UDC 514.76

ON PAIR OF m-SURFACES WITH THE GIVEN NETWORK IN MULTIVARIANT PROJECTIVE SPACE

A.A. Luchinin
Tomsk Polytechnic University
E-mail: svr@hm.tpu.ru

The two m-dimensional surfaces in n-dimensional projective space between which points a point conformity is establishedis studied. The network of lines is given on surfaces. Some geometrical images connected with the network are considered. Consideration has everywhere local character. All functions considered in the given work are assumed analytical.

The multidimensional differential geometry of various varieties for a long time draws attention of mathematicians in connection with its various applications. In particularly, multidimensional surfaces and networks of lines on them [1, 2] are studied. In the middle of the twentieth century one began to study pairs of surfaces and various conformity between them [3]. The given work belongs to this direction and is devoted to pair of m-dimensional surfaces in n-dimensional projective space.

1. Let S_{m}^{1} and S_{m}^{2} - are two surfaces in projective space P_{n} and $\Pi: S_{m}^{1} \rightarrow S_{m}^{2}$ - is smooth one-to-one conformity between them.

Let's attach to the considered pair of m-surfaces some projective reference point $R=\left\{A_{0}, A_{1}, \ldots, A_{n}\right\}$ with derivational formulas $d A_{I}=\omega_{I}^{J} A_{J}(I, J, \ldots=0,1, \ldots, n)$ and the structural equations $D \omega_{I}^{J}=\omega_{I}^{K} \wedge \omega_{K}^{J}$, and $\omega_{I}^{I}=0$.

Let's carry out the following partial canonization of a reference point: let's place points A_{0} and $A_{n}=\Pi\left(A_{0}\right)$ in corresponding points of the surfaces and of the pairs; points A_{1}, \ldots, A_{m} - in the m-plane $L_{m}^{1}=\left(A_{0}, \ldots, A_{m}\right)$ being tangent to the m-surface S_{m}^{1} in point A_{0}, and points A_{n-m}, \ldots, A_{n-1} - in the m-plane $L_{m}^{2}=\left(A_{n-m}, \ldots, A_{n-1}\right)$ being tangent to the m-surface S_{m}^{2} in point A_{n}.

Point conformity Π induces projective conformity between binders of tangents the directions, associated to two corresponding points A_{0} and A_{n}.

Let's choose a reference point of pair so that directions $A_{0} A_{i}$ corresponded in this projectivitat to directions $A_{n} A_{n-i}$. Then the basic equations of our problem become

$$
\begin{gather*}
\omega_{0}^{\alpha}=0, \quad \omega_{0}^{n}=0, \quad \omega_{0}^{n-i}=0 \tag{1}\\
\omega_{n}^{\alpha}=0, \quad \omega_{n}^{0}=0, \quad \omega_{n}^{i}=0 \\
\omega_{0}^{i}=\omega_{n}^{n-i} . \tag{2}\\
(i, j, \ldots=1,2, \ldots, m ; a, b, c, \ldots=2,3, \ldots, m \\
\alpha, \beta, \ldots=m+1, m+2, \ldots, n-m-1)
\end{gather*}
$$

Let's designate for brevity further $\omega_{0}^{i}=\omega_{n}^{n-i}$.
Continuing the equations (1, 2), we obtain

$$
\begin{gather*}
\omega_{i}^{\alpha}=\Lambda_{i j}^{\alpha} \omega^{j}, \omega_{i}^{n}=\Lambda_{i j}^{n} \omega^{j}, \omega_{k}^{n-i}=\Lambda_{k j}^{n-i} \omega^{j}, \\
\omega_{n-i}^{0}=\Lambda_{n-i, j}^{0} \omega^{j}, \omega_{n-k}^{i}=\Lambda_{n-k, j}^{i} \omega^{j}, \omega_{n-i}^{\alpha}=\Lambda_{n-i, j}^{\alpha} \omega^{j}, \\
\omega_{n-j}^{n-i}-\omega_{j}^{i}+\delta_{j}^{i}\left(\omega_{0}^{0}-\omega_{n}^{n}\right)=A_{j k}^{i} \omega^{k}, \\
\nabla \Lambda_{i j}^{\alpha}=\Lambda_{i j k}^{\alpha} \omega^{k}, \quad \nabla \Lambda_{i j}^{n}+\Lambda_{i j}^{\alpha} \omega_{\alpha}^{n}+\Lambda_{i j}^{n-k} \omega_{n-k}^{n}=\Lambda_{i j k}^{n} \omega^{k}, \\
\nabla \Lambda_{k j}^{n-i}+\Lambda_{k j}^{\alpha} \omega_{\alpha}^{n-i}+\Lambda_{k j}^{n-l} \omega_{n-l}^{n-i}=\Lambda_{k j l}^{n-i} \omega^{l}, \\
\nabla \Lambda_{n-i, j}^{\alpha}=\Lambda_{n-i, j k}^{\alpha} \omega^{k}, \tag{3}
\end{gather*}
$$

$$
\begin{gather*}
\nabla \Lambda_{n-i, j}^{0}+\Lambda_{n-i, j}^{k} \omega_{k}^{0}+\Lambda_{n-i, j}^{\alpha} \omega_{\alpha}^{0}=\Lambda_{n-i, j k}^{0} \omega^{k} \\
\nabla \Lambda_{n-k, j}^{i}+\Lambda_{n-k, j}^{\alpha} \omega_{\alpha}^{i}-\Lambda_{n-l, j}^{i} \omega_{n-k}^{n-l}=\Lambda_{n-k, j l}^{i} \omega^{l} \\
\nabla A_{j k}^{i}+\delta_{j}^{i}\left(\omega_{k}^{0}-\omega_{n-k}^{n}\right)-\delta_{k}^{i}\left(\omega_{n-j}^{n}-\omega_{j}^{0}\right)- \\
\quad-\Lambda_{j k}^{\alpha} \omega_{\alpha}^{i}+\Lambda_{n-j, k}^{\alpha} \omega_{\alpha}^{n-i}=A_{j k l}^{i} \omega^{l} \tag{4}
\end{gather*}
$$

Here the symbol ∇ designates the covariant differentiation operator.

From the equations (3) it follows, that systems of functions $\Lambda_{i j}^{\alpha}$ and $\Lambda_{n-i, j}^{\alpha}$ are tensors in the G. F. Laptev sense [4, 5].

Continuing the equations $(3,4)$, we obtain the system of the differential equations of a sequence of fundamental objects: $\Lambda_{i j}^{\alpha}, \Lambda_{i j}^{n}, \Lambda_{i j}^{n-k}, \Lambda_{n-i j}^{\alpha}, \Lambda_{n-i, j}^{0}, \Lambda_{n-i, j}^{i}, A_{j k}^{i} ; \Lambda_{i j k}^{\alpha}$, $\Lambda_{i j k}^{n}, \Lambda_{k j l}^{n-i}, \Lambda_{n-i, j,}^{\alpha}, \Lambda_{n-i, j}^{0}, \Lambda_{n-i, j}^{i}, A_{j k}^{i} ; \Lambda_{i j k}^{\alpha}, \Lambda_{i j k l}^{n}, \ldots$
2. Let's the first and second normals of surfaces and $[1,3]$ are given, S_{m}^{1} and S_{m}^{2} surfaces are defined by points

$$
L_{n-m}^{1}=\left(A_{0}, A_{n}, A_{n-i}, A_{\alpha}\right), \quad L_{m-1}^{1}=\left(A_{1}, A_{2}, \ldots, A_{m}\right)
$$

and
$L_{n-m}^{2}=\left(A_{n}, A_{0}, A_{i}, A_{\alpha}\right), \quad L_{m}^{2}=\left(A_{n-m}, A_{n-m+1}, \ldots, A_{n-1}\right)$,
accordingly.
Let one-dimensional distribution Δ_{l} and additional to it distribution Δ_{m-1} are prescribed on a surface S_{m}^{1} then if the main parameters are fixed, apex A_{1} can move over the straight line $\Delta_{l}\left(A_{0}\right)$, and apexes A_{a} - in the plane $\Delta_{m-1}\left(A_{0}\right)$.

Hence, forms ω_{1}^{a} and ω_{a}^{1} are main

$$
\begin{equation*}
\omega_{1}^{a}=\Lambda_{1 i}^{a} \omega^{i}, \omega_{a}^{1}=\Lambda_{a i}^{1} \omega^{1} \tag{5}
\end{equation*}
$$

Continuing the equations (5), we obtain

$$
\begin{aligned}
& \nabla \Lambda_{a i}^{1}-\delta_{i}^{1} \omega_{a}^{0}=\Lambda_{a i j}^{1} \omega^{j}, \\
& \nabla \Lambda_{1 i}^{a}-\delta_{i}^{a} \omega_{a}^{0}=\Lambda_{1 i j}^{a} \omega^{j} .
\end{aligned}
$$

Hence, each of systems of functions $\Lambda_{\mathrm{lj}}^{a}$ and $\Lambda_{a i j}^{1}$ forms quasi-tensor [4].

Let's find on the straight line $\Delta_{l}\left(A_{0}\right)$ point $F=\lambda A_{0}+A_{1}$ such that at displacement of point A_{0} in the direction $\Delta_{m-1}(A)$ displacement of point F did not leave from $(n-m+1)$ planes $L_{n-m+1}=\left(A_{0}, A_{1}, A_{m+1}, \ldots, A_{n}\right)$. Relation

$$
\begin{equation*}
d F \in L_{n-m+1}(A) \tag{6}
\end{equation*}
$$

is fulfilled if and only if

$$
\lambda \omega^{a}+\omega_{1}^{a}=0 .
$$

Since relation (6) has to be carried out at $\omega^{1}=0$, that, using the equations (5), we

$$
\begin{equation*}
\left(\Lambda_{1 a}^{b}+\lambda \delta_{a}^{b}\right) \omega^{a}=0 \tag{7}
\end{equation*}
$$

So far as not all forms ω^{a} are simultaneously equal to zero λ has to satisfy to the equation

$$
\begin{equation*}
\operatorname{det}\left\|\Lambda_{1 a}^{b}+\lambda \delta_{a}^{b}\right\|=0 \tag{8}
\end{equation*}
$$

Let's assume, that all roots of the equation (8) are simple, real. Then the system of the equations (7) defines $m-1$ linearly independent one-dimensional distributions Δ_{1}^{a} belonging to distribution Δ_{m}. Integral curves of distributions $\Delta_{1}, \Delta_{1}^{a}$ form a network of lines on the surface S_{m}^{1} which we shall designate Σ_{m}. Locating each of apex A_{a} of a reference point on the corresponding straight line $\Delta_{1}^{a}\left(A_{0}\right)$, we obtain $\Lambda_{a}^{b}=0, a \neq b$. On the straight line $\Delta_{\mathrm{l}}\left(A_{0}\right)$ we obtain the $m-1$ point

$$
F_{1}^{a}=\Lambda_{1 a}^{a} A_{0}+A_{1} .
$$

(to not summarize on a)
3. The point $F_{i}^{j}(i \neq j)$ is named pseudo-focus [7] of the straight line $A_{0} A_{i}$, if at displacement of the point $A 0$ in direction $A_{0} A_{j}$ the tangent to a line described by the point F_{i}^{j}, belongs to a hyperplane

$$
L_{n-1}^{j}=\left(A_{0} A_{1} \ldots A_{j-1} A_{j+1} \ldots A_{m} \ldots A_{n}\right)
$$

Let the point

$$
F_{i}^{j}=x_{i}^{j} A_{0}+A_{i} \quad(i \neq j)
$$

is a pseudo-focus of the straight line $A_{0} A_{\alpha}$. Then, from

$$
\left.\left(d F_{i}^{j}, L_{n-1}^{j}\right)\right|_{\omega^{1}=\omega^{2}=\cdots=\sigma^{j-1}=\sigma^{j+1}=\cdots=\omega^{m}=0}=0
$$

We obtain

$$
\left[x_{i}^{j} \omega^{j}+\omega_{i}^{j}, \omega^{1}, \omega^{2}, \ldots, \omega^{j-1}, \omega^{j+1}, \ldots, \omega^{m}\right]=0
$$

Hence

$$
x_{i}^{j}=-\Lambda_{i j}^{j}(i \neq j, \text { to not summarize on } j)
$$

and

$$
\begin{equation*}
F_{i}^{j}=-\Lambda_{i j}^{j} A_{0}+A_{i}(\text { to not summarize on } j) \tag{9}
\end{equation*}
$$

From formula (9) it follows, that the point is the pseudo-focus of straight line $A_{0} A_{1}$ corresponding to direction $\Delta_{l}^{a}\left(A_{0}\right)$. Points

$$
F_{i}=\frac{1}{m-1} \Lambda_{i j}^{j} A_{0}+A_{i}(\text { to not summarize on } j)
$$

are named harmonic poles of the point A_{0} in relation to pseudo-focuses of the straight line $A_{0} A_{i}$.

If $\Lambda_{i j}^{j}=0$ (to summarize on j) apexes $A i$ of the reference point are placed in harmonic poles of the straight lines $A_{0} A_{i}$.

By virtue of given projectivitet Π between pairs of surfaces S_{m}^{1} and S_{m}^{2}, on the surface S_{m}^{2} similar constructions take place which we shall not give here.
4. Let's designate through $L_{2 m+1}$ the ($2 m+1$) -dimensional plane stretched on tangents of the m-plane of both surfaces of pair. Let's note, that $L_{2 m+1}$ is a tangent $(2 m+1)$-dimensional subspace of m-parametrical variety which element is straight line $A_{0} A_{n}$, i.e. it contains straight line $A_{0} A_{n}$ and all its first differential vicinity. Crossing of equipping planes of each from surface pair we designate $L_{n-2 m-2}$. This plane is equipping plane of m-surface pair. Equipping planes of surfaces and can be given by the equations

$$
\begin{gather*}
x^{0}-\lambda_{i_{1}}^{0} x^{i_{1}}=0 ; x^{i}-\lambda_{i_{1}}^{i} x^{i_{1}}=0 ; \tag{10}\\
x^{n}-\lambda_{i_{2}}^{n} x^{i_{2}}=0, x^{i_{3}}-\lambda_{i_{2}}^{i_{3}} x^{i_{2}}=0, \tag{11}
\end{gather*}
$$

accordingly, and normals of the first kind of surfaces and can be given by the equations

$$
\begin{gather*}
x^{i}-\lambda_{i_{1}}^{i} x^{i_{1}}=0 \tag{12}\\
x^{i_{3}}-\lambda_{i_{2}}^{i_{3}} x^{i_{2}}=0 \tag{13}\\
\left(i_{1} j_{1}, \ldots=m+1, \ldots, n ; i_{2} j_{2}, \ldots=0,1,2, \ldots, n-m-1\right. \\
\left.i_{3}, j_{3}, \ldots=n-m, \ldots, n-1\right)
\end{gather*}
$$

accordingly.
Here objects of equipment are covered by fundamental geometrical object of pair m-surfaces and satisfy to the following differential equations:

$$
\begin{gathered}
\nabla \lambda_{i_{1}}^{i}=-\omega_{i_{1}}^{i}+\lambda_{i_{1} j}^{i} \omega^{j}, \\
\nabla \lambda_{i_{2}}^{i_{3}}=-\omega_{i_{2}}^{i_{3}}+\lambda_{i_{2} n+j}^{i_{3}} \omega^{j}, \\
\nabla \lambda_{i_{2}}^{n}=-\lambda_{i_{2}}^{i_{3}} \omega_{i_{3}}^{n}-\omega_{i_{2}}^{n}-\lambda_{i_{2}}^{n} \omega_{n}^{n}+\lambda_{i_{2} n+j}^{n} \omega^{j}, \\
\nabla \lambda_{i_{1}}^{0}=-\lambda_{i_{1}}^{0} \omega_{0}^{0}-\lambda_{i_{1}}^{i} \omega_{i}^{0}-\omega_{i_{1}}^{0}+\lambda_{i_{1} j}^{0} \omega^{j} .
\end{gathered}
$$

Components $\lambda_{i_{1}}^{1}\left(\lambda_{i}^{i}\right)$ of object of equipment form independent subobject which defines a field of invariant ($n-m$)-dimensional planes being the field of normals of the first kind surface

From (10) - (13) it follows, that the $(n-2 m-2)$ plane $L_{n-2 m-2}$ is given by the equations (12), (13), and ($n-2 m$)-plane $L_{n-2 m}$, attached invariantly to the pair and having with the $(2 m+1)$ plane $L_{2 m+1}$ the common points A_{0} and A_{n}, is given by the equations (10), (11).
5. The fields of hyperquadric having the second order contact with surfaces S_{m}^{1} and S_{m}^{2} can be attached to surfaces of the pair

$$
\begin{gather*}
a_{i j} x^{i} x^{j}-2 b_{i_{1}} x^{0} x^{i_{1}}+2 b_{i_{1}} c_{i}^{i_{1}} x^{i} x^{i_{1}}+b_{i_{1}} i_{j_{1} k_{1}}^{i_{1}} x^{j_{1}} x^{k_{1}}=0 \tag{14}\\
a_{i_{3} j_{3}} x^{i_{3}} x^{j_{3}}-2 b_{i_{2}} x^{n} x^{i_{2}}+2 b_{i_{2}} c_{i_{3} j_{2}}^{i_{2}} x^{i_{3}} x^{j_{2}}+ \\
+b_{i_{2}}^{i_{j_{2} k_{2}}^{i_{2}}} x^{j_{2}} x^{k_{2}}=0, \tag{15}
\end{gather*}
$$

where

$$
\begin{gathered}
b_{i_{1}}=\lambda_{i_{i}}^{i}+m \lambda_{i_{1}}^{0}-\Lambda_{i j}^{j} \lambda_{j_{1}}^{i} \lambda_{i_{1}}^{j}, \\
b_{i_{1}}=\lambda_{i i_{3}}^{i_{3}}+m \lambda_{i_{1}}^{n}-\Lambda_{i_{3 / 3}}^{j_{1}} \lambda_{i_{1}}^{i_{3}} \lambda_{i_{1}}^{j_{3}}, \\
a_{i j}=b_{i_{1}} \Lambda_{i j}^{i_{i j}}, \quad a_{i_{3} j_{3}}=b_{i_{1}} \Lambda_{i_{3 / 3} / 3}^{i_{1}} .
\end{gathered}
$$

If to consider that

$$
\begin{gathered}
c_{i i_{1}}^{j_{1}}=\Lambda_{i j}^{j_{1}} \lambda_{i_{1}}^{j}-\delta_{i_{1}}^{j_{1}} \lambda_{i}^{0}, \quad c_{i_{1} j}^{k_{1}}=\Lambda_{i j}^{i_{i j}} \lambda_{i_{1}}^{i} \lambda_{j_{1}}^{j}-\lambda_{\left(i_{1}\right.}^{0} \delta_{\left.j_{1}\right)}^{k_{1}}+c_{i\left(i_{1}\right.}^{k_{1}} \lambda_{\left.j_{1}\right)}^{i}, \\
c_{i_{3} j_{1}}^{i_{1}}=\Lambda_{i_{3} j_{3}}^{i_{3}} \lambda_{j_{1}}^{j_{3}}-\delta_{j_{1}}^{i_{i}} \lambda_{i_{3}}^{n}, \\
c_{i_{1} j_{1}}^{k_{1}}=\Lambda_{i_{3} j_{3}}^{k_{1}} \lambda_{i_{1}}^{i_{3}} \lambda_{j_{1}}^{j_{3}}-\lambda_{\left(i_{1}\right.}^{n} \delta_{\left.j_{1}\right)}^{k_{1}}+c_{i_{3}\left(i_{1}\right.}^{k_{1}} \lambda_{\left.j_{1}\right)}^{i_{3}},
\end{gathered}
$$

than from (14), (15) we obtain unique adjoining the hyperquadrics of surfaces S_{m}^{1} and S_{m}^{2}, accordingly.

These hyperquadrics have the following property: polara of the first (second) normal of the surface $S_{m}^{1}\left(S_{m}^{2}\right)$ in relation of the hyperquadric (14), (15) passes through the second (first) normal of the surface $S_{m}^{1}\left(S_{m}^{2}\right)$.

Consequrntly, the hyperquadric (14), (15) establishes quasi-polar conformity [8,9] between the normals of the surface $S_{m}^{1}\left(S_{m}^{2}\right)$.

In m-planes L_{m}^{1} and L_{m}^{2} the tensors and the quasitensors define the quadric

$$
\begin{equation*}
\left(a_{i j}+\lambda_{i}^{0} \lambda_{j}^{0}\right) x^{i} x^{j}-2 \lambda_{i}^{0} x^{i} x^{0}+\left(x^{0}\right)^{2}=0, \quad x^{i_{2}}=0 \tag{16}
\end{equation*}
$$

Accordingly, and
$\left(a_{i_{3} j_{3}}+\lambda_{i_{3}}^{n} \lambda_{j_{3}}^{n}\right) x^{i_{3}} x^{j_{3}}-2 \lambda_{i_{3}}^{n} x^{i_{3}} x^{n}+\left(x^{n}\right)^{2}=0, x^{i_{2}}=0$.
Polara of the point $A_{0}\left(A_{n}\right)$ in relation to the quadric (27), (28) is the second normal of a m-surface $S_{m}^{1}\left(S_{m}^{2}\right)$.
6. The point $X=x^{i}\left(A_{i}+\lambda_{i}^{0} A_{0}\right)$ belonging to the second normal L_{m-1}^{1} of the m-surface S_{m}^{1}, along the $1^{\text {st}}$-family

$$
\begin{gather*}
\omega^{i}=t^{i} \theta, \quad D \theta=\theta \Lambda \theta \\
d t^{i}-t^{i} \omega_{0}^{0}+t^{j} \omega_{j}^{i}=t_{j}^{i} \omega^{j} \tag{18}
\end{gather*}
$$

describes a line with a tangent $T X(t)$. The linear space stretched L_{n-m}^{1} on and $T X(t)$, is crossed with L_{n-m}^{1} in the point Y. The point Y describes alongside (18) a line with tangent $T Y(t)$. The linear space stretched on L_{n-m}^{1} and $T Y(t)$, is crossed with in the point $Z=z^{i}\left(A_{i}+\lambda_{i}^{0} A_{0}\right)$, where

$$
\begin{align*}
z^{i} & =\left\{\delta_{i}^{j}\left(\lambda_{k p}^{0}-\lambda_{k}^{0} \lambda_{p}^{0}+\Lambda_{k p}^{l} \lambda_{l}^{q} \lambda_{q}^{0}\right)+\right. \\
& \left.+\Lambda_{k p}^{i_{2}}\left(\lambda_{i_{2} j}^{i}-\Lambda_{q j}^{j_{2}} \lambda_{i_{2}}^{q} \lambda_{j_{2}}^{i}\right)\right\} t^{j} t^{p} x^{k} . \tag{19}
\end{align*}
$$

Relationship (19) defines projective transformation of ($m-1$)-plane L_{m-1}^{1} in itself which is defined by a matrix Π_{i}^{j}, where

$$
\begin{aligned}
\Pi_{i}^{j} & =\left\{\delta_{p}^{j}\left(\lambda_{i q}^{0}-\lambda_{i}^{0} \lambda_{q}^{0}+\Lambda_{i q}^{i_{2}} \lambda_{i_{2}}^{k} \lambda_{k}^{0}\right)+\right. \\
& \left.+\Lambda_{i q}^{i_{2}}\left(\lambda_{i_{3} p}^{j}-\Lambda_{k p}^{j_{k}} \lambda_{i_{2}}^{k} \lambda_{j_{2}}^{j}\right)\right\} t^{p} t^{q} .
\end{aligned}
$$

This transformation will be transformation W, if $\Pi_{i}^{i}=0$.

Thus, in the ($m-1$)-plane L_{m-1}^{1} we obtain the quadric, which each point is corresponded by transformation W of the ($m-1$)-plane L_{m-1}^{1} in itself [10]. This quadric can be given by the equations

$$
\begin{gather*}
\left\{\lambda_{i j}^{0}-\lambda_{i}^{0} \lambda_{j}^{0}+\Lambda_{i j}^{i} \lambda_{i_{2}}^{k} \lambda_{k}^{0}+\right. \\
\left.+\Lambda_{p j}^{i_{2 j}}\left(\lambda_{i, i}^{p}-\Lambda_{k l}^{j} \lambda_{i i_{2}}^{k} \lambda_{j_{2}}^{p}\right)\right\} x^{i} x^{j}=0, \\
x^{i_{2}}=0, \quad x^{0}-\lambda_{i}^{0} x^{i}=0 . \tag{20}
\end{gather*}
$$

The quadric (20) in the m-plane L_{m}^{1} is corresponded by a cone

$$
\begin{gathered}
\left\{\lambda_{i j}^{0}-\lambda_{i}^{0} \lambda_{j}^{0}+\Lambda_{i j}^{i_{i j}} \lambda_{i_{2}}^{k} \lambda_{k}^{0}+\Lambda_{p j}^{i_{2}}\left(\lambda_{i, i}^{p}-\Lambda_{k l}^{j_{2}} \lambda_{i_{2}}^{k} \lambda_{j_{2}}^{p}\right)\right\} x^{i} x^{j}=0, \\
x^{i_{2}}=0 .
\end{gathered}
$$

The similar cone we obtain in the m-plane L_{m}^{2}.
7. Let the point $X=x^{i}\left(A_{i_{1}}+\lambda_{i_{1}}^{0} A_{0}+\lambda_{i_{1}}^{i} A_{i}\right)$ belonging to equipping plane L_{n-m-1}^{1} of the m-surface is given. The space stretched on L_{n-m-1}^{1} and $T X(t)$, is crossed with L_{m}^{1} in the point

$$
Y=\left(L_{n-m-1}^{1}, T X(t)\right) \cap L_{m}^{1}=y^{0} A_{0}+y^{i}\left(A_{i}+\lambda_{i}^{0} A_{0}\right) .
$$

Then

$$
X^{*}=\left(L_{m}^{1}, T Y(t)\right) \cap L_{n-m-1}^{1}=x^{* i_{1}}\left(A_{i_{1}}+\lambda_{i_{1}}^{0} A_{0}+\lambda_{i_{1}}^{i} A_{i}\right)
$$

where

$$
\begin{equation*}
x^{*_{i}}=\Lambda_{i p}^{i_{1}}\left(\lambda_{j_{1}}^{0} \delta_{j}^{i}+\lambda_{j_{1},}^{i}-\Lambda_{k j}^{k_{1}} \lambda_{j_{1}}^{k} \lambda_{k_{1}}^{i}\right) t^{j} t^{p} x^{j_{1}} \tag{21}
\end{equation*}
$$

Hence, we obtain transformation (21) of the ($n-m-1$)-plane L_{n-m-1}^{1} in itself which is transformation W if

$$
\Lambda_{i j}^{i_{i j}}\left(\lambda_{i_{1}}^{1} \delta_{k}^{i}+\lambda_{i_{1} k}^{i}-\Lambda_{p k}^{j_{i}} \lambda_{i_{1}}^{p} \lambda_{j_{1},}^{i}\right) t^{k} t^{j}=0
$$

Thus, we obtain a cone

$$
\Lambda_{i j}^{i_{i}}\left(\lambda_{i_{1}}^{0} \delta_{k}^{i}+\lambda_{i_{1} k}^{i}-\Lambda_{p k}^{j_{1}} \lambda_{i_{1}}^{p} \lambda_{j_{1}}^{i}\right) x^{j} x^{k}=0, \quad x^{i_{1}}=0,
$$

in the m-plane: which generatrixes are corresponded by the $1^{\text {st }}$-families (18) giving transformations W of the ($n-m-1$)-plane L_{n-m-1}^{2} in itself.

Similarly in the m-plane L_{m}^{2} we obtain a cone

$$
\Lambda_{i_{3} j_{3}}^{i_{2}}\left(\lambda_{i_{2}}^{n} \delta_{k_{3}}^{i_{3}}+\lambda_{i_{2} k_{3}}^{i_{3}}-\Lambda_{k_{3} l_{3}}^{j_{2}} \lambda_{i_{2}}^{l_{3}} \lambda_{j_{2}}^{i_{3}}\right) x^{i_{3}} x^{k_{3}}=0, \quad i_{1}^{i_{1}}=0
$$

which generatrixes are corresponded by transformations W of the $(n-m-1)-L_{n-m-1}^{2}$ in itself.
8. Let's consider the point $X=x^{0} A_{0}+x^{i}\left(A_{i_{1}}+\lambda_{i_{1}}^{0} A_{0}+\lambda_{i_{1}}^{i} A_{i}\right) \quad$ belonging to the ($n-m-1$)-plane L_{n-m}^{1}. We have alongside (18)

$$
Y=\left(L_{n-m}^{1}, T X(t)\right) \cap L_{m-1}^{1}=y^{i}\left(A_{i}+\lambda_{i}^{0} A_{0}\right),
$$

where

$$
y^{i}=x^{0} t^{i}+x^{i_{1}}\left(\lambda_{i_{1}}^{0} \delta_{j}^{i}+\lambda_{i_{i}, j}^{i}-\Lambda_{j k}^{j_{1}} \lambda_{i_{1}}^{k} \lambda_{j_{1}}^{i}\right) t^{j} .
$$

Let's find

$$
\begin{gathered}
X^{*}=\left(L_{m-1}^{1}, T X(t)\right) \cap L_{n-m}^{1}= \\
=x^{* 0} A_{0}+x^{* i_{1}}\left(A_{i_{1}}+\lambda_{i_{1}}^{0} A_{0}+\lambda_{i_{1}}^{i} A_{i}\right),
\end{gathered}
$$

where

$$
\begin{gathered}
x^{* 0}=\left(\lambda_{i j}^{0}-\lambda_{i}^{0} \lambda_{j}^{0}-\Lambda_{i j}^{i} \lambda_{i_{1}}^{0}+\Lambda_{i j}^{i} \lambda_{i_{1}}^{k} \lambda_{k}^{0}\right) t^{i} t^{j} x^{0}+ \\
+\left(\lambda_{i_{1}}^{0} \delta_{k}^{i}+\lambda_{i, k}^{i}-\Lambda_{j k}^{j} \lambda_{i_{1}}^{j} \lambda_{j_{1}}^{i}\right)\left(\lambda_{i p}^{0}-\lambda_{i}^{0} \lambda_{p}^{0}-\Lambda_{i p}^{j_{i}} \lambda_{j_{1}}^{k} \lambda_{k}^{0}\right) t^{k} t^{p} x^{i_{1}},(22) \\
x^{* i_{1}}=\Lambda_{i j}^{i_{i j} i^{i} t^{j}} x^{0}+\Lambda_{i j}^{i_{i j}}\left(\lambda_{j_{1}}^{0} \delta_{k}^{i}+\lambda_{j_{1} k}^{i}-\Lambda_{p k}^{k_{1}} \lambda_{j_{1}}^{p} \lambda_{k_{1}}^{i}\right) t^{j} t^{k} x^{j_{1}} .
\end{gathered}
$$

Hence, (22) defines projective transformation of the $(n-m)$-plane L_{n-m}^{1} in itself which will be transformation W if

$$
\left\{\lambda_{i j}^{0}-\lambda_{i}^{0} \lambda_{j}^{0}+\Lambda_{i j}^{i_{i}} \lambda_{i_{1}}^{k} \lambda_{k}^{0}+\Lambda_{i k}^{i_{1}}\left(\lambda_{i_{1} j}^{k}-\Lambda_{p j}^{j_{1}} \lambda_{i_{1}}^{p} \lambda_{j_{1}}^{k}\right)\right\} t^{i} t^{j}=0 .
$$

Thus, we obtain the cone

$$
\begin{gathered}
\left\{\lambda_{i j}^{0}-\lambda_{i}^{0} \lambda_{j}^{0}+\Lambda_{i j}^{i_{i j}} \lambda_{i_{1}}^{k} \lambda_{k}^{0}+\Lambda_{i k}^{i_{1}}\left(\lambda_{i_{i j}}^{k}-\Lambda_{p j}^{j_{1}} \lambda_{i_{1}}^{p} \lambda_{j_{1}}^{k}\right)\right\} x^{i} x^{j}=0, \\
x^{i_{1}}=0,
\end{gathered}
$$

in the m-plane L_{m}^{1} which generatrixes are corresponded by the $1^{\text {st }}$ - families (18) giving transformations W of the $(n-m)$-plane L_{n-m}^{1}. Transformation of the $(n-m)$-plane L_{n-m}^{1} in itself and the corresponding cone in the m-plane L_{m}^{2} which generatrixes are corresponded by transformations $W(n-m)$ of the $(n-m)$-plane L_{n-m}^{2} in itself are obtained by similar way.
9. Let's take the point $X=x^{0} A_{0}+x^{i}\left(A_{i}+\lambda_{i}^{0} A_{0}\right)$ belonging to the tangent of a m-plane to the m-surface S_{m}^{1}. We have alongside (18)

$$
Y=\left(L_{m}^{1}, T X(t)\right) \cap L_{n-m-1}^{1}=y^{i_{1}}\left(A_{i_{1}}+\lambda_{i_{1}}^{0} A_{0}+\lambda_{i_{1}}^{i} A_{i}\right),
$$

where

$$
y^{i_{1}}=\Lambda_{i j}^{i_{1}} x^{i} x^{j},
$$

тогда

$$
X^{*}=\left(L_{n-m}^{1}, T Y(t)\right) \cap L_{m}^{1}=x^{* 0} A_{0}+x^{* i}\left(A_{i}+\lambda_{i}^{0} A_{0}\right),
$$

where

$$
\begin{gather*}
x^{* 0}=\left\{\lambda_{i_{1} j}^{0}-\lambda_{i_{1}}^{0} \lambda_{j}^{0}-\lambda_{i}^{0} \lambda_{i_{1} j}^{i}+\right. \\
\left.+\Lambda_{p j}^{j_{1}}\left(\lambda_{i}^{0} \lambda_{i_{1}}^{p} \lambda_{j_{1}}^{i}-\lambda_{i_{1}}^{p} \lambda_{j_{1}}^{0}\right)\right\} \Lambda_{k q}^{i_{1}} t^{j} t^{q} x^{k} \tag{23}\\
x^{* i}=\Lambda_{k j}^{i_{1}}\left(\lambda_{i_{1}}^{0} \delta_{p}^{i}+\lambda_{i_{1} p}^{i}-\Lambda_{p q}^{j_{1}} \lambda_{i_{1}}^{q} \lambda_{j_{1}}^{i}\right) t^{p} t^{j} x^{k}
\end{gather*}
$$

Hence, (23) defines projective transformation of the m-plane L_{m}^{1} in itself, which is transformation W if

$$
\Lambda_{i j}^{i_{1}}\left(\lambda_{i_{1}}^{0} \delta_{p}^{i}+\lambda_{i_{1} p}^{i}-\Lambda_{k p}^{j_{1}} \lambda_{i_{1}}^{k} \lambda_{j_{1}}^{i}\right) t^{p} t^{j}=0
$$

Literature

1. Bazylev V.T. On multidimensional nets and their transformation. [in Russian] // Itogi nauki. Ser. Geometry - 1965. - P. 138-164.
2. Ostianu N.M. Invariant equipment of a surface, bearing a net. [in Russian] // Izv. vuzov. Mathematics. - 1970. - № 7. - P. 72-82.
3. Bolodurin V.S. On point conformity between multidimensional surfaces of projective spaces [in Russian] // Izv. vuzov. Mathematics. 1975. - № 18. - P. 11-23.
4. Laptev G.F. Differential geometry of immersed varieties. A theoret-ical-group method of differential-geometric researches. [in Russian] // Trudy Mos. Mathem. Obshestva. - 1953. - № 2. - P. 275-382.
5. Luchinin A.A., Knyazeva O.G. Coherency, associated with a pair of m-surfaces. [in Russian] // Progressive technologies and economy in machine building: Proceedings of the All-Russ. Scientific - Pract. Conf. - Yurga, 2003. - P. 314-315.
and we have the cone

$$
\begin{gathered}
\Lambda_{i j}^{i_{1}}\left(\lambda_{i_{1}}^{0} \delta_{p}^{j}+\lambda_{i_{1} p}^{i}-\Lambda_{k p}^{j_{i}} \lambda_{i_{1}}^{q} \lambda_{j_{1}}^{i}\right) x^{i} x^{j}=0, \\
x_{1}^{i_{1}}=0,
\end{gathered}
$$

in the m-plane L_{m}^{1}, which generatrixes are corresponded by the $1^{\text {st }}$ families, giving transformations W of the m plane L_{m}^{1} in itself. Similar transformation is obtained in L_{m}^{2}.

The theorem. If transformation (19), (22) is transformation W of the plane $L_{m-1}^{1}\left(L_{n-m}^{1}\right)$ in itself, then and transformation (22), (19) is transformation W of the plane $L_{n-m}^{1}\left(L_{m-1}^{1}\right)$ in itself.

If transformation (21) is transformation W of the plane L_{n-m-1}^{1} in itself, transformation (23) is transformation W of the plane L_{m}^{1} in itself and on the contrary if transformation (23) is transformation W of the plane L_{m}^{1} in itself, (21) is transformation W of the plane L_{n-m-1}^{1}.
6. Luchinin A.A. On geometry of a pair of m-surfaces in the projective space P_{n}. [in Russian] // Geometrical collection. - 1977. - Issue 18. - Tomsk: Izd. Tomsk Gos. Univ. - P. 33-46.
7. Bazylev V.T. On nets on multidimensional surfaces of projective space. [in Russian] // Izv. vuzov. Mathematics. - 1966. - № 2. - P. 9-19.
8. Luchinin A.A. On a class of the projective fibres // Proc. $5^{\text {th }}$ KoreaRussia Intern. Symp. on Science and Technology. - Tomsk, 2001. V. 2. - P. 235-238.
9. Ostianu N.M. Distribution of m-dimensional linear elements in the space of projective coherency // Proceedings of geometrical seminar. [in Russian] - VINITY Akad. Nauk USSR. - 1971 - V. 3. - P. 95-114.
10. Ivlev E.T., Luchinin A.A. On representation of fields of two-dimensional sites and, defined on variety by invariant way. [in Russian] // Proc. $6^{\text {th }}$ Korea-Russia Intern. Symp. on Science and Technology. 2004. - V. 2. - P. 232-233.

