ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 147

1966

ИССЛЕДОВАНИЕ РАДИАЛЬНОГО СЖАТИЯ ЦИЛИНДРА ИЗМЕРЕНИЕМ ТВЕРДОСТИ

Ю. С. БОГОМОЛОВ, Г. Д. ДЕЛЬ, Л. М. СЕДОКОВ, Л. Г. ЦЕХАНОВА

(Представлена научным семинаром кафедры сопротивления материалов)

В процессе радиального сжатия цилиндра между параллельными плитами, являющегося одним из распространенных случаев в обработке металлов давлением, создается весьма неоднородное поле напряжений и деформаций.

Теоретическое распределение напряжений по вертикальному диаметру идеально пластичного цилиндра получено А. Д. Томленовым [1].

В работах [2, 3] изложены результаты экспериментального исследования напряженного и деформированного состояний поляризационно-оптическим методом [2] и измерением твердости [3]. Для численного определения величины главных напряжений по результатам измерения твердости в работе [3] использовались их соотношения, полученные поляризационно-оптическим методом, когда степень пластической деформации иммитировалась снятием лыски и рассматривалось упругое состояние, близкое к предельному [2]. Соотношение длины и диаметра цилиндра было мало, напряженное состояние было близким к плоскому.

В данной работе исследуется измерением твердости радиальное сжатие в условиях плоской деформации, которые более характерны для процессов ковки и проката. Результаты измерения твердости расшифрованы методом, описанным в работе [4].

Сущность метода расшифровки заключается в решении методом линий скольжения системы дифференциальных уравнений равновесия при известной в различных точках интенсивности касательных напряжений *K*.

Соотношения на линиях скольжения:

$$\frac{\sigma}{2k} - \Theta = -A_{\alpha}, \quad \frac{\sigma}{2k} + \Theta = -A_{\beta}, \tag{1}$$

где σ — гидростатическое давление, Θ — угол наклона линии скольжения к оси x. Величины A_{α} и A_{β} определяются приближенным интегрированием. Так, например, в точке 3 рис. 3 A_{α} и A находятся по известным A_{α} и A_{β} в точках 1 и 2 из соотношений:

$$(A_{\alpha})_{3} = (A_{\alpha})_{2} - \frac{1}{2k_{3}} \cdot \frac{k_{1} - k_{3}}{l_{1-3}} \cdot l_{2-3};$$

$$(A_{\beta})_{3} = (A_{\beta})_{1} - \frac{1}{2k_{3}} \cdot \frac{k_{2} - k_{3}}{l_{2-3}} l_{1-3},$$

$$(2)$$

где l_{1-3} и l_{2-3} — расстояния между точками 1 и 3, 2 и 3.

31

По известным А_α и А_β определялись Θ и σ:

$$\Theta = \frac{1}{2} (A_{\alpha} - A_{\beta}),$$

$$\sigma = -k (A_{\alpha} + A_{\beta}).$$

$$(3)$$

Компоненты напряжений:

$$\sigma_{x} = \sigma - k \sin 2\Theta,$$

$$\sigma_{y} = \sigma + k \sin 2\Theta,$$

$$\sigma_{xy} = k \cos 2\Theta.$$

$$(4)$$

Исследование напряженно-деформированного состояния при радиальном сжатии цилиндрических тел было проведено на образцах из высокоупрочняющейся стали X18Н9Т ($\sigma_{\rm r} = 26 \, \kappa c / m M^2$; $\sigma_{\rm ny} = 62 \, \kappa c / m M^2$; $\delta = 46.7\%$; $\psi = 70\%$).

Измерение твердости проводилось на твердомере алмазным конусом под нагрузкой 100 кг с отсчетом по шкале Д. Исходная твердость стали HRD = 24, что соответствует HB = 150.

Тарировочный график, связывающий твердость с интенсивностями напряжений и деформаций, был построен по результатам испытания исследуемой стали на кручение. Цилиндрический образец радиусом $R = 18 \,$ мм закручивался до определенной величины удельного угла закручивания φ . По нему определялся сдвиг в наружном слое образца $\gamma = R\varphi$, а по последнему — логарифмический сдвиг [5]

$$g = \ln \left[1 + \frac{\gamma}{2} \left(\gamma + \sqrt{4 + \gamma^2} \right] \right].$$
(5)
ъ деформаций $e_i = \frac{1}{2} g$

Интенсивность деформаций $e_i = \frac{1}{\sqrt{3}}g$.

Касательное напряжение определялось по крутящему моменту из соотношения [6]

$$\tau = \frac{3}{2 \pi R^3} \left(M + \frac{1}{3} \gamma \frac{dM}{d \gamma} \right).$$
(6)

Интенсивность напряжений при плоской деформации $\sigma_i = V 3 \tau$. Твердость измерялась в десяти точках по наружному диаметру. С найденными изложенным способом интенсивностями напряжений и деформаций сопоставлялась твердость, средняя из этих десяти измерений.

Спаренный тарировочный график представлен на рис. 1.

Предварительно было выявлено соотношение между длиной l и диаметром d, при котором в средней части образца имеет место плоская деформация. С этой целью на трех образцах диаметром 30 мм и длиной 30, 60 и 90 мм были накернены точки на небольших лысках, снятых по длине образцов. Образцы подвергались радиальному сжатию в 2 этапа деформирования до величины осадки $\delta = \frac{d-h}{d}$ 100 %, соответственно, 25,7 и 40%.

Измерение расстояния между накерненными точками после осадки дало возможность определить осевую деформацию e_z . Распределение e_z по длине образцов при осадке 40% приведено на рис. 2.

Из этого графика видно, что на расстоянии одного диаметра от торца образца осевая деформация e_z практически отсутствует. 32 Таким образом, принимая для основной серии размеры образцов $d = 30 \,$ мм и $l = 60 \,$ мм, можно получить в среднем сечении по длине плоскую деформацию.

Величина нагрузки P, ширина контактной площадки a, соответствующие им центральные углы α, высоты сечения h и условная степень

Рис. 1. Тарировочный график

Рис. 2. Зависимость осевой деформации от длины образца

деформации для испытанных образцов приведены в таблице.

После деформирования образцы разрезались в средней по длине плоскости. В полученном сечении измерялась твердость. Результаты измерения твердости были статистически обработаны. По усредненной трердости из тарировочного графика определялась величина интенсив-

3. Заказ 7656.

ности касательных напряжений $k = \frac{1}{\sqrt{3}} \sigma_i$. Распределение $\kappa(x, y)$ представлено на рис. 3.

№ п/п	Р, т	а, мм	α, град.	<i>h</i> , мм	δ, %
1	61	12	48	26,5	11,7
2	105	17	70	- 24	20
3	175	24	101	21	30
1. 1. 1. 1.		8 8 1	1 2- 10- 1 - L		

Грачничные условия при расшифровке были приняты следующими: боковая поверхность свободна от нагрузки, трением на контактных площадках пренебрегалось (заметим, что это допущение могло сказаться только на результатах в области *CAF*, рис. 3), вдоль осей симметрии угол наклона линий скольжения равен 45°.

Расшифровка выполнена следующим образом. В области *ABL* решена задача Коши, в областях *BLD*, *DACE* и *DEO* решались смешанные задачи.

В результате решения получены сетки линий скольжения, показанные на рис. 3, для одной четверти образца вследствие его симметричности.

На этой же фигуре приведены эпюры деформаций $e_x = -e_y$ для горизонтального и вертикального диаметров. По графику зависимости

Рис. 3. Радиальное сжатие цилиндра

между твердостью и интенсивностью деформаций (рис. 2) можно определить *e*_i в различных точках горизонтального и вертикального диаметров.

Значения главных деформаций определяются из соотношения [4]

$$e_1 = -e_3 = \frac{\sqrt{3}}{2}e_i.$$
 (7)

Эпюры $e_x = -e_y$ для горизонтального диаметра имеют параболический характер с максимумом в центре образца при различных степенях осадки. Для вертикального диаметра максимум эпюр 34 $e_x = -e_y$ при осадке 11,7 и 20% находится на некотором расстоянии от центра образца и лишь при $\delta = 30\%$ перемещается в центральную часть цилиндра.

На рис. 4 показаны эпюры напряжений σ_x и σ_y вдоль горизонтального диаметра продеформированных образцов. Напряжения σ_y изображены толстыми линиями, σ_x — более тонкими. Кружочками обозначены экспериментальные точки при степени осадки 11,7%, крестиками — при $\delta = 20\%$ и треугольниками — при $\delta = 30\%$.

Эпюры σ_у не являются монотонными. Они имеют два минимума, которые примерно совпадают с проекцией границ, контактной площадки при данной степени осадки на горизонтальный диаметр.

С увеличением степени осадки значительно возрастают максимальные значения σ_y в центре образца, несколько увеличиваются местные максимумы для крайних частей эпюры и повышаются значения минимумов. Положительные (растягивающие) напряжения σ_x уменьшаются, а затем меняют знак в центральной части образца. Максимальные значения σ_x соответствуют минимумам на эпюрах σ_y .

ризонтального диаметра: О — осадка 11,7%; × — осадка 20%; ∆ — осадка 30%.

По эпюре σ_y была вычислена деформирующая сила, которая затем сопоставлялась с фактической. При осадках 11,7% и 20% расчетное усилие оказалось меньше действительного на 8 и на 4%. При наиболь шей осадке расчетное усилие оказалось завышенным на 23%. Значительная величина ошибки в последнем случае объясняется, очевидно,

3*.

накоплением погрешности в процессе приближенного решения дифференциальных уравнений равновесия.

Следовательно, предложенный метод расшифровки [4] в ряде случаев позволяет получать надежные результаты, но необходимо разработать методы уточнения решений.

В выполненной работе подтверждены основные качественные выводы исследований [2, 3] и количественно оценивается изменение главных напряжений с ростом осадки образцов. При значительных степенях осадки (б=30%) результаты данной работы примерно соответствуют результатам исследования [3]. В этом случае не столь существенно и различие в эпюрах о...

Можно считать установленным, что при небольших степенях осадки в центральной части образца имеет место разноименное напряженное состояние. При значительных же осадках о, меняет знак на отрицательный и в центре образца возникает одноименное напряженное состояние.

ЛИТЕРАТУРА

1. А. Д. Томленов. Об особенностях расчета напряженного состояния, возникающего при ковке плоскими бойками. Вестник машиностроения, № 3, 1959. 2. Е. П. Унксов, В. М. Заварцева. Исследование напряжений в металле

при ковке валов и штанг. Вестник машиностроения, № 3, 1955. 3. Ю. С. Богомолов, Л. М. Седоков, Л. Г. Цеханова. Исследование

напряженного состояния при поперечной ковке и прокатке методом измерения твер-

дости (находится в печати). 4. Г. Д. Дель. Исследование пластической деформации измерением твердости. Известия ТПИ, т. 138, 1965. 5. Я. Б. Фридман, Т. К. Зилова, Н. И. Демина. Изучение пластической

деформации и разрушения методом накатанных сеток. Оборонгиз, 1962. 6. В. Д. Кузнецов. Физика твердого тела. Т. 2, Томск, 1941.