ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Том 284

1974

ИССЛЕДОВАНИЕ МАГНИТНОГО ПОЛЯ В ВОЗДУШНОМ ЗАЗОРЕ ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА, РАБОТАЮЩЕГО ПОД НАГРУЗКОЙ

К. А. ХОРЬКОВ, В. Н. ДМИТРИЕВ, Е. Е. ДУТЛОВ

(Представлена научным семинаром кафедр электрических машин и аппаратов и общей электротехники)

С целью изучения переменной составляющей магнитного поля под полюсом при движении зубчатого якоря была создана экспериментальная установка на базе двигателя П-40. Результаты исследования при работе двигателя в режиме холостого хода изложены нами в [1]. В настоящей работе приводятся результаты исследований магнитного поля при работе двигателя постоянного тока под нагрузкой. Якоря маши-

Рис. 1. Схема установки измерительных датчиков

ны имеют 27 и 31 паз со скосом на одно зубцовое деление. Скорость вращения двигателя при испытаниях поддерживалась постоянной и равной 1500 об/мин; ток возбуждения — равным 1 а. Ток якоря изменялся от тока холостого хода 2,3 а до номинального тока 20 а.

Измерительные датчики э. д. с. были установлены на полюсных наконечниках машины согласно рис. 1. Расположение датчиков вдоль ширины полюсного наконечника позволяет проследить изменение потока на поверхности полюса при движении зубчатого якоря. На полюсе 1 ширина рамок датчиков равна ширине зубца якоря, на полюсе 2— ширине открытий пазов якоря. Расположение датчиков на кромках полюсов (полюс 3) позволяет проанализировать изменение потока по длине набегающего и сбегающего краев полюсного наконечника. Рамка 4—10 охватывает весь полюсный наконечник по его периметру и позволяет судить о радиальных пульсациях магнитного потока в целом под всем полюсом. Типичная кривая э. д. с. датчика, расположенного под полюсом, представлена на рис. 2, кривая 3. Кривая 3 получается как сумма кривых э. д. с. сторон измерительной рамки (кривые 1 и 2). Очевидно, что-

амплитуда э. д. с. датчика характеризует величину переменной составляющей магнитного поля под полюсом. Ширина измерительной катушки не должна быть равна ширине зубцового деления якоря, так как в этом случае результирующая э. д. с. датчика равна нулю. Ширина измерительной катушки должна лежать в пределах от b_п до b₃, причем с увеличением ширины рамки амплитуда э. д. с. датчика уменьшается из-за влияния скоса пазов якоря.

В испытуемой машине ширина полюсного наконечника составляет 4,7 зубцовых деления при якоре, имеющем 31 зу-

Рис. 2. Формирование кривой э. д. с. измерительного датчика

бец, и 4,1 деления при якоре с 27 зубцами. Поэтому в кривых э. д. с. измерительных катушек содержится целый спектр высших гармонических, наибольшей из которых является зубцовая.

При исследованиях ток якоря увеличивался от тока холостого хода до номинального тока машины. В соответствии с этим, благодаря влиянию реакции якоря, происходит перераспределение основного потока машины под полюсом: поток набегающего края полюса увеличивается, а сбегающего уменьшается. Влияние перераспределения основного потока на величину зубцовых пульсаций под полюсом можно проследить по результатам измерений, представленных в табл. 1 и 2. В таблицах представлены э. д. с. каждого датчика в милливольтах и средние значения э. д. с. для однотипных датчиков при вращении якоря в обоих направлениях в зависимости от тока якоря.

Как и следовало ожидать, амплитуда зубцовых пульсаций общего потока под полюсами изменяется практически пропорционально величине тока якоря. Представляет интерес картина изменения э.д.с. датчиков, уложенных на набегающем (датчики 12а—12д) и сбегающем (датчики 1а—1д) краях полюсного наконечника при вращении якоря в прямом направлении. При увеличении нагрузки до номинальной для датчиков набегающего края полюса (подмагниченного потоком реакции якоря) наблюдается равномерное увеличение их э.д.с. в три раза. В то же время э.д.с. датчиков сбегающего края полюса, размагничиваемого реакцией якоря, практически остаются неизменными.

При изменении направления вращения якоря набегающий и сбегающий края полюса меняются местами и э.д.с. датчиков 12а—12д становятся неизменными, а э.д.с. датчиков 1а—1д растут в той же пропорции, что и ранее для набегающего края полюса. Для обоих якорей картина изменения э.д.с. датчиков аналогична.

Увеличение амплитуды пульсаций магнитного поля под набегающим краем полюса должно соответственно увеличить силы магнитного

d	VODI	UMOOT	97		GUODIN	TOTOTOT
\boldsymbol{n}	NUDD	NMCCI	41	3	ULUBBIA	делении

No	No]	Прямое в	ращение	Обратное			
полюса	датчика	xx	5a	10 a	15 a	20 a	XX	10 a	20 a
1	4-10	20	70	120	180	220	20	100	180
2	4-10	20	70	100	160	260	20	60	130
3	4-10	15	100	200	280	340	10	80	180
4	4-10	50	100	180	220	220	50	100	260
средне	e	26	85	150	210	260	25	85	187
	1 a	220	200	180	180	210	200	300	500
• (1997)	1б	240	200	180	180	210	200	320	500 .
3	1в	260	220	210	200	230	220	340	480
	1 r	260	260	220	220	280	230	360	520 480
	1 д	280	280	250	250	320	250	320	
средне	ee la	250	270	210	205	250	220	330 -	['] 498
	12 a	220	300	400	500	620	260	220	240
	12 б	220	280	360	480	600	240	200	240
3	12 в	160	220	300	400	480	200	120	200
	12 г	180	260	320	460	560	200	140	200
	12 д	180.	260	360	520	620	200	140	220
средне	e	192	264	348	472	576	220	164	220
	1	200	230	300	330	420	210	260	420
2	2	180	200	230	320	380	180	260	420
	3	140	160	220	300	380	140	200	-330
средне	e	173	196	250	316	393	176	240	39 0
	1	150	220	260	260	260	150	110	100
1	2	50	110	180	320	· 360	60	90	110
1	3	30	40	60	100	120	30	20	120
and the	4	30	40	60	100	120	20	80	210
	5	100	104	136	180	198	78	90	148
средне	e	72	104	136	180	198	78	90	148

Таблица 2

6

Якорь имеет 31 зубцовое деление

No	а датчика		Пря	мое враг	цение		Обратное вращение					
полюса		xx	5 a	7,5 a	10 a	15 a	xx	5a	10 a	15 <i>a</i>	20 <i>a</i>	
$\begin{array}{c}1\\2\\3\\4\end{array}$	$\begin{vmatrix} 4-10 \\ 4-10 \\ 4-10 \\ 4-10 \\ 4-10 \end{vmatrix}$	$ \begin{array}{c} 0 \\ 0 \\ 40 \\ 60 \end{array} $	50 0 60 40	100 20 120 80	$ \begin{array}{r} 150 \\ 40 \\ 150 \\ 110 \end{array} $	230 120 230 200	$\left \begin{array}{c}0\\0\\40\\60\end{array}\right $	20 10 60 80	60 50 120 160	$\left \begin{array}{c} 110\\ 100\\ 210\\ 220\end{array}\right $	180 160 300 280	
среднее		25	37,5	80	112	195	25	42,5	97,5	160	230	

Продолжение табл. 2

Nº	No	Прямое вращение						Обратное вращение				
полюса	датчика	a xx	5 a	7,5 a	10 a	15 a	xx	5 a	7,5 a	10 a	15 a	
3	1 a 1 6 1 B	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	200 180 210	180 160 200	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	260 250 290	360 360 380 250	460 440 440 440	560 540 560 520	
	1 д	$250 \\ 260$	250	230	200	260	210	290	340	440	520	
среднее		242	236	210	192	224	208	278	354	436	540	
3	12 а 12 б 12 в 12 г 12 д	200 180 180 180 180 160	280 280 260 240 240	400 400 360 320 320	400 400 360 320 320 320	600 560 520 500 500	180 180 160 120 120	180 180 120 120 140	200 200 120 160 160	220 220 160 160 180	280 280 200 200 220	
средн	iee	180	260	360	360	536	152	148	168	188	236	
2	1 2 3	260 260 200	320 260 230	360 300 280	340 300 310	500 450 450	240 220 150	290 270 190	350 350 250	400 400 320	500 460 400	
средн	ee	240	270	313	317	467	203	250	283	373	434	
1	$\begin{array}{c}1\\2\\3\\4\\5\end{array}$	90 50 70 30 40	120 100 80 30 120	$ \begin{array}{r} 140 \\ 110 \\ 60 \\ 40 \\ 100 \end{array} $	160 100 30 60 110	180 180 80 80 100		80 80 70 50 120	90 90 50 100 120	90 90 50 160 180	80 100 50 210 200	
среднее		70	90	90	92	124	66	80	90	114	128	

тяжения. Неравенство магнитных сил на набегающем и сбегающем краях полю́сов приведет к появлению нескомпенсированных радиальных и тангенциальных сил. Таким образом, увеличение нагрузки машины сопровождается увеличением неравенства сил, приложенных к набегающему и сбегающему краям наконечников, что сопровождается увеличением вибраций машины.

ЛИТЕРАТУРА.

1. К. А. Хорьков, В. Н. Дмитриев, Е. Е. Дутлов. Исследование магнитного поля в воздушном зазоре машины постоянного тока. Изв. ТПИ, т. 265, 1973.

.....

11