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Abstract. The consistent patterns of changes in structural and phase state, hardening and 

temperature ranges of martensitic transformations in Ni-Ti alloy with the shape memory effect 

after implantation of heavy ions 16O
3+

, 40Ar
8+

 and 84Kr
15+

 under comparable parameters have 

been experimentally studied. It is found that under the impact of 84Kr
15+

 ions, a two-layer 

surface structure with radiation-hardened second layer is formed, radiation-stimulated phase 

transformation B19'→B2 occurs in the near-surface layer and out-range area, and the 

martensitic transformation temperature increases toward higher values after implantation of 

40Ar
8+

 and 84Kr
15+

 ions. 

1.  Introduction 

Modification of materials by heavy ion implantation has become a promising technology. It is 

important to know which heavy ions are most effective in terms of creating radiation-resistant titanium 

nickelide alloys to be applied in nuclear power engineering or coatings for medical supplies. 

Previously it was found [1–3] that modification by heavy krypton ions of low and high energy in 

the two-phase Ni-Ti alloy with the shape memory effect does not cause amorphization of Ti-Ni 

phases. Radiation-stimulated phase transformation B19'→B2 occurs, which is the major cause of 

deterioration of its physical-mechanical and functional properties, and temperatures ranges of 

martensitic transformation extend. In the case of implantation of high-energy krypton ions, a globular 

structure is formed on the Ni-Ti alloy surface and the degree of its homogeneity decreases as the 

fluence increases, radiation hardening is found to occur in the out-range area at low (~ 10
13

 ion/m
2
) 

fluences due to the reduced size of the structural fragments of Ni-Ti phases. 

In [4,5], it is also shown that consistent high-energy krypton ion implantation and application of 

high-current electron beam increases the quality of the Ni-Ti alloy surface. In the out-range area, it 

causes formation of primary martensite phase B19' responsible for the shape memory effect, formation 

of nano-sized particles of NiTi R-phase, increase in the temperature interval of the martensitic 

transformation and further softening. In [6,7], it is found that the distinguishing feature of a purely 

thermal effect on the structure of Ni-Ti alloy formed by ion implantation is hardening caused by the 

ordering of the radiation defect structures (phases). 
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The paper presents the experimental results to show the effect of implantation of different heavy 

ions of gaseous elements on the structural and phase state, and physical and mechanical properties of 

Ni-Ti alloy with the shape memory effect. 

2.  Experimental methods and material 

We studied Ni-Ti alloy with Ni of 53.46 wt.% and Ti of 46.54 wt.%, preferably consisting of NiTi 

with the B2 structure (austenite), NiTi with B19 structure (martensite) and a minor content of Ti, 

excess Ni in the form of solid solution and process particles similar in composition to Ti2Ni(C) [8]. 

Before implantation, a proven technology was used to prepare the surface of the samples: cutting out 

by spark cutting across the massive forged plate of semiindustrial Ni-Ti alloy, mechanical polishing 

with skins of different grits and buffing with GOI paste. The sample size was 

15.000×~3900×3500 μm
3
. 

The data of preliminary testing were used to choose Ni-Ti alloy with the titanium nikelid phase 

ratio B19'/B2 equal to ~ 0.7 which showed the highest values of martensitic transformation 

characteristic temperatures  compared to those for higher values of the phase ratio. 

Implantation of 16O
3+

, 40Ar
8+

 and 84Kr
15+

 ions under relatively equal parameters A/Z = ~ 5.3; 

energies Eion=1.75 MeV/a.e.m. (28.70 and 147 MeV, respectively), fluence Ф=10
19

 ions/m
2
 and beam 

current Jbeam=1.0–0.85 µA was performed with DC-60 cyclotron (Astana, Kazakhstan). The damaged 

area was ~ 1×10
–4

 m
2
. 

Testing of the samples before and after implantation was performed by X-ray diffraction analysis, 

scanning electron microscopy, measuring microhardness and the shape memory effect with D8 

ADVANCE diffractometer, JSM-7500F (JEOL) microscope, microhardness tester PMT-3M and an 

apparatus for measuring the temperature hysteresis of the electrical resistance. 

3.  Experimental results and discussion 

SEM studies at low magnifications revealed that in the case of 16O
3+

ion implantation, traces of 

sputtering, i.e. tuberosity, pits, remnants of Ti2Ni(C) process particles are observed on the Ni-Ti alloy 

surface. As the ion mass increases 2.5 times as much (ions 40Ar
8+

), the surface becomes smoother with 

little roughness. Part of the particles protrudes over the surface which indicates that ion etching occurs 

alongside with sputtering. In case of heavier 84Kr
15+

 ions, etching completely dominates. 

Higher magnification of SEM-images indicates formation of bright particles of a round shape, 

bubbles of about 1 nm, and tracks of 8 to 25 nm or conglomerates made up of several tracks with a 

dome, and circular bubble chains after implantation of 16O
3+

, 40Ar
8+

 (figure 1 a,b) and 84Kr
15+

 

(figure 1 c), respectively. 

   
 

Figure 1. SEM images of the surface implanted with 16O
3+

 

(a), 40Ar
8+

 (b) and 84Kr
15+

 (c) ions. 

The comparison of the results shows that formation of tracks on the Ni-Ti alloy surface requires 

high energy of the heavy ion (≥150 MeV). However, this is not sufficient according to previous 

studies with high-energy krypton ions used [5], when hemispherical convex structures (globules) with 

a size of up to 200 nm were observed after implantation up to the fluences of 5×10
15 

and 

≥5×10
19

ion/m
2
. The probability of track formation depends not only on the number of incident ions, 

but, apparently, on the ratio of B19'/B2 phases of titanium nickelide. Note that in this research we 
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studied the samples of the two-phase Ni-Ti alloy with higher (~ 0.7) ratio of these phases than that of 

the samples studied previously. 

In figure 2 the data of X-ray diffraction analysis obtained for a divergent beam mode shows that the 

phase composition nearby the out-range area (the depth of the analysis is comparable with the 

calculated ion range), as well as the structure of the implanted surface depend on the ion mass. In the 

case of 16O
3+ 

ion implantation (figure 2, curve 2), partial radiation-stimulated phase transformation 

B19'→B2 can be observed. The martensite content ~3.5 times decreases compared to unimplanted Ni-

Ti alloy (figure 2, curve 1). However, 40Ar
8+

 ion implantation (figure 2, curve 3) and 84Kr
15+ 

ion 

implantation (figure 2, curve 4) are characterized by complete radiation-stimulated phase 

transformation B19'→B2 followed by dissolving Ti phase and Ni3Ti3O compound. As a result of this 

implantation, Ni-Ti alloy becomes single phase with the B2 structure (austenite). 

 

Figure 2. Parts of diffraction 

patterns for Ni-Ti alloy before 

(curve 1) and after 16O
3+

 ion 

implantation (curve 2), 40Ar
8+

 ion 

implantation (curve 3) and 84Kr
15+ 

ion implantation (curve 4). 

Note that as the ion mass increases, the intensity of the primary X-ray line (110) of the B2 structure 

grows. The parameter of the body-centered cubic structure compared to unimplanted Ni-Ti alloy 

reduces, and this indicates approaching to the stoichiometric composition of titanium nickelide. 

Similar patterns of change in the phase composition of the surface layer after 16O
3+

, 40Ar
8+

 and 

84Kr
15+

 ion implantation were obtained by shooting in grazing (2
°
) beam (analysis depth ~ 1 µm). In 

addition, firstly, in contrast to the out-range area, we detected slight splitting of the X-ray reflection 

line (110) of the B2 structure. This, as reported in [5,9,10], confirms the formation of nanoparticles of 

the R-phase during 16O
3+

 ion implantation. 

Secondly, the content of Ni3Ti3O compound does not virtually change in the out-range area and 

considerably reduces in the surface layer. This implies that the strain-hardened layer, formed on the 

Ni-Ti surface due to the technology used for its preparation, is partially sputtered during 16O
3+ 

ion 

implantation, its base being the Ni3Ti3O compound. 

Earlier, the data obtained in SEM-studies of the Ni-Ti alloy surface etched prior to implantation [5] 

were used to attribute the surface layer hardening to titanium oxide formation during sample 

preparation. To make it more exact we conducted additional research in the geometry of the grazing 

beam at an angle of 1
°
 to the etched surface of Ni-Ti alloy by X-ray structural analysis. The surface 

was found to get enriched with titanium due to release of nickel during chemical etching. This 

confirms the data obtained in X-ray analysis, especially as the technology of sample preparation was 

based on mechanical methods only. 

Data on microhardness of Ni-Ti alloy measured after 16O
3+

, 40Ar
8+

 and 84Kr
15+

 ion implantation 

indicates that, in contrast to the unimplanted alloy, distinct indentation appears even under very low 

(0.098 N) load. This is another evidence for the sputtering of the strain-hardened layer in interaction of 

heavy ions with the polished surface. 

The data obtained in microhardness measurement indicates that the double-layer structure of the 

near-surface layer is formed with different degrees of hardening regardless of the ion mass. Radiation 
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hardening of the second layer with a thickness of about 1.1–1.2 μm is 71, 50 and 39% for 16O
3+

, 40Ar
8+

 

and 84Kr
15+

 ions, respectively. Radiation hardening in the out-range area is significantly lower (7.2, 8.9 

and 16%) and, vice versa, as the weight of the heavy ion grows, it increases. 

The data for the temperature dependence of the resistivity of Ni-Ti alloy after 16O
3+

, 40Ar
8+

 и 84Kr
15+

 

ion implantation is shown in figure 3. In comparison to the corresponding R (T)-curves, measured 

before implantation, the martensitic transformation (MT) temperature range shifts and widens, the 

shape and area of the electrical resistance hysteresis loop changes. All the loops are straight, and the 

degree of variation depends on the ion mass, as in the case of the structure. 

  

 

Figure 3. Loops of electrical resistivity 

hysteresis for Ni-Ti alloy after 16O
3+

 (a), 

40Ar
8+

 (b) and 84Kr
15+

 (c) ion implantation. 

It was found that under the impact of 16O
3+

 ions the temperature range shifts towards lower MT 

temperatures and 3.6 times increases mainly due to the greater degree of decrease in the temperature of 

Мend (figure 3 a). Martensitic transformation is preceded by pre-martensitic phase transformation 

B2→R, which indicates positive values of dρ/dT coefficients [11]. Changing of the shape and area of 

the electrical resistance hysteresis loop is related to the pre-martensitic transformation and extending 

temperature range reverse to MT due to a significant increase in temperature when it ends Aend. 

As the mass of inert gases increases, the MT temperature range shifts, on the contrary, towards 

higher temperatures, and its widening is due to the greater degree of the increase in the temperature 

when MT starts Mst. In the case of 40Ar
8+

 ion implantation (figure 3 b), firstly, direct MT is of 

distinctly stepped character compared to 16O
3+

 ion implantation (figure 3 a) and 84Kr
15+ 

ion 

implantation (figure 3 c). 

Secondly, in the R(T)-curve of the inverse martensite transformation we can find the electric 

resistance scale maximum exceeding by 0.033 μОhm∙m compared to the temperature of the start Mst 

of the direct MP, and then a sharp decline as the temperature keeps increasing. A similar effect has 

been previously observed after heat treatment of nickel-titanium alloys doped with the third 

component [12]. 

Note that for both ions of inert gases the pre-martensitic transformation area is more extended and 

more pronounced. It contains the region where electrical resistance increases as the temperature falls, 

and the "plateau" with ρ = const in the R-curve of direct MT (figure 3 b and c). According to [12], two 

processes are responsible for this "plateau". The first one is related to crystal lattice distortions in 
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transition of the R-phase, which increases electrical resistance, and the second one caused by the 

decrease in the amplitude of thermal vibrations (phonon component of the electric resistance) 

contributes to electrical resistance reduction. 

The process of phase transformation B2→R in heavy ion implantation to a relatively low fluence 

determined by measuring the temperature dependence of the resistivity is consistent with its greater 

sensitivity as compared to the results of X-ray analysis. 

4.  Conclusion 

In the experimental study, we found the features of the impact of implantation of Ni-Ti alloy with 

16O
3+

, 40Ar
8+

 and 84Kr
15+

 heavy ions on its structure, phase composition, and physical and mechanical 

properties under relatively similar parameters A/Z, Eion/a.e.m., Ф and Jbeam. The direct relationship 

between increase in the ion mass and radiation damage of Ni-Ti alloy with the shape memory effect is 

not found, but it is manifested in the degree of the processes, namely, sputtering, track formation, 

phase transformations and changes in the temperature ranges of martensitic transformations. 

The preliminary testing of Ni-Ti alloy revealed the following features of radiation damage when 

exposed to 16O
3+

, 40Ar
8+

 and 84Kr
15+ 

ions: 

- the process of sputtering prevails in the case of lighter 16O
3+

 ions, and the process of ion etching 

dominates under the effect of 84Kr
15+ 

heavy ions. The strain-hardened layer based on Ni3Ti3O 

compound is dispersed regardless of the ion mass; 

- for ions with M≤40, the formation of ~ 1 nm-sized bubbles can be observed, whereas, in the case 

of 84Kr
15+ 

ions, we observe tracks with a dome surrounded by bubble chains; 

- in implantation, partial (16O
3+

) and complete (M≥40) radiation-induced phase transformation 

B19'→B2 occurs both in the near-surface layer and nearby the out-range area. The phase composition 

of titanium nikelid consists mainly of the B2 structure (austenite); 

- regardless of the ion mass, the near-surface layer is a double layer structure. As the mass of the 

ion increases, the degree of the second layer hardening decreases from 71 to 39%. In the out-range 

area, on the contrary, it grows from 7 to 16%; 

- the martensitic transformation temperature range with pre-martensitic phase transformation 

B2→R is found to shift towards lower and higher temperatures for 16O
3+

 ions and M≥40, respectively. 

The results obtained suggest new possibilities for modification by different heavy ions of gaseous 

elements to make titanium nickelid alloys for medical use which are radiation-resistant to ionizing 

radiation and retain the ability of the shape memory effect. 
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