Tom 242

1972

ОПРЕДЕЛЕНИЕ КОРРЕЛЯЦИОННЫХ ЗАВИСИМОСТЕЙ ДЛЯ УПРОЩЕННОГО РАСЧЕТА КОЭФФИЦИЕНТОВ ВЛИЯНИЯ ТЕХНОЛОГИЧЕСКИХ ПОГРЕШНОСТЕЙ НА ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ РОЛЬГАНГОВЫХ ДВИГАТЕЛЕЙ

В. В. ДНЕПРОВСКИЙ

(Представлена научным семинаром кафедр электрических машин и общей электротехники)

Для расчета допусков на выходные параметры на стадии проектирования необходимо определить коэффициенты уравнений для основных погрешностей и технологические погрешности на входные параметры. Так как большинство коэффициентов влияния изменения входных параметров на отклонения выходных параметров имеют большую изменчивость по типоразмерам электродвигателей, то, естественно, возникает необходимость их определения для отдельных типоразмеров машин. Это важно при разработке промежуточных модификаций, что характерно для рольганговых двигателей. Рассмотренный ранее метод [1] определения коэффициентов влияния С_{іј} сложен, так как аналитические формулы для их определения громоздки.

При определении коэффициентов влияния для интересующих нас типоразмеров двигателей необходим более простой путь их определения, поэтому особый интерес представляет нахождение простых регрессионных уравнений, связывающих коэффициенты влияния C_{ij} с основными характеристиками двигателя: объемом машины — D_a^2l , номинальной мощностью — $P_{\rm II}$, числом полюсов — 2p. Таким образом, необходимо по результатам вычисления каждого коэффициента C_{ij} по всем типоразмерам серии найти регрессионные уравнения вида

$$\hat{\mathbf{y}}_{\mathbf{u}} = \mathbf{b}_0 + \mathbf{b}_1 \left(\mathbf{D}_{\mathbf{a}}^2 \mathbf{l} \right) + \mathbf{b}_2 \mathbf{P}_{\mathbf{H}} + \mathbf{b}_3 2\mathbf{p}, \ (\mathbf{u} = 1, 2, ..., n) \,, \tag{1}$$

где л

у — соответствующий коэффициент влияния.

Нахождение коэффициентов регрессии b₀, b₁, b₂, b₃ уравнения (1) представляет собой обычную задачу регрессионного анализа, решение которой основано на минимизации суммы квадратов отклонений между опытными и расчетными значениями по уравнению (1). Вычисление коэффициентов регрессии производилось на вычислительной машине «Проминь». Данные для расчета коэффициентов влияния по уравнению (1) приведены в табл. 1. Для полученных уравнений регрессии проведен статистический анализ. В качестве величины, характеризующей вклад к коэффициентов регрессии в уравнение (1), содержащее k+1 членов, вводится множественный коэффициент корреляции

$$R = \sqrt{\frac{S_k}{\sum_{u=1}^{n} (y_u - \bar{y})^2}},$$
 (2)

S_k — сумма квадратов, относящаяся к k коэффициентам регрессии;

 y_u — значение коэффициента влияния, полученное по формулам [1] для каждого типоразмера двигателя;

у — среднее значение коэффициентов влияния по всем типоразмерам, приведено в матрице А [1].

Все промежуточные вычисления, связанные с определением R, произ-

водилсь по методике [2].

Коэффициент множественной корреляции R может интерпретироваться как мера линейной связи между коэффициентами влияния C_{ij} и независимыми переменными $D_a{}^2l$, $P_{\rm H}$, 2p. Его величина может изменяться от нуля до +1. Если вклад, вносимый k коэффициентами регрессии равен нулю, то $S_k{=}0$ и $R{=}0$, если же уравнение регрессии полностью описывает результаты эксперимента, то $R{=}1$.

Значимость множественного коэффициента корреляции определяет-

ся F-отношением

$$F=rac{s_k^2}{s^2_R},$$
 (3)

 $f_R = k = 3;$ $s_R^2 = \frac{S_R}{f_R}$ — остаточная дисперсия; $f_R = n - k - 1 = 34;$

 $S_{
m R}$ — остаточная сумма квадратов.

Если вычисленное значение $F > F_T$ для выбранного уровня значимости, то S_k и R значимы и можно говорить о значимости уравнения регрессии в целом.

В нашем случае для 5%-ного уровня значимости, при $f_k=3$ для большей дисперсии и $f_R=34$ для меньшей дисперсии по [3] находим $F_T=2,88$. В табл. 1 приведено вычисленное F-отношение.

Как видно из таблицы, $F > F_T$, следовательно, коэффициент множественной корреляции для коэффицентов влияния, вычисленных по уравности (1) оказалод значимим

нению (1), оказался значимым.

Необходимой задачей статистического анализа уравнений регрессии является также проверка гипотезы об адекватности полученных уравнений с исходными расчетными данными.

Если известна дисперсия s²{y}, характеризующая ошибку опыта,

то можно найти F-отношение

$$F = \frac{S^2 R}{S^2 \{y\}}. \tag{4}$$

Поскольку при определении коэффицентов влияния использовались расчетные значения параметров двигателей, то получились однозначные (без разброса) значения коэффициентов влияния для каждого типоразмера $s^2\{y\}=0$. Здесь можно поступить следующим образом. Считая уравнение (1) адекватным, можно определить максимальную ошибку при определении коэффициентов влияния по полученным уравнениям. Если дисперсия этой ошибки меньше дисперсии коэффициентов влияния по всей серии, то регрессионные уравнения могут быть использованы для вычисления коэффициентов влияния для различных типоразмеров двигателей.

	C _{6,14}	C _{6,13}	C _{6,12}	C _{6,11}	C _{5,14}	C _{4,10}	C49	C ₇₈	C77	C76	C ₇₅	C ₇₄	C ₇₃	C ₇₁	C ₆₈	Ces	200	Ces	ည္သို့	C ₅₈	C.8.	C ₅₅	ည္သင္တ	C ₅₂	0 th	C46	C45	200	C42	J.G.	က္ဆင္ဆင္ဆ	C34	Cas		, C 25 C	C ₂₃	22.5	C17	C15		S E E		C _{ii} /
	-0,0225	0,998	-0,0203	0,0061	-0,0824	-0,0335	-0,0102	-1,309	1,288	0,040	-0.0481	1,360			-0.291			-0,353	0,299	0,0124	0,203	-0,155	-0,0452	0,0526	0,364	-0,0862 -0,360	0,0768	-0.122 -0.361	0,225	0,586	-0.0736 -0.561	0,060			-0.114 -0.126	-0,554		0,252		0,105	-1,637 -0,855 -0,602		b ₀
	3,00	- 1,34	0,40	1,50	- 3,00	- 0,30	0,90	0,80	- 1,40	- 0,01	0,20	- 0,09	- 2,80	- 1,60	-1,41 -1.60	- 1,70	1,80	- 1,10		- 1,40 1,40	1,40	-0.742			2,70					- 2,70	1,10 2.50	- 6,06	- 2,20	3,80	- 9,70 2,20	- 3,89	3,62	2,80	2,20	- 0,683	- 6,82 7,82 4,32		b ₁ ·10 ³
	17,50	0,113	- 1,70	0,70	- 9,80	3,00	- 0,70	29,00	-25,80	- 2,40	1,50	-22,80	-64,60 30,10	-37,00	-16,38 17.46	- 9,00	-21,60	24,90	-28,20	1,60	0,70	- 5,18	7,80	14,80	-29,26	- 9,80 28,76	7,50	23,00	<u>44,90</u>	6,70	-10,60 -150	36,04	7,00	-25,90 21,50	-13,60 -13,60	17,10	-29,62	4,10 7,51	-21,40	25,56	-62,59 13.56		b ₂ ·10 ³
	-28,70	1,00		-10,50	32,90	1,30	- 5,90	2,20	- 0,40	- 0,90	1,10	- 7,30	-25,90 11,30	100	- 0.91	18,00	0,70	00	24,50	- 9,30 - 9,70	7,90	- 4,50 - 8.14	17,40	-31,60	-16,41	30,50 15,96	-26,10	- 7,90 1470	17,80	1-1	- 6,90 8,50	- 3,49 12,48	10,50	- 9,90	M	17,70	-10,86 -10,86	- 7,70 5,06	-13,80	0			b ₃ ·10 ³
	0,765	0,865	0,684	0,838	0,933	0,904	0,839	0,619	0,630	0,651	0,684	0,651	0,757	0,696	0,547	0,866	0,530	0,627	0,780	0.803	0,650	0.629	0,867	0,776	0,794	0,865	0,880	0,772	0,855	0,816	0,728	0,563	0,705	0,799	0,685	0,585	0,552	0,649	0,513	0,500	0,580	-	R
	15,95	25,50	9,29	26,35	78,87	51,73	26,63	7,00	7,44	8,29	9,80	8,29	13,56	10,68	5,83	~ ~	20,60	7,38		20,30		7.44	34.41	22.04	19,35	33,74	38,71	16,57	Fred CC	000	200	5,24 4,08	H	> 1-1 C	31,95	5,39	5,04	8,24	4,05 16,83	5,03	0,00,00 0,00,00 4,00,00	-	T S
111		1,66	15,10	23,00	21,00	16,10	18,10	9,10	8,96	0,88	1,10	0,88	3.73		2,75			5.03	6,89	2.09	5,53	3 0	305	6.87	2.28	5,17	4,10	3,86	7,75	1,96	1,85	3.76	2,60	3.10	4,43	0100	4,26	4,66	3,53	6,46	7,00,2 7,00,2 7,00,2 7,00,2		{y}·10 ²

0 0

0 0

Порядок вычислений следующий:

- 1. Задаваясь уровнем значимости, по числу степеней свободы fr для остаточной дисперсии s_R^2 и по числу степеней свободы $f_{s(y)}$ ходим F_{T} -отношение (табличное). Число степеней свободы для дисперсии ошибки $s^{2}\{y\}$ необходимо принять равным бесконечности, как для генеральной совокупности.
 - 2. Определяем $s^2\{y\} = \frac{s^2_R}{F_T}$.

В нашем случае для 5%-ного уровня значимости имеем

$$f_R = n - k - 1 = 38 - 3 - 1 = 34$$
; $F_T = 1,46$; $s^2[y] = 0,685s^2_R$.

Дисперсия ошибки получается меньше остаточной дисперсии и, следовательно, регрессионными уравнениями можно пользоваться для вычисления коэффициентов влияния. Абсолютная величина ошибки

s{v} приведена в табл. 1.

Таким образом, пользуясь математическим аппаратом регрессионного анализа, получены простые регрессионные зависимости коэффициентов влияния C_{ii} от основных характеристик типоразмера двигателей, что позволяет значительно упростить вычисление коэффициентов влияния входных параметров на выходные параметры.

ЛИТЕРАТУРА

1. В. В. Днепровский, О. П. Муравлев. Оценка чувствительности технических характеристик рольганговых двигателей к технологическим погрешностям. Настоящий сборник.

2. В. В. Налимов, Н. А. Чернова. Статистические методы плани-рования экстремальных экспериментов. «Наука», М., 1965.

3. Н. В. Смирнов, Й. В. Дунин-Барковский. Курс теории вероятностей и математической статистики для технических приложений. Изд. 2, «Наука», М., 1965.