ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Том 199

1969

О ВОЗМОЖНОСТИ ИЗУЧЕНИЯ ФОТОЛИЗА ТВЕРДЫХ СОЕДИНЕНИЙ И СПЕКТРАЛЬНОЙ СЕНСИБИЛИЗАЦИИ ЭТОГО ПРОЦЕССА

Г. А. КИСЛИН, Ю. А. ЗАХАРОВ

(Представлена научным семинаром кафедры радиационной химии)

В фотохимии твердых неорганических соединений практически отсутствуют работы по изучению кинетических закономерностей фотолиза твердых солей при облучении их монохроматическим светом и по влиянию на этот процесс различного рода добавок.

В настоящей работе описана установка для изучения кинетики фотолиза, а также оптической и химической сенсибилизации твердых соединений, и приводятся в качестве иллюстраций результаты по фотолизу некоторых систем на основе азидов тяжелых металлов. Схема установки приведена на рис. 1. Исследуемый образец помещается в

Рис. 1. Схема установки. 1 — реакционная ячейка; 2 — геттероионный насос; 3 — диффузионный насос;4 — омегатрон РМО-4С массспектрометра ИПДО-1: (при совмещении); 5 — манометр ЛМ-2; 6 — вымораживающая ловушка; 7 — электромагнитный затвор; 8 — форвакуумный насос; 9 — манометр ЛТ-2

кварцевую реакционную ячейку (11), которая стандартным переходом кварц—молибден соединена с измерителем давления (5) и системой эвакуации. Освещение образца проводится через окно из оптического кварца монохромированным светом (спектрофотометр СФ-4) лампы ДРШ-1000. Реакционная ячейка откачивается комбинацией титанового

сорбционного, диффузионного и форвакуумного насосов до давления около 10⁻⁷ тор.

В описанном выше варианте нами исследовались кинетические закономерности фотолиза азида серебра и влияние на него окрашен-

Рис. 3. Масс-спектр фотолиза азида свинца (пунктиром показан фон)

ных неорганических полупроводниковых окислов. Установлено, что чистый азид серебра при освещении светом с $\lambda < 400^m \mu$ практически не разлагается. Добавление пяти весовых процентов окрашенного окисла Cr_2O_3 (механическая смесь) делает азид серебра чувствительным к более длинноволновому свету в области поглощения добавки (рис. 2), что позволяет, по-видимому, говорить о спектральной сенсибилизации фотолиза.

Нами установлено, что совмещение описанной установки с омегатронным масс-спектрометром ИПДО-1 позволяет провести анализ малых количеств газообразных продуктов фотолиза и четко определить спектральную границу начала фотохимического разложения. В качестве примера можно указать на определение края фотоактивного света для разложения азида свинца. Основным продуктом фотолиза является азот.

Сопоставление масс-спектров до — и во время освещения монохромированным светом позволяет определить границу фотоактивного света для PbN₆ по увеличению тока ионов N₂⁺ по сравнению с фоном. На рис. 4 приведены величины пиков тока ионов N₂⁺ до освещения и

Рис. 4. Зависимость величины пика тока ионов N $^+_2$ от длины волны. 1 — фон; 2 — λ =436 *m*µ; 3 — λ = =405 *m*µ; 4 — λ =366*m*µ

во время освещения различными участками спектра. Из рисунка видно, что фотолиз азида свинца идет при облучении его светом с λ<405^mμ. Установленное положение края фотоактивного света совпадает для PbN₆ с положением края полосы оптического поглощения и максимумом в спектральном распределении фототока.

замеченные опечатки

Стра- ница	Строка	Напечатано	Следует читать
4	Табл. 4	Расщепление	Расщепление, гаусс
8	Рис. 2	1000 ,A	
19	1-ая снизу	ДаН СССР	ДАН СССР
. 22	24 сверху	$O^{=} \Box + 2e + 1/20_2$	$O = \Box + e + 1/20_2$
23	13 сверху	За счет электронов	За счет захвата электроно в
	16 сверху	Кристаллов постоянных	кристаллов постоянным
28	7 снизу	$A^{-}A \rightleftharpoons^{0}_{T} + e$	$A \rightarrow A \tau^0 + e$
36	12 снизу	Zoumeine	Roumeine
40	3 сверху	выходе	входе
. 44	5 снизу	(11)	(1)
47	3 сверху	и окружающее	в окружающее
51	Табл. І	NH ³⁺	NH ₃ +
51	Табл. І	HCl ₃₇ +	HC1 ³⁷ +
54	Рис. 2	t (сек)	lgt (сек)
64	5 сверху	кристаллах позволяет	кристаллах с контролируемой
		получить с контроли-	величиной поверхности
		руемой величиной по- верхности	позволяет получить
69	8 сверху и		
	13 снизу	ПП-Ш	ΠΠ-ΙΙΙ
70	Табл. І	$0,99+1,06.10^{13}$	$0,99+1,06.10^{13}$
	Зи 6 снизу	А. Д. Уорбе	A. A. Yoffe
71	авторы	Д. А. Захаров	HO. A. Jaxapob
	7 снизу	0,5 %	0,05 %
74	подпись под	1	lgo,
	рис. 4	$N \longrightarrow N_{-} 0 + 1$	N
77	то снизу		113 113- 1 C
11	подпись под	НО	H
79	5 и 6 сверуу	CIO	ClO ₃
81	17 снизу	$C_1 \xrightarrow{\sim} C_1 , 1, [C_1O_4]^*$	$C10_4 \longrightarrow C10_4.e, [C10_4]^*$
88	8 CBEDXV	% 1168	№ 1168
01	o cooping	I NH ₃	15NH3
91	2 снизу	N = N + C = O +	Γ_{18}
111	П снизу	141 151 1,120160	Каленаци
111.	Т СНИЗУ	Кі	KI
120	1 chebxy	$G = \sigma + i$	$G = g + \gamma$
120	1 CHH3y	V	Vĸ
146	5 снизу	спектрометрия	спектроскопия
140	l o ennoy	I CHIEF STOLEY	and the second

1