Том 199

1969

## О ВОЗМОЖНОСТИ ИЗУЧЕНИЯ ФОТОЛИЗА ТВЕРДЫХ СОЕДИНЕНИЙ И СПЕКТРАЛЬНОЙ СЕНСИБИЛИЗАЦИИ ЭТОГО ПРОЦЕССА

Г. А. КИСЛИН, Ю. А. ЗАХАРОВ

(Представлена научным семинаром кафедры радиационной химии)

В фотохимии твердых неорганических соединений практически отсутствуют работы по изучению кинетических закономерностей фотолиза твердых солей при облучении их монохроматическим светом и по влиянию на этот процесс различного рода добавок.

В настоящей работе описана установка для изучения кинетики фотолиза, а также оптической и химической сенсибилизации твердых соединений, и приводятся в качестве иллюстраций результаты по фотолизу некоторых систем на основе азидов тяжелых металлов. Схема установки приведена на рис. 1. Исследуемый образец помещается в



Рис. 1. Схема установки. 1 — реакционная ячейка; 2 — геттероионный насос; 3 — диффузионный насос;4 — омегатрон РМО-4С массспектрометра ИПДО-1: (при совмещении); 5 — манометр ЛМ-2; 6 — вымораживающая ловушка; 7 — электромагнитный затвор; 8 — форвакуумный насос; 9 — манометр ЛТ-2

кварцевую реакционную ячейку (11), которая стандартным переходом кварц—молибден соединена с измерителем давления (5) и системой эвакуации. Освещение образца проводится через окно из оптического кварца монохромированным светом (спектрофотометр СФ-4) лампы ДРШ-1000. Реакционная ячейка откачивается комбинацией титанового



Рис. 2. Скорость фотолиза системы  ${\rm AgN_3}+5\%$   ${\rm Cr_2O_3}$  в области поглощения добавки.  $1-\lambda{=}500$   $m\mu$ ;  $2-\lambda{=}600$   $m\mu$ :  $3-\lambda{=}546$   $m\mu$ ;  $4-\lambda{=}579$   $m\mu$ 

сорбционного, диффузионного и форвакуумного насосов до давления около  $10^{-7}$  тор.

В описанном выше варианте нами исследовались кинетические закономерности фотолиза азида серебра и влияние на него окрашен-



Рис. 3. Масс-спектр фотолиза азида свинца (пунктиром показан фон)

ных неорганических полупроводниковых окислов. Установлено, что чистый азид серебра при освещении светом с  $\lambda < 400^m \mu$  практически не разлагается. Добавление пяти весовых процентов окрашенного окисла  $Cr_2O_3$  (механическая смесь) делает азид серебра чувствительным к более длинноволновому свету в области поглощения добавки (рис. 2), что позволяет, по-видимому, говорить о спектральной сенсибилизации фотолиза.

Нами установлено, что совмещение описанной установки с омегатронным масс-спектрометром ИПДО-1 позволяет провести анализ малых количеств газообразных продуктов фотолиза и четко определить спектральную границу начала фотохимического разложения. В качестве примера можно указать на определение края фотоактивного света для разложения азида свинца. Основным продуктом фотолиза является азот

Сопоставление масс-спектров до — и во время освещения монохромированным светом позволяет определить границу фотоактивного света для  $PbN_6$  по увеличению тока ионов  $N_2^+$  по сравнению с фоном. На рис. 4 приведены величины пиков тока ионов  $N_2^+$  до освещения и



Рис. 4. Зависимость величины пика тока ионов  $N_{2}^{\pm}$  от длины волны. 1 — фон;  $2-\lambda=436$   $m\mu$ ;  $3-\lambda=405$   $m\mu$ ;  $4-\lambda=366$   $m\mu$ 

во время освещения различными участками спектра. Из рисунка видно, что фотолиз азида свинца идет при облучении его светом с  $\lambda < 405^{\rm m}\mu$ . Установленное положение края фотоактивного света совпадает для  ${\rm PbN_6}$  с положением края полосы оптического поглощения и максимумом в спектральном распределении фототока.

## замеченные опечатки

| Стра-      | Строка                   | Напечатано                                             | Следует читать                                                                 |
|------------|--------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------|
| 4          | Табл. 4                  | Расщепление                                            | Расщепление, гаусс                                                             |
| 8          | Рис. 2                   | 1000 ,A                                                | 10000 ,Aº                                                                      |
| 19         | І-ая снизу               | В. М. Лихин                                            | В. М. Лыхин                                                                    |
|            |                          | ДаН СССР                                               | ДАН СССР                                                                       |
| . 22       | 24 сверху                | $O^{=} = \Box + 2e + 1/20_2$                           | $O = \Box + e + 1/20_2$                                                        |
| 23         | 13 сверху                | За счет электронов                                     | За счет захвата электроно в                                                    |
|            | 16 сверху                | Кристаллов постоянных                                  | кристаллов постоянным                                                          |
| 28         | 7 снизу                  | $A^{-}A \rightleftharpoons^{0}_{T} + \overline{e}$     | $A \longrightarrow A_{\tau^0} + \overline{e}$                                  |
| 36         | 12 снизу                 | Zoumeine                                               | Roumeine                                                                       |
| 40         | 3 сверху                 | выходе                                                 | входе                                                                          |
| . 44       | 5 снизу                  | (II)                                                   | (I)                                                                            |
| 47         | 3 сверху                 | и окружающее                                           | в окружающее                                                                   |
| 51         | Табл. І                  | NH <sup>3+</sup>                                       | NH <sub>3</sub> +                                                              |
| - 51       | Табл. І                  | HCl <sub>37</sub> +                                    | HC1 <sup>37</sup> +                                                            |
| 54         | Рис. 2                   | t (cek)                                                | lgt (сек)                                                                      |
| 64         | 5 сверху                 | кристаллах позволяет                                   | кристаллах с контролируемой                                                    |
|            |                          | получить с контроли-                                   | величиной поверхности                                                          |
|            |                          | руемой величиной по- верхности                         | позволяет получить                                                             |
| 69         | 8 сверху и               | Берхности                                              |                                                                                |
|            | 13 снизу                 | пп-ш                                                   | пп-ІІІ                                                                         |
| 70         | Табл. І                  | $0,99+1,06.10^{13}$                                    | $0,99+1,06.10^{13}$                                                            |
|            | 3 и 6 снизу              | A. Д. Уobbe                                            | A. Д. Yoffe                                                                    |
| 71         | авторы                   | Д. А. Захаров                                          | Ю. А. Захаров                                                                  |
|            | 7 снизу                  | 0,5 %                                                  | 0,05 %                                                                         |
| 74         | подпись под              |                                                        | 1go <sub>y</sub>                                                               |
|            | рис. 4                   | $N_3 \xrightarrow{\text{lg } \delta} N_{8^0 + 1}$      |                                                                                |
| 77         | 10 снизу                 | $N_3 \longrightarrow N_3 + 1$                          | $N_3 \longrightarrow N_3^0 + e$                                                |
| 77         | подпись под              | НО                                                     | н                                                                              |
| 79         | рис. 1 и 2               | CIO                                                    | $H_0$                                                                          |
| 81         | 5 и 6 сверху<br>17 снизу | $C1_4$ $\longrightarrow$ $C1_4,1,[C1O_4]*$             | $C10_4$ $\longrightarrow$ $C10_4$ ,e,[ $C10_4$ ]*                              |
| 88         | 8 сверху                 | % 1168                                                 | № 1168                                                                         |
|            |                          | I <sub>18</sub> NH <sub>3</sub>                        | 15NH                                                                           |
| 91         | 2 снизу                  | N N+ C O+                                              | 118                                                                            |
| 111        | 11 снизу                 | 14N <sub>15</sub> N+, <sub>12</sub> C <sub>16</sub> O+ | <sub>12</sub> С <sub>16</sub> О+, <sub>14</sub> N <sub>15</sub> N+<br>Каденаци |
| 111.       | 1 снизу                  | Каделацы<br>Кј                                         | KI                                                                             |
| 126<br>128 | 7 сверху                 | G=g+j                                                  | $G=g+\gamma$                                                                   |
| 132        | 1 снизу                  | V V                                                    | VK                                                                             |
| 146        | 11 сверху<br>5 снизу     | спектрометрия                                          | спектроскопия                                                                  |
| 140        | O Chrisy                 | chem. Pomer P                                          |                                                                                |