьшения параметра a в данном случае обусловлено увеличением концентрации α -Fe, что хорошо коррелирует с наличием сильных магнитных свойств в этих зонах.

Обращает на себя внимание тот факт, что сильное механическое воздействие (например, зоны 7*, 11*, 12*) затормозило распад ү-Fe, хотя и увеличило концентрацию магнитной фазы. Таким образом, удар гильотинных ножниц сильно изменил свойства материала. Использование такого подхода, когда с помощью механической обработки стараются в положительном направлении изменить структуру (а значит и свойства) нержавеющих сталей в литературе известны [5].

Анализ экспериментальных данных позволяется сделать выводы:

1. Распад аустенита в исследуемом материале в течение одного года проходил достаточно

Секция 4

интенсивно (см. введение и табл. 2).

2. В центральной части пластины зональные напряжения в γ-Fe преимущественно сжимающие, а в параллельной ей фазе – растягивающие.

3. Обнаружено, что сильное механическое воздействие (ударного типа) на сталь марки 08Х18Н10Т-ГР: тормозит распад γ-Fe; интенсифицирует распад β-Fe до α-Fe; приводит к возникновению сильных сжимающих напряжений во всех имеющихся фазах, что, возможно, и является причиной ускорения распада β-Fe до α-Fe.

4. Фазовые переходы, возникающие при естественном старении и при механическом воздействии, в совокупности с имеющимися текстурами существенно изменят эксплуатационные ожидания, что должно учитываться на этапах проектирования и производства изделий из листового проката, выполненного из стали марки 08Х18Н10Т-ГР.

Список литературы:

- 1. Масленков С.Б., Масленкова Е.А. Стали и сплавы для высоких температур: Справ.изд. В 2-х кн. Кн. 1. М.: Металлургия, 1991. 383 с.
- 2. <u>http://specural.com</u>
- 3. Корнеев А.Е., Старченко Е.Г., Пронин В.П. Определение количества остаточного аустенита в сварных соединениях // Технология металлов. 2008. № 5. С. 24–27.
- 4. Горелик С.С., Расторгуев Л.Н., Скаков Ю.Н. Рентгенографический и электроннооптический анализ. М.: Металлургия, 1970. 107 с.
- 5. Карась В.П. Внедрение новой техники и технологий при ремонте оборудования и трубопроводов АЭС // Росэнергоатом. 2010. № 8. С. 26–29.
 - Работа поддержана грантом РФФИ № 15-08-99544а.

Анализ свойств жидкого продукта термического разложения отработанных деревянных шпал

Тунцев Д.В., Хайруллина М.Р., Хайруллина Э.К.

Казанский национальный исследовательский технологический университет, Россия, г. Казань, E-mail: <u>tuncev_d@mail.ru</u>

Ежегодно после ремонта железнодорожных путей скапливается огромное количество отработанных деревянных шпал. Применение различных антисептиков против гниения в качестве пропитки, загрязнения нефтепродуктами при эксплуатации, присутствие металлических включений, не извлеченных при демонтаже, делают отработанных шпал экологически опасными отходами. Согласно федеральному классификационному каталогу отходов отработанные древесные шпалы (ОДШ) - это готовые изделия, потерявшие свои потребительские свойства (Код 1712060013013), относящиеся к твердым органическим отходам 3 класса опасности [1]. Изъятые из пути шпалы должны быть захоронены на региональных полигонах промышленных отходов. Но из-за переполненности полигонов, отработанные шпалы складируют на территории предприятий путевого хозяйства или оставляют разбросанными вдоль железнодорожных путей. Законодательство Российской Федерации за несанкционированно размещенные отходы, в местах, не предусмотренных для их хранения, предусматривает строгую административную ответственность и штрафные санкции.

Существующие на сегодняшний день методы утилизации ОДШ - захоронение, химическая нейтрализация, газификация с последующим сжиганием, использование в качестве композиционных материалов экологически нецелесообразны и энергетически затратны. Ввиду этого, применение или внедрение данных методов может привести к большим энергетическим затратам или к попаданию токсичных компонентов пропиточного состава шпал, в окружающую среду [2].

Одним из передовых промышленных способов утилизации ОДШ является пиролиз. Применение метода пиролиза для утилизации ОДШ, позволяет не только предотвратить загрязнение окружающей среды, т.к. процесс пиролиза осуществляется в герметичных условиях, но и снизить до минимума энергозатраты на процесс, используя теплоту сжигания образующихся пирогазов. Кроме того, экономическая эффективность данного способа утилизации может быть значительно повышена за счет использования излишки вырабатываемого тепла в технических или бытовых нуждах и за счет реализации жидких и твердых продуктов [2,3].

По своей сути процесс термического разложения отработанных деревянных шпал сходен с процессом пиролиза древесины. Это объясняется тем, что ОДШ на 87,5% состоят из древесины [4]. В результате процесса термического разложения ОДШ образуются уголь и парогазовая смесь.