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Abstract. The paper presents the results of study of single-pass amplified radiation distribution 

of copper bromide vapor laser active elements used in high-speed laser monitors. The 

possibility of modifying the profile of a single-pass amplified light beam by changing the 

copper bromide vapor concentration is demonstrated. This means of influence on the radiation 

profile seems to be easiest due to implementation by varying only one parameter of operation. 

Gaussian, ring-shaped or flat profiles can be achieved depending on the temperature of the 

containers with copper bromide. The diameter of the beam becomes narrower when increasing 

the concentration of copper bromide vapor. This feature is characteristic of the discharge tubes 

as small (diameter 2.5, length 5 cm) and large (diameter 5 cm, length 90 cm) active volume. 

1.  Introduction 

Laser monitor based on active media of copper vapor laser or copper bromide vapor laser is one of the 

effective instruments for the diagnostics of processes accompanied by intensive shielding background 

light [1–12]. Laser monitors allow observing processes such as surface modification for operational 

characteristics improvement, production of novel materials including nanostructures, processes of 

thermonuclear synthesis, plasma-induced processes, etc. There are a number of papers devoted to the 

application of such active media for imaging various objects but researching towards the development 

of practical laser monitors is carried out insufficiently. 

In the work [13] it is reported about CuBr vapor lasers for different applications. In the work [12] 

one of these lasers was applied for objects visualization under conditions of intensive background 

lighting. In the paper [11] a construction of laser monitor based on an active medium of CuBr laser is 

represented and visualization results obtained by the laser monitor for some objects are also given. An 

optical part of the laser monitor construction is shown in figure 1. The main element of the laser 

monitor scheme is an active element of brightness amplifier. 
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Figure 1. Laser monitor: 1 – CCD-camera, 2 – optical filters, 3 – deflecting mirror, 4 – brightness 

amplifier, 5 – lens, 6 – object under observation. 

 

The applied laser monitor scheme implies that an active medium of CuBr laser generates light 

illuminating an object of visualization and simultaneously amplifies light reflected from the object. 

However, the presence of radial inhomogeneity of population inversion in the active medium 

accordingly leads firstly to non-uniform illuminating the visualization object and then to non-uniform 

amplifying light reflected from the visualization object. As a result the visualization object image is 

obtained with distortions. It should be noted that such distortions are only connected with incorrect 

brightness transfer of some parts of obtained picture but not with the picture shape deformations. 

Image shape deformations depend mainly on quality of passive optical part of the laser monitor 

scheme. 

The radial inhomogeneity of population inversion in the active medium can be estimated from 

corresponding inhomogeneity of the gain profile. The gain profile as well as gain coefficient depend 

on the pumping condition of the active medium in general and on CuBr vapor concentration in the 

working volume of an active element [14] in particular. The aim of the current research was study the 

influence of CuBr vapor concentration on the radial distribution of radiation in CuBr vapor brightness 

amplifiers. 

2.  Experimental technique 

Figure 2 shows the constructions of active elements used in the present work and applied earlier as 

brightness amplifier for laser monitors in the works [11, 12]. The active element of the brightness 

amplifier [11] that is shown in figure 2a consists of a gas-discharge tube (GDT) made of a fused 

quartz with a length of 50 cm and inner diameter of 2.5 cm. The maximum average lasing power of 

this active element enclosed in a parallel-mirror cavity was equal to 3.2 W at a pulse repetition 

frequency of 20 kHz and a pumping power of 600 W (the power consumed by a high-voltage power 

supply from the mains). The active element of the brightness amplifier [12] that is shown in figure 2b 

consists of GDT made of a fused quartz with a length of 90 cm and inner diameter of 5 cm. The 

maximum average lasing power of this active element was equal to 5 W at a pumping power of 

1450 W. Performance of this GDT was studied in details in papers [15, 16]. Pumping of the active 

medium is realized by a circuit of pulse charging storage capacitor and then it direct discharging on 

the GDT by a thyratron [17]. Active admixture of HBr that is often used for lasing power increasing of 

CuBr laser [2] was not used in the current research. 
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Figure 2. Active elements: 1 – quartz gas-discharge tube, 2 – main heater (heater of working area of 

GDT), 3 – output windows, 4 – copper electrodes, 5 – container with CuBr powder, 6 – auxiliary 

heater for containers with CuBr powder, 7 – container with adsorbent. 

 

The both constructions of active elements have separated main heater for working area of GDT and 

auxiliary heater for containers with CuBr powder. That allows to influence on the amplifying 

characteristics of active element by varying CuBr vapor concentration. A feature of the first 

construction (figure 2a) is a common heater for all containers with CuBr powder. The second 

construction of the active element (figure 2b) has an individual heater for each container with CuBr 

powder. The advantages of the first configuration over the second are ease of design, manufacturing, 

simplicity of assembly, and less of electrical connections and wires. The disadvantage of this 

construction is the higher influence of the main heater and the energy dissipated by the discharge on 

the heating temperature of CuBr powder. As a result the heating temperature of CuBr powder is 

slightly changes every time when pumping conditions are varied. The second construction of the 

active element with individual heaters is characterized by minimal influence on the heating 

temperature of CuBr powder and accordingly on CuBr vapor concentration in the active medium. 

 

Figure 3. Experimental setup scheme: 1 – brightness amplifier, 2 – plane mirror, 3 – optical filters, 4 

and 6 – lenses, 5 – beam-splitting plate with 20% reflectance, 7 – CCD-camera. 

 

Study of single-pass amplification profiles of the active element is carried out by an experimental 

setup scheme shown in figure 3. Pumping active medium leads to population inversion of working 

laser levels in the active element and causes generating an amplified spontaneous emission (ASE). 

ASE reflected from the mirror is returned to the active medium again where it amplifies by intensity. 

The plane mirror simulates a visualization object with uniform reflectance that allows eliminating 

RTEP2014 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 81 (2015) 012116 doi:10.1088/1757-899X/81/1/012116

3



influence of reflected properties of the object on the analysis of amplifying characteristics of the active 

element. When beam profiles of ASE were studied the mirror was took away. 

As a light analyzer a CCD-camera (beam profiler) Spiricon SP503U with BeamGage Standard 5.4 

software was used. The size of the CCD-camera matrix is 6.44.8 mm
2
. To match a cross section of 

the laser tube output beam with the matrix of the CCD-camera a fourfold zoom lens SPZ17024 

mounted on the CCD-camera and Industar-51 lens were used. To eliminate the overexposure of the 

CCD-camera the output light was pre-attenuated by gray optical filters. To define an average radiation 

power a measuring head of power meter (L30C-SH from Ophir Optronics Solutions Ltd.) was set at 

the output of the laser tube. 

3.  Results and discussion 

Figure 4 shows the profiles of single-pass amplified light beam corresponding to different average 

radiation power for the GDT of 2.5 cm bore. For this series of experiments the pumping power was 

600 W and the CuBr heater temperature range was varied from 315 to 410 °С. These temperature 

values are comparatively low owing to closely spaced main heater of GDT with heater of containers 

with CuBr powder. The geometry of the optical scheme remained unchanged for all represented 

regimes. As one can see in figure 4 Gaussian, ring-shaped or flat profiles are achieved depending on 

the temperature of the containers with CuBr powder. Hence, increasing average radiation power that is 

caused by growing CuBr vapor concentration leads to significant contraction of light beam profiles. 

When average single-pass amplified radiation power is 0.2 W the light beam diameter is close to GDT 

diameter and reaches ~2 cm. When average single-pass amplified radiation power growths to 2.4 W 

the light beam diameter decreases twice and equals to ~1 cm. At reduction of CuBr vapor 

concentration in the active medium a contraction of lasing profile for the same active element was 

observed in the work [18]. 
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Figure 4. The profiles of a single-pass amplified light beam at various average radiation powers for 

the GDT of 2.5 cm bore. 
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A considerable contraction of profile light beam occurs also in the active element of big diameter. 

Moreover, in the GDT with diameter of 5 cm it is observed a regime when radiation virtually 

disappears on the axis (figure 5). These measurements were carried out at unchanged pumping power 

value of 1350 W. The temperature of the containers with CuBr powder was varied in the range from 

440 to 570 °С. The considerable intensity dip on the beam axis for the GDT with diameter of 5 cm 

comparing to the GDT with diameter of 2.5 cm is probably caused by overheating on the axis of the 

gas-discharge tube owing to high pumping power. 
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Figure 5. The profiles of a single-pass amplified light beam at various average radiation powers for 

the GDT of 5 cm bore. 

 

The contraction of light beam profile that is caused by increasing CuBr vapor concentration was 

noted earlier in [14] where an active element of CuBr-laser with a length of 90 cm and diameter of 

8 cm was used. The all containers with CuBr powder were heated by a common heater. In the work 

[14] the measurement of light beam profile was carried out by a master-oscillator power-amplifier 

scheme with a master-oscillator laser beam of 1.5 mm in diameter. 

In laser projection microscopes and laser monitors the illumination of a visualization object and 

amplification of reflected light occur during the same pulse of radiation. To obtain an image with 

correct brightness a uniform illumination of a visualization object is preferable. Figure 6 shows beam 

profiles of ASE at various average radiation powers. Accordingly to presented data more uniform 

illuminating a visualization object occurs at a smaller amount of CuBr vapor concentration. More 

uniform illumination of a visualization object in combination with more uniform amplification profile 

subsequently provides higher quality of obtained images. This fact was noted in [19] which states that 

the working conditions of CuBr vapor laser active elements in the brightness amplification mode for 

obtaining high-contrast images differ from the conditions providing maximum average output power 

in the lasing mode. The difference of working conditions is in less optimal CuBr concentration. 

Not only increasing CuBr vapor concentration leads to contraction of light beam profile. Such 

conditions as pulse repetition frequency and pumping power should be taken into consideration at 
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optimizing performance of laser monitor. Significant contraction of light beam profile at increasing 

pulse repetition frequency was observed in [20]. 
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Figure 6. The beam profiles of ASE at various average radiation powers for the GDT of 5 cm bore. 

 

4.  Conclusions 

The study showed that increasing temperature of containers with CuBr powder, i.e. growing CuBr 

concentration in the active medium, leads to considerable contraction of the output beam profile of 

CuBr brightness amplifiers. The profile contraction occurs for ASE, for a single-pass amplified light 

beam and even for a laser beam. It is observed for both gas-discharge tube with diameters of 2.5 and 

5 cm and is accompanied by increasing output lasing power. 

The uniform (flat top) of beam profile of ASE and gain defines image quality obtained with laser 

monitor. The most flat top of a single-pass amplified light beam profile for the GDT of 2.5 cm bore is 

observed within average output powers from 480 to 850 mW that is considerably less than maximum 

average output power (2.4 W) of a single-pass amplified radiation for this GDT. The optimal mode for 

the GDT of 5 cm bore lies within average output powers of a single-pass amplified radiation from 1 to 

1.8 W that is also less than maximum value. The mentioned modes correspond to 10-15% temperature 

reduction of the containers with CuBr powder. 
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