Известия Томского политехнического университета. 2008. Т. 313. № 3

СПИСОК ЛИТЕРАТУРЫ

- 1. Мансуров З.А. Сажеобразование в процессах горения // Физика горения и взрыва. 2005. Т. 41. № 6. С. 137–156.
- Новоселов А.Л., Пролубников В.И., Тубалов Н.П. Совершенствование очистки отработавших газов дизелей на основе СВС-материалов. – Новосибирск: Наука, 2002. – 96 с.
- Климонтович Ю.Л. Статистическая физика. М.: Наука, 1982. – 608 с.
- Гуренцов Е.В., Еремин А.В., Шулыц К. Лазерно-индуцированный рост кластеров в газовой среде // Физико-химическая кинетика в газовой динамике. – 2005. – Т. 3. – С. 1–15.
- 5. Ахмедов Р.Б., Цирюльников Л.М. Технология сжигания горючих газов и жидких топлив. – Л.: Недра, 1994. – 238 с.
- Баранов Н.А., Смайлис В.И. Исследование высокотемпературной сублимации и дисперсного состава дизельной сажи // Экспериментальные и теоретич. исслед. по создан, новых диз. и агрег.: Труды ЦНИДИ. – Л., 1980. – С. 83–89.
- Вихерт М.И., Кратко А.П., Рафалькес И.С. и др. Влияние типа рабочего процесса и режимов работы быстроходных дизелей на свойства сажи и отработавших газов // Автомобильная промышленность. – 1975. – № 10. – С. 8–11.

- Арапов В.В., Вагнер В.А., Грехов Л.В. Рабочие процессы дизелей / Под ред. В.А. Вагнера, Н.А. Иващенко, Д.Д. Матиевского. – Барнаул: Изд-во АлтГТУ, 1995. – 183 с.
- Стаселько Д.И. Особенности голографической регистрации быстропротекающих процессов при использовании импульсного лазера на рубине // Оптическая голография / Под ред. Д.И. Стаселько. – Л.: Наука, 1975. – С. 4–70.
- Стаселько Д.И., Косниковский В.А. Голографическая регистрация пространственных ансамблей быстродвижущихся частиц // Оптика и спектроскопия. 1973. Т. 34, Вып. 2. С. 365–374.
- Кольер Р., Беркхарт К., Лин Л. Оптическая голография. М.: Мир, 1973. – 126 с.
- Бразовский В.В., Вагнер В.А., Евстигнеев В.В., Еськов А.В., Пролубников В.И., Тубалов Н.П. Голографический метод исследования дисперсного состава аэрозоля // Горизонты образования. – 2006. – Вып. 8. – С. 1–9.

Поступила после переработки 06.10.2008 г.

УДК 628.93.000.25

ПОГРЕШНОСТИ ПРИ ТРАДИЦИОННОМ ОПИСАНИИ СВЕТОВОГО ПОЛЯ ДВУХМЕРНОГО ИЗЛУЧАТЕЛЯ

В.Д. Никитин, К.П. Пашник

Томский политехнический университет E-mail: ksyshenka@sibmail.com

Оценивается погрешность, если световое поле двухмерного излучателя с косинусно-степенной индикатрисой (элемента) I_α=l₀cos[™]α описывать формулами Higbie либо их графическими или иными аналогами, предназначенными для косинусных двухмерных излучателей. Рассматриваются параллельное, перпендикулярное и наклонное положения двухмерного излучателя относительно расчетной поверхности. Исследуются составляющие погрешности, возникающей при стандартном подходе к описанию светового поля двухмерного излучателя с m>1.

Ключевые слова:

Двухмерный излучатель, расчетная плоскость, компоненты светового вектора, диффузный (ламбертов) излучатель, косинусно-степенной излучатель, погрешности расчета.

Введение

Традиционно световое поле (СП) двухмерного излучателя (ДИ) описывается с помощью формул Higbie (практически широко используются графические интерпретации), предназначенных для косинусных излучателей. Это обуславливает погрешность в оценке освещенности от неламбертовых $(m \neq 1)$ ДИ.

В работе ставятся задачи:

- получить аналитическое описание поля ДИ с косинусно-степенным светораспределением как основу для изучения погрешности;
- оценить компоненты погрешности, возникающей при описании СП ДИ по традиционной методике.

В работе рассматриваются параллельное (\parallel), перпендикулярное (\perp) и наклонное (ξ) положения ДИ относительно расчетной плоскости (РП).

1. Параллельное положение

1.1. Для расчета освещенности в поле ДИ широко используются номограммы Е.С. Ратнера [1]. Будучи графическими аналогами формул Higbie(–Lewin), эти номограммы и материалы А.А. Гершуна, А.М. Данилюка, Р. Мооп'а [2], Л.Я. Шинделя [3] и др. справедливы только при диффузных (синонимы: косинусные $I_{\alpha} = I_0 \cos \alpha$, равнояркие $L_{\alpha} = \text{const., ламберто-вы, где } I_{\alpha} -$ сила света; I_0 – осевое значение силы света; α – угол с осью; L_{α} – яркость) ДИ. Если индикатриса излучения (элемента) ДИ отличается от косинусной ($I_{\alpha} = I_0(m) \cos^m \alpha$ при $m \neq 1$), использование

Факторы	Светотехнические		Геометрические			
Излучатель косинусный (lamberti- an), <i>m</i> =1, <i>E=q•M</i>	Светимость ДИ <i>М=Ф</i> ·S ⁻¹ (описаны уста- новки, в которых «брутто» – свети- мость ДИ <i>М</i> >1 клм/м²)	Коэффициент освещенности <i>q</i> зависит от размеров Д и положения РП в поле ДИ; <i>q=q(a',b'</i>) по номограмма Ратнера или графикам Moon'a; <i>πq(a',b')=f_{m=1}(a',b'</i>)				
Излучатель косинусно-степенной, m≠1, E=L₀•f_m (a',b')	Коэффициент f (m,a',b') учитывает: размеры и форму ДИ; взаимное положение ДИ и РП; значение m, харак- теризующее индикатрису					
Составляющие погрешности при расчете поля ДИ с <i>т</i> ≠1 как от кос- инусного: Δ=1- <i>F</i> ₁ • <i>F</i> ₂ =1- <i>ω</i> ' <i>q</i> (<i>a</i> ', <i>b</i> ')•[<i>f</i> (<i>a</i> ', <i>b</i> ')] ⁻¹ (1)	F₁ учитывает: традиционный (для m=1) расчет с использованием светимости расчет с использованием светимости м в случае m>1 дает «сбой» ввиду за- висимости эквивалентного телесного угла (по Блонделю) ω'-(m+1) ⁻¹ , в ре- зультате чего I₀=I₀(m)		F_2 определяется отношением двух коэффициентов q и f ; при внешнем сходстве коэффициенты q (к светимости M) и f (к яркости L_0) принципиально различны, поскольку $f=f(m)$, т. е. зависит от значения m . В частности, различны предельные значения: $\lim q_{a\to\infty,b\to\infty}=1/4$; $\lim f_{a\to\infty,b\to\infty}=\pi/4$			
Индикатриса (элеме	нта) <i>I</i> (α) при <i>m</i> , равном	2	3	4	8	
Погрешность Д, 9	%, для положения ∥\⊥	17\-11,6	22,5\-14,2	29\-11	45\-12	

Таблица 1. Сравнение не- и ламбертовых излучателей и погрешность при расчете поля ДИ по традиционной методике

Ф – поток излучения; Е – освещенность; S – площадь; a', b' – относительные геометрические параметры

Таблица 2. Составляющая ε_z светового поля ДИ [$I_{\alpha} = I_0(m) \cos^n \alpha$, $L_0 = 1 \ \kappa \mu/m^2$]

формул Higbie (либо графиков на их основе) может приводить к погрешности; для ее оценки предлагаем формулу (1) в табл. 1.

При расчете погрешности Δ (в тонированной части табл. 1), брались: значения коэффициента освещенности q – по графикам Р. Мооп'а зависимости q от угловых размеров ДИ; значения коэффициента аркости $f_{m=2}$ и $f_{m=3}$ – по таблицам в [4]; значения $f_{m=4}$ и $f_{m=8}$ – по [5]; размеры – как у ранее описанного [6] ДИ.

1.2. Проектировщики часто используют материалы для косинусных ДИ, несмотря на их неточность при $m \neq 1$. Это обусловлено рядом причин:

- косинусные ДИ широко распространены, традиционно хорошо изучены, методики расчета их СП просты, понятны (здесь, прежде всего, имеются в виду номограммы Е.С. Ратнера);
- для некосинусных ДИ отсутствуют доступные расчетчику материалы [1], и проектировщик может даже не подозревать о наличии ошибки;
- в уже упоминавшемся [4] таблицы функции *f* для m=2 и m=3 даются без каких-либо пояснений.

Характеристики СП ДИ, $m \subset N$, приведены в табл. 2, где N=1,2,3... Компонента ε_z светового вектора определяет освещенность горизонтальной (параллельной) плоскости, в формулах используются относительные геометрические параметры a'=A/H, b'=B/H, где A,B,H-длина, ширина, высота расположения ДИ; в громоздких формулах табл. 2 штрихованные параметры a' и b' даются для компактности упрощенно – как a и b.

Параметры Ј и Д для формул (2-4):

$$J_1 = a^{-1} + (a^2 + 1)^{0.5} \operatorname{arctg} \frac{b}{\sqrt{a^2 + 1}},$$
 (5)

$$J_2 = -\frac{b(a^2+b^2+1)^{-1}}{4a^3(a^2+1)} + \frac{2a^2+1}{4a^3(a^2+1)^{1.5}} \operatorname{arctg} \frac{b}{\sqrt{a^2+1}}, \qquad (6)$$

при $K \geq 3 J_{K} = J_{K}(J_{K-1}, D_{K-1}).$

$$D_{1} = 2 \arctan \frac{b}{a} - \frac{2a^{2} + 1}{a\sqrt{a^{2} + 1}} \operatorname{arctg} \frac{b}{\sqrt{a^{2} + 1}}, \qquad (7)$$
$$D_{2} = D_{2}(J_{1}, D_{1}),$$

где J_1 берется по (5), D_1 – по (7), при $K \neq 1$ $D_k = D_k (J_{k-1}, D_{k-1}).$

При этом функции J_{K} и D_{K} :

- образуются из функций *K*-1 уровня;
- могут быть интерпретированы как две спирали, закрученные одна вокруг другой.

От аналога в живом мире — двойной спирали ДНК с постоянным «диаметром» — выражения для J_k и D_k отличаются резким усложнением (увеличением числа элементов) при росте индекса K.

Отметим следующее: аналитическое решение для произвольного нечетного *m* (формулы (2–4, 6, 7)) приводится, вероятно, впервые; формула (5) была опубликована в [7]; расчет при нецелых *m* потребует линейной (в ответственных случаях – квадратичной, например, по Бесселю) интерполяции между значениями ε_z – компонент светового вектора для ближайших целых показателей степени; переход от $L_0=1$ кд/м² к $L_0=\forall$ осуществляется пропорциональным пересчетом.

2. Перпендикулярное положение

2.1. Определение освещенности в поле недиффузного (non-lambertian) перпендикулярно расположенного ДИ встречается во многих задачах [5], например, при освещении картин на стенах. Архитектор может придать решеткам на выходном отверстии ДИ (даже – конструктивно – диффузном [8]) вычурную, сложную форму, при этом ДИ перестает быть косинусным, и расчет освещенности по номограмме Е.С. Ратнера или иным аналогам формул Higbie с использованием q=q(a',b')дает заметную погрешность. В решении двух задач (на основе [9]) дана количественная оценка погрешности при замене ДИ ($m \neq 1$) на косинусный (ламбертов); точный расчет был выполнен по формулам (8, 9) в табл. 3; функция-«перевертыш» G_d задается формулами (10, 11).

Формулы (8, 9): отличаются от опубликованных в [6] большей компактностью; для m=2 и m=3 дают известные формулы М.М. Гуторова – Е.А. Никитиной; не инвариантны в отношении a' u b'; при соответствующей замене параметров a' u b' дают ε_y -компоненту светового вектора; в задачах 2.2.1 и 2.2.2 используются для оценки погрешности при расчете ДИ ($m \neq 1$) по методу Higbie и его аналогам.

2.2.1. Размеры ДИ взяты из [7], световой поток с единицы площади ДИ Φ =1 клм. Сравнить характер зависимости погрешности $\Delta = \Delta(m)$ для || и \perp положения ДИ и РП. Можно ли считать данный ДИ (с 5 % погрешностью, приемлемой для большинства технических приложений) как бесконечно большой? (Значения f(a',b') и результаты расчетов даны в табл. 4 (строки 1–3).

Таблица 3. Составляющая ε_x светового поля ДИ [$I_a = I_0(m) \cos^m \alpha$, $L_0 = 1 \ \kappa g/M^2$]

т	$(m+1)\varepsilon_z = (m+1)f_{\perp}(a', b')$					
<i>m</i> =2 <i>n</i> −1, <i>n</i> =2,3,	$\left \frac{a'}{m}\sum_{K=1}^{\frac{m-1}{2}}\frac{G_{m-2K-1}^{*}}{G_{m-1}}\left[\left(L\right)^{K-\frac{m+1}{2}}-B^{-K}\cdot(N)^{p}\right]+G_{m-2}\left[\operatorname{arctg} a'-B^{-m/2}\operatorname{arctg} \frac{a'}{B^{1/2}}\right]\right $	(8)				
m=2n, n=1,2,	$\sum_{K=0}^{\frac{m-2}{2}} \frac{(-1)^{K}}{2K+1} \cdot \frac{\left(\frac{m-2}{2}\right)!}{K!\left(\frac{m}{2}-K-1\right)!} \left[\left(\frac{a^{\prime^{2}}}{a^{\prime^{2}}+1}\right)^{K+0,5} - (B)^{-m/2} \cdot \left(\frac{a^{\prime^{2}}}{a^{\prime^{2}}+B}\right)^{K+0,5} \right].$	(9)				

*Функция G_d (d зависит от m,K) может быть выражена через гамма-функцию

Для нечетного d						Для четного d				
$G_{d} = \pi^{-0.5} \cdot \Gamma\left(\frac{d}{2} + 1\right) \cdot \left[\left(\frac{d+1}{2}\right)!\right]^{-1},$ (10)					G_d	$G_{d} = \pi^{0.5} \cdot \left(\frac{d}{2}\right)! (d+1)^{-1} \left[\Gamma\left(\frac{d+1}{2}\right)\right]^{-1}.$ (11)				
Индекс <i>d</i>	1	3	5	7	9	2	4	6	8	10
Значение G _d	0,5	0,375	0,312	0,273	0,246	0,6(6)	0,53(3)	0,457	0,406	0,369

Таблица 4. Оценка погрешности Δ, %, при расчете освещенности Е в поле ДИ с I_α=Φ(m+1)(2π)⁻¹cos^m α по методу Higbie (в качестве аналога использовались номограммы Ратнера)

1. Показатель <i>т</i> \значения L ₀ , кд/м ²		1\318	2\478	4\783	6\1117	10\1750
2. Параллельное f_{\parallel} \перпендикулярное f_{\perp}	50\20	40\15	28\9,5	23\6	14,5\3,5	
3. $E=L_0 \cdot f$, лк (в скобках погрешность Δ , %)		158(0)	193(18)	218(25)	258(39)	252(38)
при положении ДИ и РП	\perp	64(0)	72(11)	75(14)	69(4)	61(5)
4. Излучатель	Косину	сный (<i>m</i> =1)	угол γ=30° (<i>m</i> =2)		угол γ=40° (<i>m</i> =3)	
5. 10²×функции <i>q</i> или <i>f</i>	[5]: 2	Σ <i>q</i> =12,4	[2]: Σ <i>f</i> ₂ =22,6		[2]: $\Sigma f_3 = 13,9$	
6. I₀, ккд\Е, клм\\Δ, % 4,01		\1,56\\0	6,02\1,32\\18		8,02\1,12\\9	

Функции q(a',b') или			3⊦	ачения *функции q и f для положения			
f(a',b') для фигуры			\perp	Наклонного (<i>ξ</i> =0,1 <i>π</i>)	Погрешность при принятии ДИ (<i>т</i> ≠1) за косинус-		
L (ABCD)		6,0	0,83	$a = (6+15, 7) \cdot 0.951 + (0.83 - 8) \cdot 0.309 = 18.42$	ный ∆ _m =1−2 <i>π q(a',b'</i>)[(<i>m</i> +1)• <i>f</i> (a',b')]⁻¹		
<i>q</i> , <i>m</i> =1	R (ADEH)	15,7	8,0	$q_{\xi} = (0, 15, 7, 0, 5511, (0, 65, 6), 0, 505 = 10, 42$			
f m=2	L(ABCD)	16,4	2,5	$f_{0} = (16.4 + 37) \cdot 0.951 + (2.5 - 18) \cdot 0.309 = 45.99$	$\Lambda = 1 - \frac{2\pi}{2\pi} \cdot \frac{18,42}{1000} = 0.16$ или 16 %		
1,111-2	R (ADEH)	37	18	$1_{2,\xi}$ (10, + 57) 0, 551 (2, 510) 0, 505 + 5, 55	3 45,99 -0,10 Millio 70		
f m=3	L (ABCD)	14	4,3	$f_{-} = (14+33) \cdot 0.951 + (4.3-12) \cdot 0.309 = 42.3$	$\Lambda = 1 - \frac{2\pi}{2\pi} \cdot \frac{18,42}{2\pi} = 0.317$ или 317%		
	R (ADEH)	33	12	$1_{3,\xi}$ (12, 0, 5, 5, 1, 1, 2, 0, 5, 5, 1, 1, 2, 1, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	$\Delta_3 = 1 - \frac{1}{4} - \frac{1}{42,3} = 0,517$		

Таблица 5. Функции q и f для параллельного (||), перпендикулярного (⊥) и наклонного (ξ) положений ДИ слева (L) и справа (R) от расчетной точки P; погрешность при принятии ДИ за косинусный

*Для светимости 10² лм•м⁻² (в случае q), яркости 10² кд•м⁻² (для f); при М=∀ или L₀=∀ требуется пропорциональный пересчет

2.2.2. Найти погрешность Δ , %, если составной ДИ с m=2 (по [1. С. 161], при защитном угле 30°) и m=3 (при защитном угле 40°) считать по формулам Нідвіе или их аналогам. Узловые моменты решения приведены в табл. 4 (строки 4–6; тонированы).

Яркость по нормали к поверхности ДИ $L_0 = I_0/S = 6,02/1,25 \cdot 0,8 = 6,02 \text{ кд/м}^2.$

Рис. 1. Параметры – 1 и 2/3, определяющие освещенность, и погрешности – 4/5 (параллельный/перпендикулярный случаи) при принятии ДИ за косинусный: 1) I₀(m)/I₀(1), 2/3) f_{ℕ⊥}(m)/f₀(m), 4/5) Δ_{ℕ⊥}(m)

Рис. 2. К расчету освещенности в точке T на расчетной поверхности TMEH, составляющей угол ξ с плоскостью ДИ ВСЕН (=BCDA+ADEH)

Освещенность $E=L_0\pi q$ (для m=1), $E=L_0f$ (для m>1); очевидно, что ее расчет при $m\neq 1$ по методу Higbie (как от ламбертова ДИ) может приводить к большой погрешности (рис. 1, кривые 4, 5).

3. Наклонное положение

Эта ситуация возникает, например, если в поле ДИ расположена негоризонтальная РП (деки школьных парт; экспозиционные материалы в музеях; пульты диспетчеров; товары в витринах, горках и многое другое). Обычно проектировщик пренебрегает реальным положением РП и находит освещенность на условной горизонтальной плоскости, проходящей через расчетную точку. С увеличением угла наклона ξ (рис. 2) погрешность растет. В табл. 5 и 6 показаны погрешности для случая $m \neq 1$ и $\xi \neq 0$.

Таблица 6. Погрешность при пренебрежении углом наклона ДИ (излучатель принимается как расположенный параллельно РП)

	Погрешность Δ , %, при принятии ДИ ($\xi \neq$ 0) за параллельно					
m	расположенный					
	Угол наклона ξ=0,1π (ξ=18°)	Угол наклона ξ =0,2 π (ξ =36°)				
1	q_{ξ} =18,42; Σq_{\parallel} =6+15,7=21,7; Δ =-17,8	q_{ξ} =13,34; Σq_{\parallel} =21,7; Δ =-62				
2	f_{ξ} =45,99; Σf_{\parallel} =16,4+37=53,4; Δ =-16,1	f_{ξ} =34,09; Σf_{\parallel} =53,4; Δ =-56,6				
3	f_{ξ} =42,3; Σf_{\parallel} =14+33=47; Δ =-11,1	f _ξ =26,85; Σf _∥ =47; Δ=−75				

Анализ табл. 6 показывает, что даже относительно небольшой наклон 18° (как у дек школьных парт, например) создает заметную погрешность. Она увеличивается с ростом угла наклона ξ .

Выводы

1. Предложены (точные) аналитические выражения для описания светового поля двухмерного излучателя со светораспределением (элемента) $I_{\alpha} = I_0(m) \cdot \cos^m \alpha$. Для нечетного *m* (параллельное положение) формула публикуется впервые.

2. Разработаны методики для оценки погрешности, если поле двухмерного излучателя с $I_a \sim \cos^m \alpha$ (при любом его положении относительно расчетной поверхности) считать по традиционным формулам или их графическим аналогам.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кнорринг Г.М. Светотехнические расчеты в установках искусственного освещения. – Л.: Энергия, 1973. – 200 с.
- Moon P.H. The Scientific basis of the illuminating engineering. N.Y.: Dover Publications, 1961. – 608 p.
- Шиндель М.Я. О расчете горизонтальной освещенности от равнояркого прямоугольника // Светотехника. – 2006. – № 3. – С. 14–15.
- Гуторов М.М. Сборник задач по основам светотехники. М.: Энергоатомиздат, 1988. – 127 с.
- 5. Никитин В.Д. Расчет освещения точечным методом. Томск: Изд-во ТПИ, 1985. 95 с.

- Никитин В.Д. Расчет освещенности от прямоугольных излучателей с некосинусным светораспределением // Светотехника. - 1987. – № 7. – С. 9–12.
- Никитин В.Д. Ортогональные проекции светового вектора в поле прямоугольногоизлучателя с косинусно-степенным светораспределением // Тез. докл. VI Междунар. светотехнической конф. – Калининград, 2006. – С. 155–156.
- Тканевый световой потолок // Светотехника. 2008. № 1. С. 37.

Поступила 02.10.2008 г.

УДК 621.039

АНОМАЛИЯ В ЗАВИСИМОСТИ РЕЗОНАНСНОГО ПОГЛОЩЕНИЯ НЕЙТРОНОВ ОТ ОТНОШЕНИЯ ОБЪЕМОВ ЗАМЕДЛИТЕЛЯ И ТОПЛИВА В ТОРИЙСОДЕРЖАЩИХ РАЗМНОЖАЮЩИХ СИСТЕМАХ

И.В. Шаманин, А.В. Годовых, П.А. Селезнев

Томский политехнический университет E-mail: shaman@phtd.tpu.ru

Приведены результаты численных экспериментов, определяющие границы области значений отношения «объем замедлителя/объем топлива», в которой наблюдается аномалия в ходе зависимости резонансного поглощения в размножающей среде от этого отношения. Доказаны физические преимущества использования Th²³² по сравнению с U²³⁸ в качестве воспроизводящего материала в составе ядерного топлива.

Ключевые слова:

Размножающая среда, нейтроны, резонансное поглощение, уран, торий, водно-топливное отношение, оптимизация.

Состояние проблемы

Концепции торий-уранового ядерного топливного цикла уже несколько десятков лет. Потеря интереса к ней практически на старте исследований вызвана двумя причинами:

- высокой радиоактивностью ториевого концентрата, которая обусловлена наличием в нем изотопа Th²²⁸ и цепочкой радиоактивных превращений, начинающейся с него;
- образованием изотопа U²³² при облучении торийсодержащего топлива, наличие которого в облученном топливе также является началом цепочки радиоактивных превращений, в ходе которых образуются «жесткие» гамма-излучатели.

Сам же сырьевой изотоп Th²³², из которого образуется делящийся U²³³, не представляет большой радиологической опасности. Он альфа-активен, но период его полураспада (α -распад) составляет 13,9 млрд л [1]. Возраст планеты Земля в настоящее время считается равным около 4,5 млрд л, если основываться на скоростях радиоактивного распада урана и тория [2]. Период полураспада U²³⁸, играющего определяющую роль в уран-плутониевом ядерном топливном цикле, составляет 4,47 млрд л [1], т. е. его значение близко к возрасту Земли, а значение периода полураспада Th²³² значительно превосходит возраст Земли. Вообще говоря, торий – один из немногих радиоактивных элементов, открытых задолго до появления самого понятия «радиоактивность». Обнаружил оксид тория Берцелиус, исследуя редкий минерал, который теперь называют торитом (ThSiO₄). Торит содержит до 77 % оксида тория ThO₂. По сравнению с очень многими актиноидами и с учетом выше отмеченного Th²³² можно считать практически стабильным, что объясняет тот факт, что его содержание в земной коре в 5 раз больше, чем урана.

Возобновление интереса к использованию тория в ядерном топливном цикле вызвано двумя причинами:

- беспокойством за стабильность сырьевой базы ядерной энергетики [3] и необходимостью утилизации значительных излишков урана и плутония, имеющих «оружейную кондицию» [4, 5];
- обнаружением серьезных преимуществ Th²³² по сравнению с U²³⁸ при их использовании в традиционном качестве – как воспроизводящих нуклидов в ядерном топливном цикле. Эти преимущества обусловлены особенностями и отличиями их ядерно-физических свойств на уровне элементарных процессов взаимодействия нейтронов с их ядрами [6].