ФИЗИКО-ХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА И КРИВЫЕ РАЗГОНКИ ГАЗОВОГО КОНДЕНСАТА МЫЛЬДЖИНСКОГО МЕСТОРОЖДЕНИЯ

С. И. СМОЛЬЯНИНОВ, Н. М. СМОЛЬЯНИНОВА, А. Е. ШУЛИВЕЙСТРОВ

В связи с предстоящей в ближайшие годы промышленной эксплуатацией крупнейших месторождений — Советского нефтяного и Мыльджинского газоконденсатного, расположенных на территории Томской области, открываются широкие возможности для развития нефтехимической промышленности на базе переработки попутных нефтяных газов и газовых конденсатов.

Для решения ряда вопросов, связанных с проектированием нефтехимического комплекса, необходимо детальное исследование свойств и химического состава сырья— газовых конденсатов и широкой фракции нефтяных попутных газов.

Настоящая работа посвящена изучению физико-химических свойств, фракционного состава и оценке качеств фракций прямой перегонки Мыльджинского газового конденсата.

Мыльджинское газовое месторождение находится в среднем течении реки Васюган, примерно в 480 км на северо-запад от г. Томска. Газоносная площадь месторождения составляет 318 кв. км. Продуктивно газоносными являются отложения юры и нижнего мела, среди которых выделяются 4 продуктивно газоносных пласта: Ю-I+II, Б-XVI—XX, Б-X и Б-VIII.

Основная залежь связана с пластом Ю-I+II и относится к типу массивных; этаж газоносности — $72\,$ м. Месторождение является газоконденсатным, имеет нефтяную оторочку.

Конденсатный фактор составляет 87—127 см³/т³.

Для исследования было отобрано 5 проб газоконденсата из конденсатного отвода от сепаратора скважин №№ 15, 16, 23, 29, 31. Характеристика точек отбора приведена в табл. 1.

Данные по общему исследованию (физико-химические свойства)

указанных проб представлены в таблицах 2—6.

Как видно из таблиц, исследованные образцы конденсатов мало отличаются по своим физическим и физико-химическим свойствам, за исключением пробы 3, взятой из скв. № 31, имеющей нефтяную оторочку. Удельный вес конденсатов мал и колеблется от 0,7153 до 0,7411, молекулярный вес — от 104 до 114; соответствующие показатели для пробы 3 составляют 0,7732 и 138.

Вязкость всех конденсатов при 20° С незначительна (0.72-1.62 сст), температура застывания низкая — 48° С до — 85° С без термообработки, за исключением пробы 3 (скв. 31), температура застывания которой со-

Таблица 1 Характеристика точек отбора проб газового конденсата Мыльджинского месторождения

Свита	Пласт	№ сква- жи- ны	Глубина фильтра (интервал перфора- ции), м	Давле- ние се- парации, ати	Т-ра сепа- рации, °С	Пласто- вое дав- ление, ата	Плас- то- вая т-ра, °С	Дата от- бора пробы
1 II-объект (Тюменс- кая) III, IV Васюган- ская	Ю—І+ІІ	15	2380—2373	55,77	25	256,2	81,0	9.11.67
2 Васюган- ская	І—ОІ	16	2401-2363	75,25	27	258,1	78,5	18.II.67
3 "	"	31	2381—2398	35,00	5	243,0	74,0	30.V.67.
4 "	"	29	2378—2346	37,77	19	252,7	78,5	27.VI.67.
5 "	u	23	2417—2408	69,45	11		-	u

Таблица 2 Плотность конденсатов при равных температурах по ГОСТ 3900—47

№ пробы соответств.	Плотность конденсата при данной температуре по отношению к плотности воды при 4°C								
табл. 1	20°C	30°C	40°C	50°C					
1	0,7258	0,7181	0,7099	0,7023					
2	0,7354	0,7277	0,7202	0,7120					
3	0,7723	0,7659	0,7585	0,7422					
4	0,7411	0,7323	0,7240	0,7146					
5	0,7153	0,7069	0,6991	0,6903					

Таблица 3 Кинематическая вязкость конденсатов при разных температурах по ГОСТ 33—53, сст

№ пробы соответств. табл. 1	—20°C	-10°C	0°C	+10°C	+20°C
1		1,17	1,06	0,98	0.80
2	1,58	1,29	1,13	1,03	0,90
3	6,66	4,72	2,42	1,94	1,62
4	1,40	1,19	1,08	1,00	0,84
5	1,2	1,02	0,91	0,79	0,72
ALL AND ASSESSED TO SERVICE STATE OF THE PARTY OF THE PAR		TOTAL ATTEN			

Таблица 4 Физико-химическая характеристика газовых конденсатов

№ сква- жины	d 20 4	Мол. вес.	Вяз- кость, сст 20	Вспыш-	Засты- Вания.	Давление насыщен- ных паров, мм, рт. ст. при при 38°C 50°C		насыщенных паров, мм, рт. ст.		Содержа-	Темпера- тура пл. 0°С.	нафте- новых кислот	
LIKE STOP	A. 13.3												
15	0,7258	111	0,80	-84	-85	552	575	отс.	#	0,096	0,024		
16	0,7354	106	0,90	—70	-65	453	465	отс.		0,013	0,02		
31	0,7723	138	1,62	—65	-10	269	447	0,5	47	0,008	0,029		
29	0,7411	114	0,84	-60	-48	247	427	отс.	-	0,010	0,008		
23	0,7153	104	0,72	—5 5	-82	249	417	отс.	_	0,004	0,007		

Продолжение таблицы 4

№ скв.	Смол серно- кислот- ных	серно- силика- тенов кислот- гелевых		Коксу-емость, %		Кислот- ное чис- ло, мг КОН на 1 г нефти	Содер- жание ванадия, %	
15	отс.	отс.	отс.	0	0,013	0,011	отс.	
16	отс.	отс.	отс.	0	0,008	0.012	отс.	
31	4,0	3,13	0,03	0,03	0,800	0,015	следы	
29	следы	отс.	отс.	0	0,070	0,009	0,0002	
23	следы	отс.	отс.	0	0,010	0,021	0,0002	

Таблица 5 Элементарный состав газовых конденсатов

№	Содержание, %								
скважин	C	Н	S	N					
15	83,54	16,25	0,010	0,03					
16	84,12	15,76	0,010	0,09					
31	84,71	15,05	0,017	0,07					
29	84,53	15,40	0,010	0,07					
23	84,44	15,50	0,010	0,05					

Примечание: Содержание углерода определялось микрометодом, азот — по Кьельдалю, сера — ламповым методом.

Разгонка газоконденсатов по ГОСТ 2177-59

Nº	Н. К.		Отгоняется (в %) до температуры, °С										
сква- жины	ква- 0°C	80	100	120	140	150	160	180	200	220	240	250	
15	37,0	19,0	35,5	51,5	65.0	70,5	75,5	83,0	89,5	93,5	96,5	98,0	
16	48,5	10,0	28,5	46,0	60,0	67,0	72,0	80,0	87,0	92,0	96,0	97,0	
31	43,0	14,9	23,2	32,9	41,8	45,6	48,6	51,6	58,3	61,2	68,0	-	
29	49,0	15,0	30,0	46.4	59,9	65,6	69,9	78,0	82,6	87,0	91,9	_	
23	43,0	24,7	42,7	58,2	70,9	76,5	81,2	87,9	92,0	96,6	-	-	
	Belg Hard												

ставляет — 10° C, что обусловлено наличием в этом конденсате значительного количества парафина — 0.5%; в остальных пробах парафин отсутствует.

Исследованные конденсаты содержат незначительное количество серы (не более 0.01%) и отличаются отсутствием смолистых и асфальтовых веществ. Проба — 3 — исключение, ее сернистость составляет 0.017%, она содержит 3.13% силикагелевых и 4% сернокислотных смол и 0.3% асфальтенов.

Кислотное число проб невелико, значительно ниже такового для нефтей Западной Сибири.

В пробах № 3 и 4 обнаружены следы воды, в этих же конденсатах есть и механические примеси.

Температура вспышки всех газоконденсатов низка — от — 85° С до — 50° С.

Данные по фракционному составу (разгонка по ГОСТ 2177—59, табл. 6) показывают, что все газоконденсаты дают очень высокие выходы легких фракций 23—43% выкипает до 100° С; 46—76%— до 150° С; 58—92%— до 200° С; до 240— 250° С отгоняется 88—98% конденсата, за исключением такового скв. № 31, степень отгона которого при 240° С составляет 68%.

Проба газового конденсата из скв. № 29 была разогнана на трехпроцентные фракции на аппарате APH-2 (ГОСТ 11011-64) с целью построения кривых разгонок.

Кривая ИТК, представляющая зависимость выходов фракций от температуры их кипения, кривые качеств полученных фракций, а также потенциальные выходы фракций представлены на рисунке и в табл. 7.

Из данных видно, что исследованный конденсат характеризуется высокими выходами легких фракций (64,3% — до 150°C; 81,5 — до 200°C; 95,8 — до 300°C) и низким концом кипения (320°C) при выходе остатка выше 320°C, менее 3%.

Кривые разгонки показывают, что с повышением температуры кипения фракций их удельный вес повышается вначале довольно резко (до Т кипения 80°С), а затем плавно растет до конца кипения фракций. Соответственно увеличиваются коэффициент рефракции и молекулярный вес фракции.

Для последних трех фракций (табл. 7) наблюдается значительное возрастание вязкости, молекулярного веса и сернистости. Низкокипящие фракции (до 150°C) практически не содержат серы.

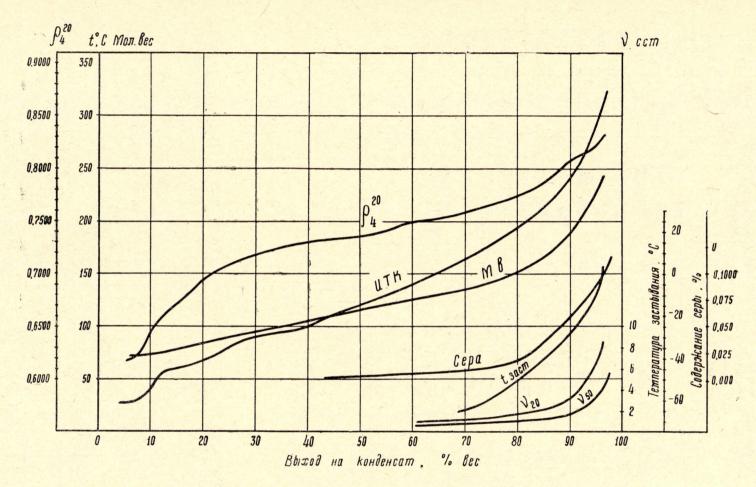


Рис. 1. Кривые разгонки Мыльджинского газового конденсата скв. 29

Таблица 7 Потенциальноое содержание фракций в газоконденсате скв. № 29, в вес% (по ИТК)

№ № п. п.	Температурные пределы отбора фракций, °С	Выход фракций, % (вес) на кон- денсат		№ № п. п.	Температурные пределы отбора фракций, °С	Выход фракций % (вес) на кон- денсат		
		отдель- ных	сум- марно			отдель- ных	сум- марно	
1	Газ до 28°С			18	200—210	2,5	84,0	
2	Пропан	0,3	0,3	19	210—220	2,2	86,2	
	Изо-бутан	1,1	1,4	20	220—230	1,8	88,0	
	Н-бутан	2,8	4,2	21	230—240	1,5	89,5	
2	28-60	9,0	13,2	22	240-250	1,5	91,0	
3	60-70	7,0	20,2	23	250—260	1,2	92,2	
4	70—80	3,7	23,9	24	260—270	1,0	93,2	
5	80—85	1,9	25,8	25	270—280	1,0	94,2	
6	85—90	3,8	29,6	26	280—290	0,8	95,0	
7	90—100	10,1	39,7	27	290—300	0,8	95,8	
8	100—110	3,5	43,2	28	300310	0,7	96,5	
9	110—120	6,1	49,3	29	310 - 320	0,5	97,0	
10	120—130	5,1	54,4	30	Остаток	3,0	100,0	
11	130-140	5,7	60,1					
12	140 – 150	4,2	64,3					
13	150—160	4,3	68,6			ST 10		
14	160—170	3,7	72,3					
15	170—180	3,6	75,9					
16	180-190	2,8	78,7					
17	190—200	2,8	81,5					

Выводы

1. Проведено общее (физико-химическое) исследование и получены кривые разгонки газового конденсата Мыльджинского месторождения.

2. Показано, что образцы газоконденсата из скважины №№ 15, 16, 23 и 29 имеют невысокую плотность (0,7153—0,7411), небольшой молекулярный вес (104—114), малую вязкость, низкие температуры застывания (—48÷85°С); и отличаются незначительным содержанием серы (не более 0,01%), отсутствием парафина и смолисто-асфальтовых веществ. Проба из скв. № 31 является по всем свойствам исключением, так как скважина имеет нефтяную оторочку.

3. На основании кривых разгонок сделан вывод об исключительно высоком выходе легких фракций (до 150°—60,1%, до 200°—77,3%). Характерно, что эти фракции практически не содержат серы.

4. Проведенное исследование позволяет считать Мыльджинский газовый конденсат ценнейшим сырьем для нефтепереработки и особенно для нефтехимии.