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The decision of optimum hedging problem for the European options of purchase and sale of the exotic type when possible payments on
options are limited by the set value is resulted. The formulas defining costs of options and also evolution in time of portfolios and capi-

tals, i. e. hedging strategy and corresponding to them are obtained. Some properties of decisions are investigated.

Introduction

In case of standard options of purchase and sale the pa-
yment on option can be big enough which represents essen-
tial risk for the investor [1—4]. The first way of this risk res-
triction consists in option consideration when payment
obligation is carried out with probability of smaller unit [5,
6]. The second way consists in problem decision concer-
ning payment functions which provide payments not exce-
eding the set value and which can be appropriated to the
class of so-called exotic options [7]. In the survey work [8§],
written on the basis of foreign scientific periodical press, wi-
de enough circulation in the financial markets of exotic op-
tions and at the same time absence of the developed theory
for them is marked. In the given work for the diffusion mo-
del [3,4] (B,S)-market of securities and payment functions
of the specified type the problem-solving of optimum hed-
ging in case of purchase and sale options with fixed time of
execution (options of the European type) is resulted.

1. Problem stating

Consideration of the problem is carried out in standard
probability space (Q, F,F=(F)),,,P) [3]. Risk and non-risk
assets are circulating in financial market, current prices of
which §, and B, during the time interval [0, 7] are defi-
ned by the equations [1—4]

dS =S (udt+cdW), dB =rBt, (1.1)

where W, is the Vinerovskiy process, >0, r>0, S$>0,
B,>0, their solution looks like

2
S (u)=35, exp{u—i]t%—cﬂ{},

B =B, exp{rt}. (1.2)
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Lets consider that current value of the investor capi-
tal X is defined in the form of [1—4]

Xr:ﬁtBt+ytS;7t€[07T]’ (13)

where 7=(f,y,) is a pair of F, — measurable processes
composing portfolio of the investor securities. The pur-
pose of portfolio management is achievement of
X=f(S,) equality, where X is capital, S; is price of risk
asset during the moment of time 7, when the option is
presented to execution, f{*) is payment function. In the
given work for options of the purchase and sale payment
functions accordingly look like [3,4,7,8]

f(ST):min{(ST —K1)+,K2}, (1-4)
f(ST):min{(Kl_ST)+sK2}s (15)

where K,>0 is stipulated during the moment of contract
conclusion price of risk asset realization during the mo-
ment of execution 7, and K,>0 is value limiting payment
by option, for sale option K,<K,. The essence of pay-
ment functions (1.4), (1.5) consists in the following.
The option of purchase is presented to execution, if
S>K,. Thus, the option owner receives income equal to
Si—K,, if §;— K <K,, and equal to K, otherwise. Sale op-
tion is presented to execution, if §;<K,. Thus, the op-
tion owner receives income equal to K—S; if
K—S<K,, and equal to K, otherwise.

2. Purchase option

Further everywhere E is average of distribution,
Ma,o} is the Gauss’ distribution with parameters a and
o, O(y) is the Laplas’ function, i.e.

v 1 s
d(y) = x)dx, x)= e ?.
» Iw p(x)dx, ¢(x) NS
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Theorem 1. Let d{(?), dy(f), b{(f) and by () be defi-
ned by the formulas

1n(K1/S,)—[V—G;](T—t)

df(t) = 2.1
y (0 o Tt , (2.1)
In (X, +K2)/St)—(r—62)(T—t)
c 2
ds(t)= o . (22)
1n(K1/S,)—(r+022j(T—t)
bE(t) = )
(1) oJT =t ; (2.3)
In((K, +K2)/St)—(r+ f](r-r)
bS (1) = . (2.4

G\/T—t

Then rational cost of the purchase option is defined
by the formula

Cp = S,[@(})) - (B )]~
—K,e"T[@(b; ) - Dby )]+ Kpe T O(=d), (2.5)

and portfolio 7,={y°, B¢} and capital X respectively by
the formulas

y< =05 (1) - D@ (1)), (2.6)
B ==L IO () -0 )]+
B g ), 2.7
BI
XE =S,[O(ds () - D(dy (1)]-
—K,e"TO[D(d5 (1) - D(d (1)]+
+K2e”(T”’CD(d2C ), (2.8)

where b=b((1), by=b{(#), df=d(¥), di=df(¥) at +=0.

Proof. According to [4] F, (S)=E{f(S(r)|S},
where the process S(r) is defined by the equation (1.1)
and the formula (1.2) with replacement u by r. As
SY(S)=min{(S;—K))",K,}, and W~N{0;#}, doing obvious
replacements of variables consistently in view of (2.1) —
(2.4) we receive that

1
FE(8)= x
N27
2 +
0 [V*%](T*t)‘FUZ\ﬂ
xjmin S,e -K, | ,K, x
22
xe 2dz=
1 £ (1) [F%](H)mz«/ﬁ 22
=— J. S.e -K, |e 2dz+
27 4w

22

Kye >dz=

> 2 2
1 GO - (T
e e ? 2 dz —

2

1 dzc(t) 22 ) z°
e 2dz=

1
—K, |
V2T il

1 d§ (1) (z—oT—1)?
——Se " I e 2

N2r af ()

—K(D(d; (1) = @(d} (1)) + K,O(~d5 (1)) =

2

dz —

1 S r(Tfr)hZC([) _%d
- ﬁ © bICJ.(t)e -
—K,(®(dy (1)) - @(d, (1)) + K,D(~d5 (1)) =

=8,e"(@(d; (1) - O(d; (1) -

—K,(®(dy (1)) - D(dy (1)) + K,D(=d (1)) (2.9)
CornacHo obmieit Teopun |3, 4]
X, = e"'(T‘”FH (S), (2.10)
Cr =" F(S,), (2.11)
= efr(Tft) aF‘Tft (S) (Sl )’ (212)
Os
_ 1 o OF,(5)
B, = B {FH(SJ S R (S )} (2.13)

Thus (2.5) — (2.8) follow from (2.9) — (2.13). The
theorem is proved.

3. Sale option

Theorem 2. Let df(7), d/(f), b{(f) and b;(7) be defi-
ned by the formulas

ln(Kl/S,)—Er—G;j(T—t)

dl(t)=
l(t) G\/ﬁ bl

3.1)

In((K, - K,)/S,) —[F —Gzzj(T -1

dl(n)= :
2 () o

(3.2)

ln(K]/St)—(r+0;j(T—t)

BY(t) =
I(t) Gﬁ ’

(3.3)

In((K, - K,)/S,) —[r +622](T —1)
oNT —t

by (1) = (3.4)
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Then rational cost of sale option of P is defined by
the formula
P ==5, [(D(blp) - @(b; N+
+K, e[ ) - DB+ K,e T D),  (3.5)

and portfolio "={y’, 5/} and capital X/ respectively by
the formulas

vl =100 (1) - D@ ()], (3.6)
B =L T () -0, ()] +
+I;je"”‘”<1>(b§ ) (3.7)
X! ==S[00] (1))- Db, ()] +
+Ke " TOOb] (1) - DB ()] +
+K2e"”")d>(b§ (1)), (3.8)

where b=b/(1), b;=b)(?), d'=d/(?), d/=d; () at =0.
Proof. As, then similar to the conclusion (2.9)

1
X

NGY

r-%](r-z)mz N/

FTfit (St) =

><J' min<| K, —S,e[

—0

K, px

22

xe 2dz=
2
1 dlp(z) [r—%](T—t)ﬂrn/? —+ _i
=— J K, —Se e rdz+
V2T i
| “o 2
+—— 'f K,e 2dz=
N2m o,
P 2 2
1 N B RS ool A
=——=8e"" _[ e ? 2 dz+
V2 af @)
1 d(’J_(t) S 1 dz}(f) 22
+—K e 2dz+—K e 2dz=
1 2
N2 g N2 S
1 df 1) (z—oNT=)?
=———=8e"" J e 2 dz+
2 40)

+K,(P(d, (1)) - O(dy (1)) + K,®(d; (1)) =

| @
=——=58e"" [ e 2dy+
2n o (1)

+K,(@(d, (1)) - O(dy () + K,P(d; (1) =
==S,e" "D (1)) - O(dy (1)) +
+K,(O(d (1) = D(d; () + K,(d; (7). (39)

Substitution of (3.9) in (2.10) — (2.13) leads to (3.5)
— (3.8). The theorem is proved.

"

4, Solution analysis
Theorem 3. Parity correlations take place:
B =G +8,[ @)~ DS )]~
—K,e " D(by) ~ Dby )]+ Ky DB )~ OB )], (4.1)

v =r OB (1)~ DS (1), 4.2)
B = BC + e MO (0)- Ol ()] +
+%e*’<“>[c1>(d§ -0 ()], (43)
X! =X +8,[0d5 (1) - DS (1)]-
K, TO[(d? (1)) - D(dS (1)] +
LK T (1) - D(-dS ()] (4.4)

The proof follows directly from correlations of the
Theorems 1 and 2 in view of the Laplas’ function pro-
perty @(y)+P(—y)=L1.

Remark. As in the case of sale option K,<K), then
parity correlations are fair at this condition.

Theorem 4. Let C;, v°, B°, X¢ are limits Cy, ¥5, B,
XCat K,Too. Let Py, 7/, Br, X! are limits Py, v/, B/, X7
at K,TK,. Then

Cp = S,0(=b )~ Ke " d(=d)),

(4.5)
7 =5 (1), 4.6)
c K —r ('t )

Bl =4 OCd (1), 4.7)
X =SO(-b{ (1) - Ke T TVO(-d (1), (4.8)
P =-S, o0 )+ Ke D), (4.9)
A 0)) (4.10)

P K Tt
S A O)) (4.11)
X' =—So@" ) +Ke "o (1), (4.12)
P=C S, +Ke ", (4.13)
V7 =y, 4.14)
BT =pC+ B, 4.15)

Bt
Xif’:Xif—SﬁK,e”‘a“. (4.16)

Yielded results follow directly from correlations of
the Theorems 1-3 as a result of the specified limiting
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transitions and represent full solution of hedging pro-
blems of standard European options of purchase and sa-
le [4, 9]. The formula (4.5) is known as the Black-
Shouls formula [1, 3, 4].

Let’s compare costs of exotic options of purchase
and sale to standard European options.

Theorem 5. Let AC,/=C,—C;, AP~=P,—P,. Then
AC, = S,®(=b5 )~ (K, + K,)e "D (=d’ ), (4.17)

AP, ==S,0(b))+ (K, ~ K,)e " O(d}).  (4.18)
Formulas (4.17), (4.18) follow directly from (2.5),
(3.5), (4.5), (4.9).

Theorem 6. Sensitivity coefficients xk=dC,/dK,,
k'=dP;/dK,, (=dC/dK,, {'=dP,/dK,, £=dC;/dS,
EP=dP;/dS,, characterizing fluctuation of option costs
respectively by the parameters K, K, S, are defined by
the formulas

k€ =T O(-dS ) +

1 c -7 c
n ﬁ([{ v d(by)—e " ¢(d, )], (4.19)

K=ol )+

1 —rT P So P
+G\E(€ ¢(d2)_K1_K2¢(b2)]a (4.20)
oS $b;) o) |_
oJT | K +K, K,

—eT[®d)-D(d! - d d'
[(d;) - ()af¢()¢()(421)

r_ S | #®)
KK K

9 G\/—
—e " [®(d))-D(d])]-

RIS )}

1

G\/— [¢(d))—d(d])], (4.22)

c_ cy_ c _; oy _ c
S —CD(ZTZ) @) Gﬁ[¢(bz) ¢(b)]+

e cy_ <
+SOG ﬁ[(K]+K2)¢(dz) Kp(d)],

4.23)
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The proof is made by differentiation of (2.5), (3.5)
by corresponding parameters.

Theorem 7. Asymptotical properties of rational cost
of exotic options, and also portfolios and capitals which
correspond to them, consist in the following:

1. lim C, =85,0(b5 )+ K,e " d(=dS );
]}1mC =0; th =0; thT G

lim C, =0; hm C, —Kze"T.
Sp—0 Sp—ow

2. lim P =-S,®(b )+ K,e""D(d})=

Ky =K

lim P, =0; hm B =K,e'; hm Kze’rT ;
2>

lim P, =0.

Sp—o

The proof of the formulated results is conducted di-
rectly with use of the Laplas’ function properties
lim®(x)=1; lim ®(x)=0; O(x)=1—-D(-x); D(x) is
continuous on the right on x.

2. Conclusion

1. The researches show that AC;>0, AP>0, i. e. costs
of standard options are above cost of exotic options.
The given property is justified on the basis that for
the option owner reception of higher income is pos-
sible in case of standard rather than exotic option,
payments by which are limited, and in order to get
higher income it is necessary to pay more.

2. The researches show that k>0, if S,¢™ K, +K,, and
k>0, if Sye™ K,—K,. Thus, option costs of purchase
and sale are the increasing functions of the parame-
ter K, at execution of the specified conditions. The
economic sense of this property consists in the fol-
lowing. With growth of the parameter K, the option
owner’s opportunity of greater profit increases. In
order to get such opportunity it is necessary to pay
more, therefore the price of the option increases.

3. The economic sense of limiting properties of option
costs (Theorem 7) is obvious.
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