1965

мощность, энергия и машинная постоянная ударного генератора

Г. А. СИПАЙЛОВ, К. А. ХОРЬКОВ

(Представлена научным семинаром кафедр электрических машин и общей электротехники)

В современной литературе ударными генераторами называют как генераторы ударной мощности, так и генераторы разрывной мощности, хотя известно, что несмотря на их некоторую общность в проектировании между ними имеются существенные различия [1]. Генераторы разрывной мощности изготовляются трехфазными и используются в лабораториях разрывных мощностей для испытания высоковольтных масляных выключателей, рабочим режимом таких генераторов является переходный режим внезапного короткого замыкания с использованием 10—20 симметричных периодов тока.

Генераторы ударной мощности изготовляются преимущественно однофазными, их рабочим режимом является сверхпереходный режим внезапного короткого замыкания или внезапного замыкания на нагрузку на период одной максимальной полуволны тока с использованием апериодической составляющей. Генераторы ударной мощности применяются для получения сверхмощных магнитных полей [2, 3], для создания магнитного поля в установках для получения плазмы [4, 5], для испытания быстродействующей аппаратуры [6]. Возможно также применение генератора ударной мощности в качестве накопителя и источника энергии для импульсного питания обмоток возбуждения ускорителей заряженных частиц [7, 8].

Вопросы теории и расчета генераторов ударной мощности до настоящего времени не имеют должного развития. По существующей методике расчета генераторов ударной и разрывной мощности при выборе основных размеров за основу принимается геометрия серийного генератора, предназначенного для длительного режима работы. Выбор многих параметров производится в основном по интуиции проектировщика, ударная мощность определяется в конце расчета. Поэтому вопрос о создании методики расчета генератора ударной мощности с учетом основных особенностей его работы является назревшим.

Поскольку при использовании ударного генератора в качестве источника для создания магнитных полей с большой энергией основной величиной, характеризующей работу генератора, является энергия, которую генератор может отдать нагрузке, то, естественно, будет целесообразным принять величину этой энергии за основу при выборе основных размеров генератора.

В связи с этим в настоящей работе на основе полученных выражений для ударной мощности, энергии и машинной постоянной ударного генератора устанавливается связь между ними, которая может служить основанием при определении главных размеров генератора ударной мощности.

Уравнения для мощности и энергии

Максимальная мощность ударного генератора $P_{\rm ул}$ может быть определена как произведение максимального значения тока первой полуволны $I_{\rm ул}$ (с учетом его апериодической составляющей) на максимальное значение э. д. с. E_m

$$P_{yx} = I_{yx} \cdot E_m. \tag{1}$$

Известные выражения для ударного тока [9, 10] являются или очень приближенными

$$I_{y\pi} = \frac{1,8 \cdot 1,05 \cdot \sqrt{2} E}{X_d^{''}} , \qquad (2)$$

или слишком громоздкими:

$$i_{yx} = -I_{dm} \cdot \cos(\omega t + \gamma_0) - (I'_{dm} - I_{dm}) \cos(\omega t + \gamma_0) e^{-\frac{t}{T'_d}} - (I'_{dm} - I'_{dm}) \cos(\omega t + \gamma_0) e^{-\frac{t}{T'_d}} - (I'_{dm} - I'_{dm}) \cos(\omega t + \gamma_0) e^{-\frac{t}{T'_d}} + I_{am} \cdot \cos\gamma_0 \cdot e^{-\frac{t}{T_a}},$$
(3)

где I_{dm} , I'_{dm} , I_{am} — соответственно максимальные значения установившейся, переходной, сверхпереходной и апериодической составляющих тока внезапного короткого замыкания, определяемые по известным уравнениям, причем $I_{am} = I''_{dm}$; T'_d , T'_d , T_a — постоянные времени затухания соответственно

 T_d , T_d , T_a — постоянные времени затухания соответственно переходной, сверхпереходной и апериодической составляющих тока; γ_0 — фаза включения.

Так как в рассматриваемом случае представляет интерес только первая полуволна тока, то для ее расчета уравнение (3) можно существенно упростить. Например, можно в первом приближении допустить, что периодическая составляющая тока внезапного короткого замыкания определяется только сверхпереходным током, затухающим с постоянной времени T_d^* (4,a) или вообще не затухающим (4, δ):

$$i_n = I'_{dm} \cdot \cos(\omega t + \gamma_0)e^{-\frac{t}{T_d'}}, \qquad (4,a)$$

$$i_n = I_{dm}^{"} \cdot \cos(\omega t + \gamma_0). \tag{4.6}$$

Сравнительный расчет периодической составляющей тока по уравнению (3) и по упрощенным уравнениям (4, a) и (4, b), произведенный для большого числа генераторов, подтвердил возможность таких упро-

щений. Приведем результаты расчета периодической составляющей тока для однофазного короткого замыкания генератора ТИ-25-2 (табл. 1), кмеющего следующие параметры:

$$X_{d}^{''}=0{,}041, \qquad T_{d}^{''}=0{,}286~ce\kappa, \qquad I_{d}^{''}=15{,}2; \ X_{d}^{'}=0{,}177, \qquad T_{d}^{'}=2{,}29~ce\kappa, \qquad I_{d}^{'}=9{,}0; \ X_{d}=1{,}290, \qquad T_{d}=9{,}90~ce\kappa, \qquad I_{d}=2{,}07; \ X_{2}=0{,}077; \qquad T_{a}=0{,}10~ce\kappa, \qquad I_{a}=15{,}2; \ X_{0}=0{,}080.$$

Таблица 1

Mark and the second of		The second second	1017 1 217					
ω <i>t</i> Наименование		0	π 6	$\frac{2\pi}{6}$	$\frac{3\pi}{6}$	$\frac{4\pi}{6}$	- 5π - 6	π
cos ω t		1	0,867	0,500	0	0,500	0,867	- 1
$e^{-\frac{t}{T}}$		1	0,999	0,988	0,998	0,997	0,996	0,996
$e^{-\frac{t}{T}}$		1	0,994	0,988	0,982	0,977	0,971	0,965
Ide		2,070	1,790	1,030	0	-1,030	-1,790	-2,070
I' _{dc}		7,000	6,060	3,500	0	-3,490	-6,040	-6,970
· I"dc		6,200	5,330	3,060	0	-3,020	_5,220	-5,980
Іпер. по уравнениям	3	15,27	13,18	7,590	0	-7,545	-13,05	_15,02
	4,a	15,27	13,15	7,540	0	-7,450	-12,85	-14,75
	4,6	15,27	13,21	7,630	0	-7,630	-13,21	-15,27
	5	15,27	13,18	7,580	0.0	-7,542	-13.03	-15,01
I _{пер} по ур 3 I _{пер} по ур 5		100	100	99,9	-	99,9	99,9	99,9

Очевидно, что расчет периодической составляющей тока по уравнению (4,a) дает заниженные значения, а по уравнению (4,6) — завышенные значения по сравнению с данными расчета по уравнению (3), причем в обоих случаях погрешность составляет менее 2%. Погрешность расчета можно существенно уменьшить, если усреднить значения, получаемые по уравнениям (4,a) и (4,6). В этом случае упрощенные

уравнения для расчета периодической составляющей (5) и полного ударного тока (6) будут иметь вид:

$$i_n = I''_{dm} \cdot \cos\left(\omega t + \gamma_0\right) \frac{1 + e^{-\frac{t}{T_d}}}{2} ; \qquad (5)$$

$$i_{ya} = -I''_{dm} \cdot \cos(\omega t + \gamma_0) \frac{1 + e^{-\frac{t}{T'_d}}}{2} + I''_{dm} \cdot \cos\gamma_0 \cdot e^{-\frac{t}{T_a}}$$

$$(6)$$

Ударный ток достигает своей максимальной величины при $\omega t = 180^\circ$ и $\gamma_0 = 0$

$$I_{yA} = I_{am}^{''} \frac{1+e^{-\frac{\pi}{\omega T''}} - \frac{\pi}{\omega T_a}}{2} = 2I_{dm}^{''} \kappa_{3T}, \tag{7}$$

где $\kappa_{\rm 3T}$ — коэффициант затухания тока, причем

$$\kappa_{3\tau} = \frac{1 + e^{-\frac{\pi}{\omega T_d'}} - \frac{\pi}{\omega T_a}}{4} + 2e^{-\frac{\pi}{\omega T_a}}.$$
 (8)

В первом приближении

$$e^{-\frac{\pi}{\omega T}} \approx 1 - \frac{\pi}{\omega T},$$

тогда

$$\kappa_{\rm sr} = 1 - \frac{0,005}{T_a} - \frac{0,0025}{T_a'}.$$
(8a)

Мощность ударного генератора

$$P_{ya} = I_{ya} E_m = 2I'_{dm} E_m \kappa_{ar}. \tag{9}$$

В идеальном случае при отсутствии затухания $\kappa_{\rm sr} = 1$

$$P_{yx} = 2I_{dm}E_m. \tag{9a}$$

В этом случае электромагнитная энергия ударного генератора при $\gamma_0 = 0$ будет

$$Q = \int_{0}^{\pi/\omega} (i_n + i_a) \ edt = -\int_{0}^{\pi/\omega} I''_{dm} \cos \omega t \cdot E_m \sin \omega t \cdot dt +$$

$$+ \int_{0}^{\pi/\omega} I''_{dm} E_m \sin \omega t \cdot dt = \frac{2}{\omega} I''_{dm} E_m.$$

$$(10)$$

В реальном случае при внезапном коротком замыкании с учетом затухания эта энергия будет несколько уменьшена:

$$Q = -\int_{0}^{\pi/\omega} I_{dm}^{"} E_{m} \cos \omega t \cdot \sin \omega t \frac{1+e^{-\frac{t}{T_{d}}}}{2} \cdot dt +$$

$$+\int_{0}^{\pi/\omega} I_{dm}^{m} E_{m} \sin \omega t \, e^{-T_{a}} \cdot dt =$$

$$= \frac{\frac{1}{2} \omega I_{dm}^{"} E_{m}}{\left(\frac{1}{T_{d}^{"}}\right)^{2} + (2\omega)^{2}} \left(e^{-\frac{\pi}{\omega T_{d}}} - 1\right) +$$

$$+ \frac{\omega I_{dm}^{"} E_{m}}{\left(\frac{1}{T_{a}}\right)^{2} + (\omega)^{2}} \left(1 + e^{-\frac{\pi}{\omega T_{a}}}\right) . \tag{11}$$

Так как $\left(\frac{1}{T_a}\right)\ll \omega^2$ и $\left(\frac{1}{T_d^2}\right)^2\ll (2\omega)^2$ то, пренебрегая слагаемыми $\left(\frac{1}{T_a}\right)^2$ и $\left(\frac{1}{T_d^2}\right)^2$, получим:

$$Q = \frac{I'_{dm}E_{m}}{\omega} \left[\frac{7}{8} + e^{-\frac{\pi}{\omega T_{a}}} + \frac{1}{8} e^{-\frac{\pi}{\omega T_{d}}} \right] = \frac{2}{\omega} I'_{dm}E_{m} \kappa_{39}, \quad (11a)$$

где каэ — коэффициент затухания энергии

$$\kappa_{39} = \frac{\frac{7}{8} + e^{-\frac{\pi}{\omega T_a}} + \frac{1}{8} e^{-\frac{\pi}{\omega T_d}}}{2} \tag{12}$$

или в первом приближении

$$\kappa_{39} = 1 - \frac{0,005}{T_a} - \frac{0,000625}{T_d'}.$$
(12a)

Из уравнений (8,a) и (12,a) следует, что коэффициент затухания тока несколько меньше коэффициента затухания энергии, однако, различие между коэффициентами $\kappa_{\rm 3T}$ и $\kappa_{\rm 39}$ невелико. Например, для рассмотренного выше генератора различие составляет всего 0,69~% от абсолютной величины коэффициента $\kappa_{\rm 3T}$. Поэтому при расчетах можно пользоваться как для тока, так и для энергии одним коэффициентом затухания $\kappa_{\rm 3}$ по (8,a).

В случае применения форсировки возбуждения последнюю необходимо учитывать коэффициентом $\kappa^2_{\,\, \phi}$, при этом формула (11) примет вид:

$$Q = \frac{2}{\omega} I''_{dm} E_m \kappa_3 \kappa^2_{\phi}.$$

Однако при наличии мощной демпферной системы и при большой частоте повторения импульсов форсировка возбуждения ударных генераторов, применяемых в схемах питания ускорителей заряженных частиц, нецелесообразна. Поэтому при дальнейших выкладках принимаем $\kappa_{\,\Phi}\!\!=\!\!1$.

Влияние нагрузки на величину отдаваемой генератором энергии

Величина энергии, которую ударный генератор может отдать нагрузке, зависит от параметров нагрузки. В рассматриваемом случае 64

генератор предназначен для работы, на индуктивную нагрузку $(X_{\rm H} \! \gg \! r_{\rm H})$, при этом величина нагрузки учитывается уменьшением амплитуды тока

$$I''_{dmH} = \frac{2E_m}{X_d^* + X_2 + 2X_H} = \frac{E_m}{X_{VA} + X_H}$$
 (13)

и изменением величины постоянной времени затухания

$$T_{aH} = \frac{X_2 + X_H}{\omega (r_1 + r_H)}$$
, (14)

где X_{y_A} и r_1 — индуктивное и активное сопротивления ударного генератора, причем

 $X_{yA} = \frac{X''_d + X_2}{2},$

 $X_d^{"}$ и X_2 — индуктивное сверхпереходное сопротивление и сопротивление обратной последовательности.

ние обратной последовательности. Изменение T_a в значительной мере сказывается на величине коэффициента затухания. В табл. 2 представлены расчетные значения коэффициента затухания тока (и энергии) в зависимости от отношения $\frac{X_{\rm H}}{X_{\rm ya}}$ при $r_{\rm H}=0$ для различных значений постоянной времени затухания T

Таблица 2

					1		
0,025	,800 0,840	0,863	0,885	0,900	0,910	0,920	0,934
0,050 0	,900 0,920	0,933	0,939	0,926	0,955	0,960	0,965
0,075	,932 0,946	0,955	0,961	0,966	0,969	0,972	0,975
0,100	0,949 0,959	0,966	0,970	0,974	0,977	0,979	0,982
0,125	,960 0,968	0,973	0,977	0,980	0,982	0,984	0,987
0,150	0,966 0,979	0,977	0,980	0,982	0,984	0,986	0,988
0,200	0,974 0,979	0,983	0,984	0,986	0,988	0,989	0,990
0,250	0,980 0,984	0,987	0,989	0,990	0,991	0,992	0,994

При внезапном замыкании ударного генератора на нагрузку часть кинетической энергии вращающегося ротора, которая переходит в энергию магнитного поля нагрузки и полей рассеяния статора $Q_{\,\rm эм}$, будет уменьшена по сравнению с энергией короткого замыкания Q. Это уменьшение энергии можно учесть коэффициентом $\kappa_{\,\rm эм}$

$$\kappa_{\text{\tiny 9M}} = \frac{Q_{\text{\tiny 9M}}}{Q} = \frac{X_{\text{\tiny yA}}}{(X_{\text{\tiny yA}} + X_{\text{\tiny H}})} \cdot \frac{\kappa^2_{\text{\tiny 3H}}}{\kappa_3^2} ,$$
(15)

где $\kappa_{\text{зн}}$ — коэффициент затухания ударного тока при нагрузке,

тогда
$$Q_{\text{эм}} = \kappa_{\text{эм}} Q = \frac{2}{\omega} I'_{dm} E_m \kappa_3 \kappa_{\text{эм}}. \tag{16}$$

В табл. 3 представлены расчетные значения коэффициента $\kappa_{\text{\tiny 9M}}$ в зависимости от отношения $\frac{X_{\rm H}}{X_{\rm y, I}}$ при $r_{\rm H}=0$ для различных значений таблица 3 коэффициента затухания ударного тока. Таблица 3

			200 2 12 2 pm					
$X_{\rm H}$ $X_{\rm yg}$ κ_3 уд. тока	0	0,25	0,50	0,75	1 (1)	1,25	1,5	2
0,800	1	0,881	0,782	0,675	0,631	0,540	0,530	0,456
0,825	1	0,871	0,755	0,658	0,617	0,525	0,510	0,438
0,850	1	0,862	0,735	0,637	0,591	0,515	0,490	0,418
0,875	1	0,852	0,725	0,630	0,572	0,502	0,470	0,397
0,900	1	0,844	0,720	0,627	0,555	0,490	0,454	0,385
0,925	1	0,838	0,708	0,610	0,543	0,475	0,440	0,368
0,950	1	0,832	0,700	0,600	0,529	0,466	0,427	0,355
0,975	1	0,825	0,687	0,590	0,520	0,453	0,415	0,343
	The second	Last and						

На рис. 1 представлена зависимость $\kappa_{\text{эм}}$ от $\frac{X_{\text{н}}}{X_{\text{уд}}}$ при различных $r_{\text{н}}$.

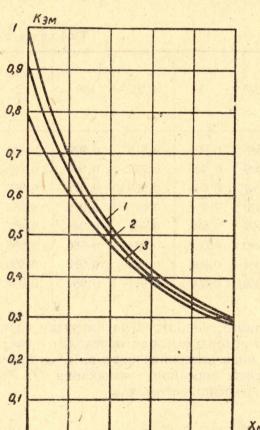


Рис. 1 Зависимость коэффициента $\kappa_{\text{эм}}$ от отношения $\frac{X_{\rm H}}{X_{\rm yg}}$ при $1-r_{\rm H}=0$; $2-r_{\rm H}=r_{\rm r}$; $3-r_{\rm H}=3r_{\rm r}$.

Та часть электромагнитной энергии, которая переходит в энергию магнитного поля нагрузки $Q_{\rm H}$, может быть определена из пропорции

$$\frac{Q_{\text{H}}}{Q_{\text{9M}}} = \frac{X_{\text{H}}}{X_{\text{H}} + X_{\text{yA}}} = \kappa.$$

Откуда
$$Q_{\scriptscriptstyle \rm H} = \kappa Q_{\scriptscriptstyle \rm 9M} = \kappa \kappa_{\scriptscriptstyle \rm 9M} Q = \kappa_{\scriptscriptstyle \rm H} Q,$$

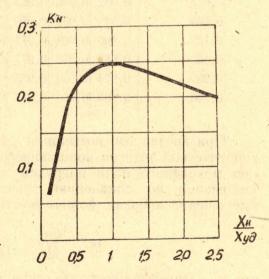


Рис. 2. Зависимость коэффициента $\kappa_{\rm H}$ от отношения $\frac{X_{\rm H}}{X_{\rm VA}}$ при $r_{\rm H}=0$.

где $\kappa_{\rm H}$ — коэффициент нагрузки, показывающий какая часть электромагнитной энергии, соответствующей короткому замыканию, переходит в энергию магнитного поля нагрузки, причем

$$\kappa_{\mathrm{H}} = \kappa \cdot \kappa_{\mathrm{9M}} = \frac{X_{\mathrm{y}_{\mathrm{A}}} X_{\mathrm{H}}}{(X_{\mathrm{y}_{\mathrm{A}}} + X_{\mathrm{H}})^{2}} \cdot \frac{\kappa^{2}_{\mathrm{3H}}}{\kappa_{\mathrm{3}}^{2}} \,. \tag{17}$$

Для удобства вычисления коэффициента $\kappa_{\rm h}$ уравнение (17) можно представить в виде:

$$\kappa_{\rm H} = \frac{y}{(1+y)^2} \cdot \frac{\kappa_{\rm 3H}^2}{\kappa_{\rm 3}^2} ,$$
(17a)

где $y = \frac{X_{\scriptscriptstyle \mathrm{H}}}{X_{\scriptscriptstyle \mathrm{V},\scriptscriptstyle \mathrm{H}}}$.

Значения коэффициента $\kappa_{\rm H}$ в зависимости от нагрузки представлены на рис. 2.

Машинная постоянная ударного генератора

Существующие методики расчета машин переменного тока нормального исполнения связывают с помощью так называемой машинной постоянной основные размеры с расчетной или кажущейся мощностью трехфазной машины. В случае расчета однофазной машины выполняется соответствующий перерасчет кажущейся мощности. Поэтому для установления связи основных размеров ударного генератора с его мощностью необходимо, во-первых, найти зависимость между ударной мощностью и расчетной мощностью однофазной синхронной машины, в габаритах которой выполняется ударный генератор.

Расчетная или кажущаяся мощность однофазной синхронной машины

$$P_1 = U_1 \cdot I_1 = \frac{U_{m1} \cdot I_{m1}}{2}$$
.

Отношение мощностей ударного генератора и однофазной синхронной машины, выполненных в одних габаритах,

$$\frac{P_{yn}}{P_1} = \frac{2E_m I_{dm} \kappa_3}{\frac{1}{2} U_{m1} I_{m1}} = 4\kappa_3 \kappa_i \frac{E_m}{U_{m1}},$$

где κ_i — коэффициент ударного тока, причем

$$\kappa_i = \frac{I'_{dm}}{I_{m1}} = \frac{E_m}{X_{yx}} \cdot \frac{1}{I_{m1}}.$$

В относительных единицах

$$x_{y\pi} = X_{y\pi} (oM) \cdot \frac{I_{m1}}{U_{m1}},$$

тогда, принимая $U_{\mathrm{mi}}=E_{\mathrm{m}}$, что вполне допустимо, находим:

$$\kappa_i = \frac{1}{x_{yn}} \,, \tag{18}$$

$$\frac{P_{yx}}{P_1} = 4 \,\kappa_3 \kappa_i. \tag{19}$$

5*.

Соотношение между кажущимися мощностями однофазной и трехфазной синхронных машин, выполненных в одних габаритах с одинаковым числом пазов и с однослойными обмотками на статоре, может быть определено уравнением (20), которое получено из условия равенства потерь в меди статора обеих машин

$$\kappa_{\rm M} = \frac{P_1}{P_3} = \frac{2}{3} \sqrt{\frac{\overline{z'_1}}{z_1}} \cdot \sin \frac{z_1}{z_1'} \frac{\pi}{2} ,$$
(20)

где z_1' — число пазов статора, z_1 — число заполненных пазов статора.

Обычно
$$\frac{z_1}{z_1'} = \frac{2}{3}$$
 , при этом $\kappa_{\scriptscriptstyle M} = \frac{1}{\sqrt{2}}$.

Для трехфазных машин расчетная мощность связана с основными размерами с помощью машинной постоянной Арнольда C_A .

$$P_3 = \frac{D^2 \cdot l \cdot n}{C_A} \ . \tag{21}$$

Выражая ударную мощность через расчетную мощность трехфазной машины, находим

$$P_{yA} = 4\kappa_3 \kappa_i \kappa_M P_3 = 4\kappa_3 \kappa_i \kappa_M \cdot \frac{D^2 ln}{C_A} = \frac{D^2 ln}{C_{yA}}, \qquad (22)$$

где C_{yx} — машинная постоянная ударного генератора, причем

$$C_{yA} = \frac{C_A}{4\kappa_3\kappa_i\kappa_M} \ . \tag{23}$$

Для среднего значения коэффициента затухания $\kappa_3 = 0.93$ машин-

ная постоянная однофазного ударного генератора с $\frac{z_1}{z_1} = \frac{2}{3}$ будет равна

$$C_{yA} = 0.38 \, x_{yA} C_A.$$
 (24)

Из уравнения (24) следует, что машинная постоянная ударного генератора не является постоянной величиной, она изменяется с изменением мощности генератора и его реактивного сопротивления. Например, для ударных генераторов, выполненных в габаритах турбогенераторов:

на 50 — 150 мва
$$C_{yx} = (0.7 \div 0.9) x_{yx} \frac{c M^3}{\partial \mathcal{H}c}$$
;

на
$$5-10$$
 мва $C_{y_{\pi}}=(1,1\div 1,4)\,x_{y_{\pi}}\,\,\frac{c_{\mathcal{M}^3}}{\partial \varkappa}$.

Для ударного генератора, выполненного в габаритах турбогенератора на 30 мва машинная постоянная в см³/дж численно равна реактивному сопротивлению x_{yx} выраженному в относительных единицах.

Полученные соотношения между энергией и мощностью и основными размерами позволяют определить мощность ударного генератора для создания требуемой энергии в нагрузке с заданными параметрами и определить объем активной части генератора для принятого предварительно значения реактивного сопротивления x_{va} , которое желательно

и возможно получить в проектируемой машине.

Указанные соотношения являются базой для создания методики расчета генераторов ударной мощности, которая будет изложена в последующих работах.

ЛИТЕРАТУРА

1. И. М. Постников. О проектировании ударного генератора, Труды ЛПИ, 209, 1960.

2. P. L. Kapitza. Proc. Roy. Soc. A, 115, № 772, 1927; A, 42, № 235, 1930. 3. I. D. Cockcroft. Trans. Roy. Soc. A, 227, 1928.

4. Г. Миямото и др. Способы получения стабильной плазмы. Атомная тех-

4. Г. Миямото и др. Способы получения стаоильной плазмы. Атомная техника за рубежом, № 10, 1958.
5. А. П. Безбатченко и др. Физика плазмы и проблемы управляемых термоядерных реакций. Том IV, Издание АН СССР, 1958.
6. О. Б. Брон, Л. Б. Галь перин. Опыты отключения весьма больших токов короткого замыкания. Электричество, № 4, 1940.
7. Я. П. Терлецкий. Об устойчивости движения электрона в индукционных ускорителях типа бетатрон. Ученые записки МГУ, 95 кн. 4, 1946.
8. В. В. Ивашин, Г. А. Сипайлов. Коммутация тока ударного генератора.

Вопросы теории и проектирования электрических машин. Межвузовский сборник трудов, Новосибирск, 1963.

9. Л. М. Пиотровский, М. П. Костенко. Электрические машины. Гос-энергоиздат, 1959.

10. М. П. Костенко. Электрические машины. Спец часть, Госэнергоиздат, 1949.