
In the case of using central reflector (fig. 2) the va�
lue of this relation in one�group approximation is equal
to 0,82 according to the data [6]. This result is not un�
expected one and can be explained, first of all, by the
fact that one�group model does not include the slow
neutron storage in the reflector due to slowing down fast
neutrons.

Solutions in two�group approximation (fig. 4) show
visually the role of central reflector. The efficiency of
neutron trap permits us to increase the relation of slow
neutron average flux to its maximum value up to 0,966.

It should be noted that at transition to the effective
boundary the neutron field distribution near the «core�
external reflector» boundary is deformed. A more deta�
iled consideration requires increase in system order and
significant complication of computations.
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Fig. 4. Distribution of neutron flux
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1. Introduction

One of the most interesting from the physical point of
view and practically important trends in different fields of
engineering is barrier discharge. In particular, barrier
discharge is used in water purification, plasma technolo�
gy, etching, etc. However, a strong spatial irregularity and
short durability of physical processes taking place in bar�
rier discharge make it difficult to study this phenomenon.

In characteristic description of electric discharge (bar�
rier discharge, in particular) their description as objects of
electric circuit is widely used [1]. The bases of such appro�

aches are the replacement of electrophysical phenomena
by the phenomena taking place in electric circuit consi�
sting of definite electric elements (resistance, capacity,
and inductance). Such electric circuit will be called an
equivalent circuit of electric discharge replacement.

Investigating the discharge physics voltage U(t) and
current I(t) in circuit with discharge gap are available for
measuring. Therefore, there appears the problem of de�
termination of electric discharge replacement circuit
parameters with registered function values U(t), I(t). In
fact, we have the problem of identification of replace�
ment equivalent circuit.
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In the works [2, 3] the parameter values are along in�
dicial admittance g(t). In its turn, the function g(t) is defi�
ned as a solution of the Volterra integral equation�convo�
lution of the I genus, which is an ill�defined specified
problem [4, 5]. However, in these works a number of sig�
nificant aspects are not taken into account, they are con�
nected with the solution of this ill�defined specified pro�
blem, which affected the accuracy of parameter
identification negatively. One can refer to such aspects: in�
sufficient stability of the involved algorithm differentiated
by noise function U(t) when calculating integral equation
kernel; neglecting random error of specified equation ker�
nel both at the stage of regularising solution construction
and at choosing the regularization parameters.

Therefore, in the present work a stable algorithm of
identification of replacement circuit parameters, based
on regularizing algorithm of solving integral equation�
convolution with inaccurately specified kernel [6] and
involving the aspects mentioned above fully has been
suggested.

Setting up the problem

If the voltage in the circuit is impulse, the transition
in discharge gap in terms of U(t) and I(t) is convenient
to describe by means of the Duhamel integral [7]. If the
voltage U(t) is a finite function, i.e. out of the interval
[0,TU] it is turned out to zero, then the following expres�
sion is true for the current in the circuit

(1)

where g(t) is the indicial admittance. As a rule, the value
U(0)=0 hence, we obtain the Volterra integral equation�
convolution of the I genus:

(2)

The function g(t–τ) is called the integral equation
kernel, I(t) is the right part of the equation.

The integral equation (2) is necessary to be solved
relative to the function g(t), which is an ill�defined spe�
cified problem, and then by the function g(t) define the
parameters of the replacement equivalent circuit of
electric discharge.

Thus, the problem of parameter determination of
the replacement equivalent circuit includes the fol�
lowing stages:

Stage 1. Calculation of derivative on the

changed (with errors) magnitudes of the function U(t).

Stage 2. Solution of the integral equation (2) relati�
ve to the function g(t).

Stage 3. Determination (probably by the form of the
function g(t)) of the replacement equivalent circuit
structure and function parameterization g(t).

Stage 4. Estimation of the function parameters g(t)
and calculation of values of resistance, capacity and in�
ductances forming the replacement equivalent circuit.

The solution of the formulated determination is
considered with the following assumptions:

1. The function U(t) is different from zero in the interval
(0,TU] (i.е. it is finite) and is measured in this interval at the
moments tj=Δ.j, j=0,1,...,NU–1, where NU=ent[TU/Δ]+1, Δ
is the sampling increment, is the integer part of the real
number z. The changed values U

~

j admit the statement

(3)

where ζj are random quantities with the expectation
function M(ζj)=0, dispersion D(ζj)=δζ

2 and showing the
voltage measurement errors.

2. The function g(t) is different from zero in the in�
terval [0,Tg].

Supposing these, the function I(t) is finite with the inter�
val [0,TI], of the determination interval, where TI=TU+Tg.

3. The function I(t) is measured in the interval [0,TI] at
the moments tj=Δ.j, j=0,1,...,NI–1, where NI=ent[TI/Δ]+1.
The measured magnitudes assume the statement

(4)

where ηj are random magnitudes with numerical cha�
racteristics M(ηj)=0, D(ηj)=δη

2.

In short, let us dwell on the solution algorithms of
each stage of the involved problem of the parameter
identification of the replacement equivalent circuit.

2. Calculation of derivative 

by the changes values of voltage

The kernel of the integral equation (2) is a derivati�

ve of voltage U(t). It is known that differentia�

tion procedure is an ill�defined specified problem (in
particular, minute errors can cause any great mistake in
derivative).

For stable differentiation of the function U(t), speci�
fied by the changed at the moments tj values U

~

(tj) as an
approximation for U(t) let us take smoothing cubic spline
(SCS) Sλ(t). Recall that cubic polynomial is called smo�
othing cubic spline, meeting the conditions:

1. In each interval [tj,tj+1] Sλ(t) has the following form

(5)

where tj<t<tj+1.

2. The function Sλ(t) has the continuous second de�
rivative on the whole segment [0,TU].

Calculations of the coefficients aj, bj, cj, dj of SCS
(which depend on the smoothing parameters λ) are descri�
bed in the works in details [5, 8] and for their unique cal�
culation let us adopt the edge conditions of the form:

(6)

These conditions correspond to typical form of the vol�
tage impulse U(t) (see fig. 1). One can show that SCS with
the conditions (6) returns minimum to the functional

(7)2 2

0

1

0
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U u
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j
f t dt p f t U
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among all the functions f(t) with integrable by the square
of the second derivative and meeting the condition (6).

After calculation of the SCS coefficients the first de�
rivative S'λ(t) (which is the estimation for the derivative 

) can be found by the formula

(8)

where tj<t<tj+1.

The main problem in plotting the SCS is the choice
of the smoothing parameter λ, which can change in the
range from 0 (smoothing spline becomes interpolated,
crossing the values U

~

j, i. е. S0(tj)=U
~

j) to ∞ (SCS becomes
a straight line). If λ turns out to be small, the high�
frequency constituents are present in the spline, which
is explained by the errors ζj, particularly developing in
the spline derivatives in the form of high�frequency os�
cillations. If this parameter is too large, the plotted spli�
ne appears to be «oversmoothing» and leading and des�
cending edges of the impulse U(t) are strongly smoothed
in it, which affects the accuracy of the first derivative
calculation negatively.

One can point out the two approaches to the choice
of parameter λ: estimation of λ from minimum condit�
ion by smoothing root�mean�square error [5] and the
choice λ by the spline accuracy characteristics [9]. Let
us dwell on the second approach, more appropriate for
the solved differentiation problem U(t).

In this approach the smoothing spline is referred to
as an output signal of some filter (spline filter), to the in�
put of which the digital string consisting of changes valu�
es U

~

j of the function U(t) comes. In such interpretation
the smoothing properties of spline can be defined by its
hardware function hλ(t), that characterises a hard error of
smoothing and differentiating: the less the function
«width» is, the less the hard error is. As a numerical cha�
racteristics of hardware function its width is taken Δh(λ):

Physical interpretation of this characteristic is rather
simple for the differentiation problem: in smoothing
spline and its derivative the function constituents U(t)
and the derivative U'(t) are kept with small amplitude di�
stortion, if their width is more than that of the hardware
function hλ(t). Specifying «limit» size Δlim of constituents,
those are to be kept in spline, the value λ of can be de�
termined from the solution of non�linear equation:

(9)

The hardware function hλ(t) is calculated with the
formula

Frequency characteristic of spline is defined by the
expression [9]

where

are the weighting coefficients of the functional, Δ is the
sampling increment.

Let us demonstrate the presented approach to the
choice of smoothing parameter λ by the results of the
following calculation experiment. In figure, а, the graph
of function is shown (curve 1) and its «exact» derivative 

(curve 2). The function values are multiplied by( )d U t
dt
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Figure. Calculation of the function U(t) derivatives
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100, so that the function would differ from zero in the fi�
gure scale. Curve 3 corresponds to derivative of integral
spline S0(t), plotted by the changed (with error) values
U

~

j, j=1,2,...,NU=240. Relative level of errors ζj is specifi�
ed to be equal to 0,05. In figure, b, the graph of 

«exact» derivative and the derivative values cal�

culated by interpolating cubic spline are shown. One
can see significant oscillations of this derivative, charac�
teristic for differentiating inexact specified function. In 

figure, b, the graph of derivative and the deriva�

tive values Sλ'(t), calculated by smoothing cubic spline
are presented Sλ(t), see (8). A rather good (in compari�
son with the derivative of interpolating spline) agree�
ment of these two derivatives is obvious.

Smoothing parameter is chosen from the solution of
the equation (9) at Δnp=5.10–3 s (sampling interval

Δnp=2,5.10–4 s). The magnitude is specified to be equal to
the half width of the leading edge of the voltage impulse
U(t), that permits the derivative Sλ'(t) to keep «fine» details
of derivative U'(t) (in particular in the range [0, 0.01]).
Small oscillations Sλ'(t) of the derivative in the range [0.01,
0.03] are at the second stage of interpretation as specifying
errors of integral equation kernel and are taken into ac�
count in construction of regularising solution of this inte�
gral equation. For this purpose let us present the values of
spline Sλ'(t) derivative in the junction tj in the form:

(10)

The random magnitudes ξj reflect the errors in cal�
culation of derivative on smoothing spline Sλ(t). If the
errors ζj of measurement U(tj) have the same dispersion,
the random errors of differentiating have also dispersion
D(ξj)=σξ

2.

( ) ( ) , 0,1,..., 1.j j Ujt t
dS t U t j N
dtλ ξ=

′ = + = −
( )dU t

dτ

( )dU t
dτ
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