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Abstract. The paper describes the results of studies of electromagnetic response parameters of 

samples of bearing strata and ore rocks from the Tashtagol mine on acoustic effects. Patterns of 

changes in amplitude-frequency parameters of electromagnetic signals for rock samples with 

different content of magnetite are experimentally found. The conducted research shows that the 

maximum amplitudes of electromagnetic signal spectral components increases in samples of 

the same mineral composition with the reduction of their ultimate strength. This is caused by 

heterogeneities, and defective areas which contribute to active transformation of mechanical 

energy into electromagnetic energy. For rocks, which contain magnetite, the emissivity 

depends not only on heterogeneities and defective areas, but on the quantity of high-

conductivity minerals in their composition. 

1. Introduction 
When developing the method to monitor changes in the stress-strain state of rocks and control bump 

hazard by characteristics of electromagnetic emission, knowledge of basic regularities in 

mechanoelectric transformations (MET) occurring in the array is required [1]. Physical modeling in 

laboratory and natural conditions is considered to be available [2-4]. Research of mechanisms of Ems 

and its sources in rocks at their straining and application of investigated parameters Ems for the 

control of destruction process also was spent in works of authors [5-16]. 

A fundamental property of the rocks is heterogeneity in structure, texture, composition and 

physico-mechanical properties. The author of the paper [17] divides the degree of heterogeneity into 

four groups: 

1) large scale heterogeneity, including facies variation, tectonic breaks, the zone of weathering and 

unloading, technological heterogeneity; 

2) heterogeneity of structure and composition of rocks within a single layer, including the fractured 

zone, presence of small tectonic dislocations); 

3) heterogeneity of rocks within the elementary volume (sample), difference in chemical and 

mineral composition, shape and sizes of grains, cracks; 

4) heterogeneity of real crystals, defects of the crystal lattice, and dislocations. 

Thus, when studying rock samples, 3 and 4 groups are important factors of heterogeneity to be 

considered while analyzing the obtained results. 
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The only fundamental force which integrates all the substances, including rocks, is the 

electromagnetic force. If mechanical stresses in the rock change, transformation of mechanical energy 

into electromagnetic one depends on petrographic and physical-and-mechanical properties of the 

interacting systems which carry energy. Real rock samples differ both in mineral and phase 

composition, the size and shape of grains, and in textures (pores, cracks and other stress raisers). 

Charged particles are more likely to accumulate on heterogeneities, electric field changes and, as a 

consequence, mechanical energy transforms into electromagnetic one [18]. MET causes generation of 

electromagnetic signals (EMS) by the rock which can be recordered with special instruments [19–20]. 

The method for monitoring changes in stress-strain state and forecasting  rock burst being developed 

in Tomsk Polytechnic University (TPU) is based on the study of the properties and characteristics of 

MET. 

In our earlier papers we presented the study of relation between parameters of electromagnetic 

signals and electrical properties of rocks under acoustic impact [21]. It is found that the amplitude of 

generated EMS depends on the conductivity of the rocks samples under study. In this regard, the task 

was to identify the dependence of EMS parameters on the amount of minerals with low electrical 

resistance in the rock. 

2. Experimental technique and objects of research 

Skarns of different petrographic composition containing no magnetite and ore with different content of 

magnetite from the Tashtagol iron-ore deposit were studied. The samples were cut from the core in the 

form of a cylinder (42 ± 1) mm in diameter and (80 ± 2) mm in height. The end faces of the samples 

were polished to make a parallel-sided sample with the discrepancy of (0.5 ± 0.1) and the axis of the 

sample and its ends were arranged under the angle of (90 ± 1)
о
. 

The acoustic impact was made with a piezoelectric transformer (PET), by method developed in the 

Problem Research Laboratory of Electronics, Dielectrics and Semiconductors (PRL EDaS), Tomsk 

Polytechnic University (TPU) [22]. The duration of the acoustic signals to excite the sample changed 

discretely in the interval of 5 to 100 µs. The piezoelectric irradiator was excited by the electric pulse of 

a rectangular shape at a voltage of 800 V. The electromagnetic signals from rock samples were 

recorded with a digital storage oscilloscope Tektronix TDS2024В and transferred to a personal 

computer. Then, the amplitude-frequency spectra of EMS were calculated using fast Fourier and the 

data obtained were analyzed. 

3. Experimental results 

At the first stage of the experiments the amplitude-frequency parameters of the EMS for the samples 

with different content of magnetite were studied. Figure 1a shows a typical electromagnetic signal 

from a host rock sample under the duration of the PET electric excitation pulse of 10 µs. The 

amplitude-frequency spectrum of EMS is shown in figure 1b. 

 
Figure 1. Electromagnetic signal (a) and its amplitude-frequency spectrum (b) in 

excitation by the acoustic pulse of 10 µs duration for bearing strata rock samples. 
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To simplify the analysis of the calculated spectra for each sample rock the frequency bands with 

the maximum amplitude values were determined. The obtained values were used to plot graphs for 

amplitudes of main spectral components of EMS (figures 2a,b). The figures show the graphs for 

samples from one group bearing strata rocks with different duration of the excitation pulse and 

different ultimate strength. Under uniaxial compression with the press (Testing Machine 500) the 

ultimate strength of the samples of bearing strata of rocks was defined: 

 №0 is 188 kN; 

 №4 is 320 kN; 

 №3 is 234 kN. 

Figure 2a shows that for the sample with the least value of the ultimate strength (sample №0) the 

maximum amplitude of EMS spectral components is observed under the excitation pulse of 5 µs. If the 

duration of the acoustic excitation pulse increases to 10 µs (figure 2b), the values of the maximum 

amplitudes of EMS decrease by 1 to 2 orders of magnitude if compared with acoustic excitation of  

5 µs. 

 
Figure 2. Graphs for the maximum amplitudes of EMS spectral components in excitation 

by the acoustic pulse of 5 µs (a) and 10 µs (b) for bearing strata rock samples. 

Thus, it was experimentally found that as pulse duration of acoustic excitation increases from 5 to 

10 µs, the maximum amplitude of EMS spectral components decreases. In samples of the same 

mineral composition decrease in their ultimate strength causes increase in the maximum amplitudes of 

EMS spectral components. This testifies to heterogeneities and defective areas that encourage active 

transformation of mechanical energy into electromagnetic energy due to increase in the number and 

extent of the charged electric double layers. 

 
Figure 3. Electromagnetic signal (a) and its amplitude-frequency spectrum (b) 

in excitation by the acoustic pulse of 10 µs duration for ore samples. 
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The second group under study was ore samples with different content of magnetite. At the first 

stage, the ore samples as well as samples of bearing strata were excited by acoustic signals of 5 and 10 

µs duration using the same acoustic transducer. Figure 3 shows a typical electromagnetic signal and 

the amplitude-frequency spectrum of one of the samples from this group. 

The graphs with the maximum amplitudes of spectral components for this group of samples are 

presented in figure 4. The values of ultimate strength recorded under uniaxial compression for ore 

samples are 258 kN for №3, 317 kN for №4, 193 kN for №2, and 234 kN for №1. Figure 4 shows that 

the maximum amplitude of EMS spectral components in samples №3 and №4 are 2–3 orders of 

magnitude less than the amplitude of EMS in samples №1 and №2. These samples differ in their 

petrographic composition from the samples of the first group by magnetite content. Thus, the emission 

ability is affected not only by heterogeneities and defects of the composition, but the content of 

minerals with different electric and magnetic properties. It is known that the electric properties of rock 

samples depend on the electrical properties of minerals forming the rock. Therefore, they can change 

from sample to sample. For example, electrical resistivity (p) of bearing strata from the Tashtagol 

iron-ore deposit, presented by syenites, skarns of different composition, and diorites equals 10
3
-10

6
 

Om•m. Electrical resistivity of magnetite mineral as a part of ores equals 10
-2

-10
-5

 Om•m. Resistivity 

of the magnetite ore increases up to 10
 
Om•m due to inclusion of minerals with small value of ρ [23]. 

Thus, the more magnetite in the sample, the less its electrical resistivity, and therefore, emissivity of 

the rock decreases. The amount of magnetite affects emissive ability of ore samples. In our 

experiments the amount of magnetite in the samples was determined by weighing. It is known [24] 

that the specific gravity of magnetite is about 5 g/cm
3
, for ore the proportion varies from 3.2 to 4.5 

g/cm
3
, hence, samples with a large amount of magnetite will have a higher weight. Considering that in 

our experiments, the volume of samples is equal, the specific gravity equals 3.8 g/cm
3
 for №3, 3.7 

g/cm
3
 for №4, and 3.4 g/cm

3
 for №2 and №1. Comparing the regularity presented in figure 4 and the 

calculated specific gravity of samples we can argue that the amount of high-conductive minerals 

affects the emission ability of the tested samples. 

 
Figure 4. Dependences for the amplitude of EMS spectral components 

in excitation by the acoustic pulse of 10 µs duration for ore samples. 

4. Conclusion 

Thus, the conducted research of parameters of electromagnetic signals from the samples of bearing 

strata and ore rocks from the Tashtagol iron-ore deposit under acoustic excitation shows that in 

samples of equal mineral composition the maximum amplitudes of EMS spectral components increase 

if their ultimate strength decreases. This is caused by presence of heterogeneities and defective areas 

which contribute to active transformation of mechanical energy into electromagnetic energy.  For 
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rocks with high-conductivity minerals (such as magnetite) the emissivity depends not only on presence 

of heterogeneities and defective areas, but on the number of high-conductivity minerals as well. 
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