К ПЕТРОГРАФИИ МАССИВА г. МАЛ. КАРАТАГ (ГОРНАЯ ШОРИЯ)

В. С. ЧУВАКИН

(Представлена кафедрой петрографии)

В статье описывается сложный по составу дифференцированный массив г. Мал. Каратаг, который относится к известному в Горной Шории и Кузнецком Алатау Патынско-Куль-Тайгинскому интрузивному комплексу. Интрузивный массив г. Мал. Каратаг расположен в пределах Горной Шории в 11 км на северо-восток от пос. Усть-Кабырза (среднее течение реки Мрас-Су) и в рельефе выражен господствующей

вершиной с отметкой 1217,2 м.

Каратагский массив известен в литературе как сиенитовый [9], и только в последнее время на основании проведенных работ А. А. Паниным, М. Г. Двоеглазовой, Н. В. Русских и другими (ЗСГУ) из состава массива были выделены авгитовые диориты, гранодиориты и щелочные сиениты. Возраст плутона Ю. Г. Щербаков [9] считает близким к Патынскому массиву, расположенному северо-восточнее в 22 км, от г. Мал. Каратаг [4]. Массив г. Большой Каратаг, расположенный к западу от Мал. Каратага, слагается существенно щелочными сиенитами и вулканогенными породами и нами в данной статье не рассматривается.

Материал, легший в основу данной статьи, был собран летом 1961 года в процессе специальных петрологических работ, организованных кафедрой петрографии Томского политехнического института по изучению петрографии г. Мал. Каратаг. Работа велась под руководством С. С. Ильенка.

Морфология массива, его геологическое положение и механизм образования

Массив имеет в плане правильные овальные очертания, по своим размерам (3,5×7 км) относится к плутонам третьей величины. По отношению к тектоническому строению района массив расположен в пределах Мрасского антиклинория и приурочен к антиклинальной складке северо-восточного простирания, которую образуют здесь сложнодислоцированные известняки енисейской свиты синийского возраста. Последние слагают ядро Мрасского антиклинория [9].

Свита имеет преимущественно карбонатный состав, в которой имеются маломощные пропластки кварцитов, сланцев, метаэффузивов.

Контакты интрузии с вмещающими породами непосредственно не наблюдались. Учитывая крутое падение трахитоидности в габбро-диоритах внутрь массива, можно предполагать крутое падение юго-западного контакта также внутрь его. Наблюдение краевых трещин близ юго-восточного контакта, падающих внутрь массива под углами 30—50°, дает возможность предположить крутое падение юго-восточного контакта интрузии [2]. Таким образом, по положению контактов плутона его можно отнести условно к вертикальным штокам.

Массив по своей длинной оси вытянут по направлению складчатости вмещающих пород. Его северо-западный контакт почти прямолинейный (слабо вогнутый внутрь массива) совпадает с простиранием слоистости осадочной толщи. Юго-западный контакт интрузии почти сечет под прямым углом структуры вмещающих пород. Элементы прототектоники интрузивного тела также дисгармоничны к элементам внешних структур осадочных образований.

Относительно истории тектонических движений района массив относится к посттектоническим и формировался в субплатформенных условиях. Вещество магмы заполняло камеру, вероятно, тектонического

происхождения в условиях жесткой рамы.

Разнообразие пород массива связано с формированием его в несколько интрузивных фаз и с процессами дифференциации и ассимиляции. Этими же причинами обусловлено его грубозональное строение. Тот факт, что породы разных фаз дали одно интрузивное тело, указывает на внедрение порций магмы через один подводящий канал. При выделении фаз и определении роли процессов дифференциации в формировании пород массива были встречены известные трудности, связанные с отсутствием данных о природе контактов между петрографическими разновидностями пород. Однако формирование комплекса пород массива представляется в следующей последовательности. С первой фазой связано образование габбро, габбро-диоритов. Кристаллизация основной магмы началась еще в процессе ее движения (до полного заполнения магматической камеры), на что указывает присутствие в габбро и габбро-диоритах первично-полосчатых текстур течения. Породы первой фазы слагают крайнюю юго-западную часть массива и составляют не более 15% от ее площади.

Во вторую фазу интрузии магма имела состав более кислый — монцонитовый; образовавшиеся монцониты слагают большую часть массива. Сиенито-диориты имеют подчиненное значение. Непосредственный контакт между породами первой и второй фаз не наблюдался, но резкий переход их был прослежен в интервале одного метра. Близ контакта те и другие породы несут следы слабого дробления. Повышенная трещиноватость габбро, габбро-диоритов и монцонитов и резкий их переход в узком интервале в месте их предполагаемого контакта указывает на его разновременный характер. Кроме того, монцониты содержат многочисленные ксенолиты измененных пород основного и среднего состава.

Образование монцонитов сопровождалось ассимиляцией вмещающих пород, в результате которой образовалась вдоль южного контакта

массива узкая полоса гибридных пород альбитовых диоритов.

С третьей фазой связано образование гранитов, которые слагают северную часть массива. В пользу интрузии магмы гранитоидного состава указывают следующие факты: а) монцониты на отдельных участках близ гранитов сильно альбитизируются; б) в гранитах отсутствуют дайки сиенит-порфиров и диабазов, что можно объяснить более поздним образованием гранитов.

В то же время нельзя не обратить внимания на сходство в структуре и минералогическом составе монцонитов и гранитов. Как монцо-

211

ниты, так и граниты макроскопически породы совершенно бесструктурные, массивные, имеют порфировидное строение, часто с одинаковой крупностью зерна по содержанию темноцветов относятся к породам лейкократовым, в темноцветной части содержат диопсид, также имеют сходство в составе полевых шпатов. Различие их заключается лишь в содержании кварца, которое в гранитах достигает 25%. Отмеченное сходство не случайно, оно указывает на близость состава дифференциатов интрузии, обогащенных во втором случае SiO₂, или, наконец, на образование этих пород в результате дифференциации на месте после заполнения магматической камеры монцонит-гранитовым расплавом¹).

Четвертой фазой, в которую образовались пегматоидные щелочные сиениты, завершается формирование интрузивных пород массива. Отмечено два небольших тела щелочных сиенитов, одно из которых закартировано в поле монцонитов, другое — в лежачем боку тела габбро и габ-

бро-диоритов на контакте их с вмещающими породами.

В отдельную пятую фазу можно выделить все дайковые и жильные

образования, связанные с массивом.

По глубине формирования массив относится к приповерхностным гипабиссальным, на что указывает широкое распространение в породах

массива порфировидных структур.

Зональное строение массива, обусловленное сменой пород от основного до кислого ряда с юго-запада на северо-восток, подтверждает вывод М. А. Чурилина и Л. В. Пшеничного (8) о влиянии вращения земли на формирование интрузивных массивов и локализации оруденения, связанного с ними. Этот вывод заключается в следующем: «Скопления основных по составу дифференциатов и собственно магматических руд в общем случае наблюдается в юго-западных частях интрузии. Постмагматические, пегматитовые и пневматолито-гидротермальные образования, в том числе рудоносные, залегают большей частью в юго-восточных и реже в северо-восточных или юго-западных энд- и экзоконтактах интрузивных массивов» (8). Подобной закономерностью обладает и Патынский массив, в котором «... наиболее обогащенные титаномагнетитом габбро располагаются в юго-западных эндоконтактах...» (8).

Петрография пород массива

В составе Каратагского массива выделены следующие группы пород: 1) габбро, габбро-диориты; 2) монцониты, сиенито-диориты, альбитовые диориты; 3) пироксеновые граниты; 4) пегматоидные ще-

лочные сиениты; 5) дайковые и жильные образования.

1. Габбро, габбро-диориты имеют серую, темно-серую окраску, равномерно среднезернистое строение. В приконтактовых частях отчетливо проявляется трахитоидность их. Количество темноцветных минералов непостоянно и колеблется в пределах 35—30%, опускаясь в лейкократовых разновидностях до 20%. Под микроскопом породы имеют габбровую структуру или призматически зернистую. Плагиоклаз (65—70%) андезин-лабрадор (№ 47—58), иногда зональный в габбро-диоритах. Состав краевых зон отвечает № 25—35. Угол оптических осей большой, чаще положительный. Двойники по альбитовому и карлсбадскому законам.

Пироксен (13-20%) моноклинный по оптическим свойствам $(2V\ 52-54^\circ;\ Ng=1,715-1,718;\ Np=1,689-1,695;\ c:Ng=40-42^\circ)$ салит-авгит (показатель преломления минералов во всех случаях определяется по главным сечениям оптической индикатрисы). В некоторых пироксенах угол оптических осей повышается до 59° , показатель прелом-

¹⁾ Материалы автора 1962 г. подтверждают этот вывод.

ления изменяется редко в сторону уменьшения его. Состав таких пироксенов, очевидно, ближе к диопсидам. Встречаются в идиоморфных

кристаллах или ограничивается гранями плагиоклазов.

Магматическая роговая обманка не характерна для описываемых пород, она отмечена только в двух зернах, окрашенных в интенсивно бурый цвет, образующих каемки вокруг пироксена, в лейкократовой разновидности. Чаще встречается уралитовая роговая обманка, образуя

частичные или полные псевдоморфозы по пироксену.

Биотит (6—8%)-мероксен-лепидомелан ($2V=10-12^\circ; Ng=1,645; Np=1,599$) явно вторичный. Крупные его таблитчатые зерна прорастают плагиоклаз, обрастают пироксен с частичным его замещением, нередко замещают вторичный амфибол. Образует реакционные каемки вокруг зерен магнетита на границе их с'плагиоклазом. Хлорит имеет незначительное развитие и появляется позднее других вторичных минералов. В плагиоклазах хлорит заполняет микротрещины, и в виде мелких пятен развит в соссюритовом агрегате; обрастает и частично замещает пироксен, амфибол, биотит. По микротрещинам и по плагиоклазу развивается нередко пренит ($2V=+67^\circ; Ng=1,637; Np=1,612; a:Np\approx0^\circ$).

В единичных зернах встречается эпидот ($-2V=82^\circ$, Np=1,725). Рудные минералы (до 4% и менее) представлены магнетитом и титаномагнетитом, присутствуют обычно в ксеноморфных зернах, иногда образуют решетки, которые пересекаются подобно спайности кальцита. Внутри такая решетка обычно заполнена смесью карбоната и хлорита, снаружи, как правило, обрастает узкой каемкой хлорита.

Из акцессорных минералов отмечаются апатит и сфен.

Изменения габбро и габбро-диоритов связаны с процессами альбитизации, биотитизации и хлоритизации. В измененных разновидностях центральные части зерен плагиоклазов замещены соссюритом и серицитом, снаружи кристаллы плагиоклазов альбитизируются. Альбитизация проявляется как в раскислении плагиоклаза — уменьшении в его составе анортитовой составляющей, так и в образовании оторочек альбита. Кроме того, альбит развивается по трещинам. Процесс сопровождается изменением в структуре породы: идиоморфные зерна плагиоклаза теряют свои кристаллографические очертания, края их становятся неровными, извилистыми. Параллельно с разрушением плагиоклазов уралитизируется пироксен, развивается биотит и хлорит. В конечном итоге первичные магматические минералы устанавливаются только в реликтах или разрушаются полностью.

При сопоставлении химического состава описанных пород с типичными представителями группы габбро устанавливается несколько высокое содержание в них закисного железа и суммы щелочей и пониженное — окиси магния и кальция. Увеличение щелочей и понижение кальция связано с деанортитизацией плагиоклазов и развитием альбита

и биотита.

0

2. Сиенито-диориты и монцониты. Сиенито-диориты закартированы в виде небольшого тела в северо-западном углу массива. От монцонитов они отличаются структурой и минералогическим составом. По внешнему облику это серые и светло-серые равномерно среднезернистые породы. Под микроскопом устанавливается призматически зернистая структура, затушеванная вторичными процессами изменения минералов.

Плагиоклаз (84-70%)—интенсивно соссюритизированный и серицитизированный олигоклаз ($N \ge 20-30$; $+2V = 82-84^\circ$). Калиевый полевой шпат (0-17%) — натровый ортоклаз (Ng = 1,5325, Nm = 1,527, Np = 1,526) резко отличается от плагиоклаза по бурым продуктам разложения, также уступает ему по степени идиоморфизма кристаллов.

Пироксен-диопсид ($c:Ng=43^\circ;\ 2V=+61^\circ;\ Np=1,698$) с содержанием $55\,\%$ геденбергитовой молекулы образует изометричные зерна, содержание его в породе не превышает $5\,\%$. Магматическая роговая обманка ($c:Ng=13^\circ;\ c:Np=-62^\circ;\ Ng=1,707;\ Np=1,681;\ Ng$ — темно-коричневый, Nm — коричнево-бурый, Ng — светло-желтый $Ng \gg Nm \gg Np$) образует каемки вокруг зерен пироксена. Отмечается зеленая волокнистая роговая обманка уралитового типа и бурый биотит.

Рудный минерал магнетит (2-4%) развивается обычно вблизи роговой обманки и пироксена. Присутствует апатит и из вторичных минералов маложелезистый мусковит $(2V=-45^\circ)$.

Монцониты преобладают среди пород Каратагского массива, они имеют розово-серый цвет, массивную текстуру и, как правило, порфировидное строение. Под микроскопом характеризуются монцонитовой структурой с резко выраженным идиоморфизмом плагиоклаза. По количественно-минералогическому составу (плагиоклаз — 44%, калишпат — 30, кварц — 11, пироксен — 11, биотит и рудный — 4%) они отличаются от типичных монцонитов Тироля (по Бреггеру) преобладанием плагиоклаза над калишпатом, большим содержанием кварца и меньшим — цветных минералов. По особенностям состава они приближаются к авгитовым сиенитам типа «Gröba».

Плагиоклаз в монцонитах — андезин (№ 37—45, чаще 39—43; $2V = +80^{\circ}$ для № 42), иногда зональный, часто его таблитчатые кристаллы обрастают каемками вторичного альбита. Калишпат-натровый ортоклаз (Nm = 1,5265; Np = 1,522; 40% Ab) в менее идиоморфных ограничениях, чем плагиоклаз, обычно слабее пелитизирован. Попутно отметим, что для пород субщелочного и кислого ряда массива не характерно образование пертитов. Как в монцонитах, так и в гранитах и щелочных сиенитах калишпаты представлены преимущественно натровыми ортоклазами, в которых альбитовая составляющая входит как изоморфная примесь. Пертиты и микропертиты встречаются редко.

Кварц присутствует обычно в ксеноморфных зернах, иногда образует микрографические срастания с полевым шпатом.

Пироксен по оптическим свойствам ($2V=53-54^\circ$; Ng=1,713, Np=1,691) — салит-авгит образует изометричные зерна; замещается уралитовой роговой обманкой. При этом замещении образуется свободный магнетит. Из других минералов отмечаются листочки бурого биотита, менее железистого ($Ng=1,635,\ Np=1,589$), чем в габбро и габбро-диоритах, магнетит в ксеноморфных зернах, апатит и циркон.

Монцониты образуют постепенные переходы к авгит-роговообманковым сиенитам и сиенито-диоритам. В первом случае в составе полевых шпатов калишпат преобладает над плагиоклазом (калишпат —57%, плагиоклаз — 19, кварц — 6, пироксен — 5, амфибол — 12, биотит и рудный —4%), а в темноцветной части породы обыкновенная роговая обманка ($c:Ng=19-20^\circ$, Ng=1,661, Np=1,646, Ng — густой желтовато-зеленый, Nm — желтовато-бурозеленый, Np — светло-желтый; $Ng \approx Nm \gg Np$) — над пироксеном. Во втором случае наоборот — плагиоклаз преобладает над калишпатом (плагиоклаз — 56%, калишпат—18, кварц—8, пироксен—12, амфибол—2, биотит и рудный—4%), в темноцветной части салит-авгит (Ng=1,713, Np=1,691; $2V=48^\circ$ редко повышаясь до 54°). Калишпат сиенито-диоритов натровый ортоклаз ($2V=-61^\circ$, Ng=1,5265) с содержанием 25% альбита [6].

Альбитовые диориты по внешнему облику— серые мелкозернистые породы. Структура их псевдопризматическая со следами перекристаллизации. Количественно-минералогический состав: плагиоклаз — 74% пироксен — 7, амфибол — 14, биотит и магнетит — 5%.

Плагиоклаз-альбит № 8—10 ($Ng=1,540, Nm=1,535, Np=1,5315, 2V=+84^\circ$) в неправильных зернах с волнистым погасанием. Часто устанавливается общая таблитчатая форма кристаллов, нарушенная бластезом.

Пироксен в округлых зернах, по оптическим свойствам ($+2V=57-59^\circ$, Ng=1,722, Np=1,696) — диопсид-салит с содержанием 40% геденбергита, как правило, обрастает каемками лепидомелана (Ng=1,652, Np=1,598) или роговой обманкой, переполненной сыпью магнетита. Амфибол близок к керсутиту (Np=1,688,v>r). Это густоокрашенная роговая обманка с резким плеохроизмом от черно-бурого по Ng до желтого по Np образует неправильной формы зерна, при дальнейшем окислении замещается рудным минералом. Рудный минерал представлен магнетитом, в тонких иголочках отмечается апатит и в трещинках — карбонат.

3. Пироксеновые граниты — светло-серо-розоватого или белого цвета с мелко- и среднезернистой структурой, почти всегда ясно порфировидные. Микроструктура гранитовая с резким ксеноморфизмом

кварца.

1

Плагиоклаз (38%) по составу олигоклаз (№ 18—30, 2V — большой отрицательный), нередко кислее — до № 10 образует таблитчатые хорошо ограненные зерна, часто зональный. Калишпат (23%) — ортоклаз — 2V=— 73° ; Nm = 1,524; Np = 1,520 с содержанием 20% альбита, редко ортоклаз-пертит, в призматических кристаллах, иногда образует простые двойники. Полевые шпаты обычно разложены. Кварц (25%) в ксеноморфных различной формы зернах.

Пироксен (4%) — диопсид $(2V=56-58^\circ; Ng=1,705, Np=1,675)$ образует неправильные или округлые с многочисленными трещинками зерна. Из второстепенных минералов отмечаются бледно-зеленый акти-

нолит, биотит, магнетит и циркон.

4. Щелочные сиениты — светло-розоватые лейкократовые породы, грубозернистые, пегматоидные. Величина кристаллов калишпата достигает 2 см. Минералогический состав довольно однообразен и почти нацело состоит из натрового ортоклаза ($Ng=1,532,\ Nm=1,529$) с содержанием 50% альбитовой молекулы, ортоклазпертита. Плагиоклаз в пертитах — тонкосдвойникованный альбит ($Nomega=1,532,\ Nm=1,529$).

В единичных зернах отмечаются кварц, альбит, геденбергит, $(+2V=62-64^\circ;\ Np=1,718)$, кальцит, актинолит, биотит с тонкой

сыпью магнетита. Гематит заполняет трещинки.

5. Дайковые и жильные породы в порядке их формирования представлены глубоко альбитизированными диабазами, сиенит-порфирами, микросиенитами, диабазами, микродиабазами и диабазовыми порфиритами. Они приурочены к трещинам субмеридионального простирания, имеют крутое падение и мощности, не превышающие первых 3—4 м. Основная масса даек располагается в поле монцонитов.

Глубоко альбитизированные диабазы имеют зеленовато-серую окраску, массивную текстуру. Редко из основной массы выделяются порфировые вкрапленники плагиоклаза. Под микроскопом устанавливаются реликты диабазовой структуры и первичных минералов, чаще пироксена. Плагиоклаз нацело альбитизируется. Отмечается эпидот. За счет этих пород в конечном итоге образуются метасоматические альбититы. По степени изменения эти дайки относятся к наиболее ранним.

Сиенит-порфиры окрашены в розовый цвет, имеют, как правило, порфировую структуру, в порфировых выделениях — слабо зональный альбит-олигоклаз. Основная масса имеет структуру, подобную гранобластовой, и состоит из полуразложенных полевых шпатов. Иногда отмечается пироксен из ряда диопсид-геденбергита. По присутствию

ксеноморфного или округлых зерен кварца выделяются кварцевые и бескварцевые разновидности сиенит-порфиров.

Микросиениты образуют ветвящиеся жилки, мощность которых не превышает первых сантиметров. По своему составу и структуре они отвечают основной массе сиенит-порфиров.

Среди даек основного состава имеются свежие разновидности диабазовых порфиритов и слабо диагенетизированные диабазы, микродиабазы и диабазовые порфириты. Свежие диабазовые порфириты в порфировых вкрапленниках содержат плагиоклаз (№ 50-60) и авгит $(2V = +47^\circ; c: Ng = 43^\circ, Ng = 1,720, Np = 1,697).$ Основная (60% от объема породы) имеет офитовую структуру и состоит из плагиоклаза № 45, авгита и незначительного количества хлорита. Свежие диабазы имеют долеритовую структуру и следующий состав. Плагиоклаз (№ 75—90, чаще № 85, 2V = +89°, зональный — состав в краевых частях зерен опускается до № 40—45) составляет 55%, пироксен моноклинный и ромбический — 30% (ромбический несколько преобладает). пироксен имеет следующие свойства — $2V = 58^{\circ}$; Моноклинный $c: Ng = 42-43^{\circ}; Ng = 1,713; Np = 1,691,$ образует округлые зерна, разлагается с образованием тонкой сыпи рудного минерала. До 15% составляет бурый биотит.

Диагенетизированные дайки основного состава — диабаза, микродиабазы и диабазовые порфириты имеют, как правило, гиалопилитовую основную массу, которая состоит из смеси альбитизированного плагиоклаза, моноклинного пироксена, хлорита и рудного минералов. В порфировых вкрапленниках порфиритов — плагиоклаз (№ 40—50) и авгит.

В заключение петрографического описания отметим кратко состав продуктов контактового метаморфизма интрузии. На контакте с массивом черные известняки енисейской свиты осветляются, превращаются в мрамор или сильно окварцовываются. Мощность зоны контактового изменения не превышает 200 м. На северном контакте интрузии с вмещающими породами отмечена маломощная полоса скарнов. В составе скарнов присутствует гроссуляр (преобладает авгит и магнетит).

Некоторые черты петрохимии пород массива

В табл. 1 приводятся химические составы и результаты пересчета их по А. Н. Заварицкому, пород, слагающих массив г. Мал. Каратаг. Анализы выполнены в химлаборатории Красноярского геологического управления. Анализировались следующие образцы: 1 — габбро, 2 — габбро-диорит, 3 — габбродиорит, 4 — диабазовый порфирит, 5 — диабаз, 6 — диабаз, 7 — монцонит, 8 — монцонит, 9 — монцонит, 10 — порфировидный сиенит, 11 — монцонит, 12 — монцонит, 13 — щелочной сиенит, 14—15 — пироксеновый гранит, 16—17 — метасоматический альбитит. Примечание: Анализы 11 и 12 заимствованы из отчета Ю. Г. Щербакова.

По особенностям геологического положения, морфологии и составу Каратагский массив близок к Патынско-Куль-Тайгинскому интрузивному комплексу, известному на юге Кузнецкого Алатау. Тот же вывод следует из анализа петрохимической диаграммы по закономерному рою векторов, по А. Н. Заварицкому. Породы массива в целом по своему химизму близки к средним составам пород Р. Дели.

Все породы массива относятся к породам нормального ряда недосыщенным Al_2O_3 (векторы плоскости asb ориентированы вправо). Сравнительно пологая ориентировка вектора в плоскости csb указывает на заметное содержание калия в составе щелочей, а относительно близкое их расположение к линии sb—на общую щелочную специализацию пород

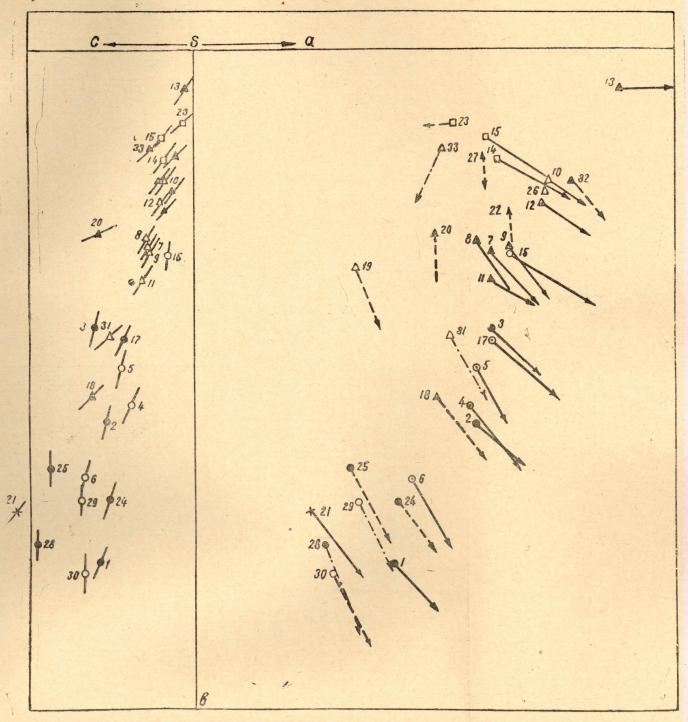


Рис. 1. Петрохимическая диаграмма пород массива горы Малый Каратаг (по методу А. Н. Заварицкого). Перечень химанализов пород массива дан в таблице. Для сравнения нанесены средние составы аналогичных пород по Дэли и некоторые породы Патынско-Культайгинского интрузивного комплекса (по С. С. Ильенок, Г. В. Полякову, А. Е. Телешеву) и массива г. Когтах (по С. Л. Халфину). 18—сиенит «Gröba» и (Эдельштейн 1911, ан. 2 а) г. Когтах, 19—диорит-монцонит, г. Когтах, 20— авгитовый сиенит, г. Когтах; 21—средненормальное габбро, г. Патын; 22—кварцевый щелочной сиенит г. Улуг-Зас; 23— щелочной гранит. г. Шор-Тайга; 24—габбро. г. Шор-Тайга; 25—роговообманковое габбро, г. Шор-Тайга; 26— щелочной сиенит г. Шор-Тайга; 27— шелочной граносиенит, г. Шор-Тайга; 28—габбро-Дэли, 29—диабаз Дэли; 30— долерит Дэли; 31— монцонит Дэли, 32— щелочной сиенит Дэли; 33—гранит Дэли.

																	44 1
Окислы	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
П. п. п.	1,81	1,92	1,59	1,61	0,97	1,03	0,67	0,76	0,77	0,77	0,57	1,08	0,47	0,67	0,65	0,60	1,6
SiO ₂	46,91	49,60	52,86	53,84	54,06	50,42	62,52	63,04	60,52	63,43	61,60	61,57	65,90	68,40	69,42	64,24	55,8
TiO ₂	1,96	2,06	1,12	1,09	1,26	1,45	0,78	0,76	0,89	0,72	0,82	0,97	0,12	0,44	0,39	0,64	1,1
Al ₂ O ₃	15,47	18,06	19,38	16,17	17,32	17,40	16,08	15,59	16,50	16,78	16,71	16,60	18,15	15,01	15,09	15,67	17,4
Fe ₂ O ₃	4,78	2,37	2,09	1,44	4,36	1,05	1,89	1,54	2,04	1,89	4,90	3,93	0,12	0,07	0,15	0,13	0,6
FeO	8,91	7,58	4,96	6,90	4,89	8,69	3,52	4,02	4,10	3,18	4,00	1,46	1,51	2,37	1,76	2,59	4,2
MnO	0,20	0,18	0,10	0,15	0,12	0,16	0,09	0,10	0,10	0,08	0,07	0,04	0,03	0,04	0,03	0,06	0,0
CaO	9,81	8,27	7,76	6,88	5,86	9,22	4,62	4,00	3,96	2,46	5,18	3,30	0,96	3,37	3,08	5,71	7,7
MgO	4,68	3,05	2,29	3,92	3,35	5,12	1,82	1,94	1,74	0,63	1,04	0,87	0,02	0,83	0,74	2,04	3,5
P ₂ O ₅	0,34	0,41	0,28	0,36	0,32	0,39	0,26	0,28	0,29	0,21	0,08	0,14	0,087	0,18	0,14	0,22	0,
S	_	0,020	0,020	н/об.	0,020	0,023	н/об.	0,020	0,020	0,020	_	-	0,020	0,020	0,020	0,020	0,
Na ₂ O	3,78	5,80	5,90	5,15	5,80	4,40	5,35	4,65	5,70	5,52	5,27	5,66	7,50	5,30	4,65	7,55	5,
K ₂ O	1,51	1,39	1,69	2,39	1,60	1,20	3,20	3,60	3,20	4,92	3,50	4,28	4,7	3,70	4,12	0,89	2,
Сумма	100,16	100,69	100,02	99,90	99,91	100,55	100,80	100,28	99,81	100,60	103,74	99,8	99,56	100,38	100,22	100,34	100
S	56,0	59,5	63,4	62,3	63,2	59,0	70,4	71,6	69,5	72,0	68,5	71,0	74,1	76	77,5	70,5	64
a	10,7	15,3	16,0	14,8	15,3	11,6	16,1	15,2	17,2	19,2	16,0	18,8	23,1	16,5	15,8	17,1	15
c	5,2	4,8	5,4	3,4	4,1	6,0	2,5	2,7	2,4	1,6	2,8	1,8	0,5	1,5	1,9	1,4	3
b	28,1	20,9	15,2	19,5	17,4	23,4	11,0	10,5	10,9	7,2	12,7	8,4	2,3	6,0	4,8	11,0	15
Q	-14,6	-16,4	-10,6	-8,4	-8,3	-11,2	6,1	10,1	2,2	4,0	2,2	2,6	1,5	17,5	21,5	5,4	-6
c'	24,9	26,9	28,6	25,4	17,9	22,7	27,0	20,3	21,9	19,5	26,2	26,9	29,5	39,7	36,2	47,5	36
m'	28,8	25,7	26,6	34,0	32,8	37,5	27,7	30,9	26,9	15,0	13,0	17,1	3,0	22,6	25,0	30,1	34
f'	46,3	47,4	44,8	40,6	49,3	39,8	45,3	3,488	51,2	65,5	60,8	56,0	67,5	37,7	38,8	22,4	29

Продолжение таблицы 1

Окислы	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
a:c	2,08	3,19	2,97	4,36	3,74	1,94	6,44	5,63	7,17	12,0	5,72	10,4	46,2	11,0	8,32	12,2	4,2
n	79,3	86,3	84,1	76,9	84,7	84,6	71,7	66,4	73,1	63,3	69,6	66,5	70,8	68,6	63,1	92,5	77,2
t	3,11	3,1	1,57	1,54	1,75	2,11	0,95	0,95	1,1	0,85	1,0	1,2	0,1	0,44	0,44	0,75	1,5
φ	14,9	9,95	12,2	6,31	21,9	3,54	14,8	12,3	15,0	22,8	31,2	39,1	3,0	1,1	2,8	0,6	3,37

массива. На это же указывает и смещение фигуративных точек вправо на плоскости asb с увеличением содержания кремнекислоты в породах. Смещение верхних фигуративных точек диаграммы в плоскости asb в сторону вершины Ѕ свидетельствует о ясно выраженной пантеллеритовой тенденции, которая характерна для вулканических ассоциаций пород щелочного ряда. Другие особенности состава пород массива также ясно отражены на диаграмме и в числовых характеристиках, которые приведены в таблице.

ЛИТЕРАТУРА

1. А. Н. Винчелл. Оптическая минералогия. М., ИЛ., 1949.

2. Н. А. Елисеев. Структурная петрология. Л., Изд. Ленинградского универ-

3. А. Н. Заварицкий. Изверженные горные породы. Изд. АН СССР, 1961. 4. С. С. Ильенок. Основные черты петрологии Патынского массива. Геология

и геофизика, № 4, 1960.

5. Г. В. Поляков, А. Е. Телешев. Магматические комплексы района Тейской группы железорудных месторождений (Кузнецкий Алатау). В кн. «Основные идеи М. А. Усова в геологии», Изд. АН Каз. ССР., 1960.

6. В. Е. Трегер. Таблицы для оптического определения породообразующих мине-

ралов. Госгеолтехиздат, 1958. 7. Г. С. Федосеев. О происхождении сиенито-диоритов массива горы Мал.

Куль-Тайга. Геология и геофизика, № 12, 1961. 8. М. А. Чурилин, Л. В. Пшеничный. Закономерности пространственного распределения эндогенного оруденения относительно интрузии. Разведка и охрана

недр, № 10, 1961. 9. Ю. Г. Щербаков. Новые данные о геологическом строении Горной Шории. Геология и геофизика, № 6, 1961.

