Технические науки

УДК 621.181.001.4:621.18

РЕНТГЕНОДИЛАТОМЕТРИЧЕСКИЕ ТЕМПЕРАТУРНЫЕ ИССЛЕДОВАНИЯ СТЕНКИ КОТЕЛЬНОЙ ТРУБЫ

А.С. Заворин, А.А. Макеев, Л.Л. Любимова, А.А. Ташлыков, А.И. Артамонцев, Б.В. Лебедев

Томский политехнический университет

E-mail: ghost@tpu.ru

Представлены результаты термоциклических испытаний образца котельной трубы из стали 20 рентгенодилатометрическим методом в виде зависимостей внутренних структурных напряжений, параметров и коэффициентов линейных термических расширений кристаллических решеток от температуры. Это позволяет оценивать состояние труб в процессе эксплуатации и после восстановительной термической обработки на основании установленных закономерностей внутриструктурных термических превращений.

Введение

Большинство энергоустановок тепловых электростанций России исчерпало свой проектный ресурс в 100 тыс. ч [1]. В связи с этим необходимы научно-обоснованные технические решения по продлению срока службы энергооборудования, замене или реновации около 25 тыс. т только паропроводов. Увеличение срока службы и надежности трубных изделий невозможно без обеспечения их качества, подтверждаемого диагностикой текущего состояния [2].

Известно, что по мере наработки энергетического оборудования происходит накопление повреждаемости и старение металла, работающего при высоких температурах в условиях ползучести, поэтому часто восстановление свойств труб поверхностей нагрева является актуальной задачей. Изучение опыта ведущих зарубежных и отечественных энергомашиностроительных фирм в области восстановительной термической обработки (ВТО) показывает, что эта технология в деталях до сих пор не проработана и не всегда дает успешный результат.

С точки зрения вскрытия причин процессов термической усталости и ползучести вызывают интерес мало представленное в литературе поведение параметров элементарных ячеек при температурной нагрузке (микродилатометрия) и характер изменения внутренних структурных напряжений I и II рода в материале стенок котельных труб. Эти параметры могут быть определены рентгенодифракционным методом по сдвигам и уширению дифракционных линий [3].

В этой связи цель исследований заключалась в определении параметра элементарной ячейки, коэффициентов линейных термических расширений кристаллических решеток и характера изменения внутренних напряжений I и II рода для стали 20 в широком диапазоне температур при имитации соответствующих эксплуатационных факторов в виде циклов температурных нагружений.

Методика исследований

Термические испытания стали 20 проведены при давлении ~1,3·10⁻³ Па с целью исключения окислительных реакций. Использовался образец, изготовленный из прямого участка трубы, в виде шлифа размером $15 \times 20 \times 3$ мм. Этот образец испытывался на рентгеновском аппарате Дрон-0,5 с применением высокотемпературной дифрактометрической установки УВД-2000 и рентгеновской трубки с молибденовым анодом и длиной волны $\lambda_{Kacp}=0,71069$ Å. Использование жесткого молибденового излучения позволяло осуществлять сканирование образца в широком диапазоне утлов дифракционной картины не только от поверхностных слоев образца, но и от объема.

Эксперимент заключался в организации форсированного искусственного старения образца термоциклированием. Методика термоциклирования сводилась к следующему. При достижении вакуума в рабочем объеме высокотемпературной дифрактометрической приставки производился подъем температуры t от 10 °C (температура охлаждающей воды) до температуры испытаний. Диапазон температур испытаний в одном макроцикле составлял от 10 до 700 °C с шагом подъема температуры в каждом составляющем его микроцикле порядка 40...100°С при длительности микроцикла 24 ч. При рабочей температуре испытаний после достижения стационарного температурного состояния в микроцикле осуществлялось рентгенографирование образца. В дальнейшем образец, испытываемый под термической нагрузкой, называется «горячим». После рентгеносъемки «горячего» образца установка расхолаживалась до температуры охлаждающей воды и осуществлялась рентгеносъемка «холодного» образца. Всего было выполнено 3 макроцикла и 84 теплосмены, под которой понимается каждый переход от одной температуры к другой.

С целью стабилизации внутриструктурных напряжений после второго термоцикла проведена обработка образца аустенизацией, для чего применена процедура фазовой перекристаллизации структуры, заключающаяся в нагреве образца выше точки A_{c3} диаграммы Fe – C (t=845 °C) с последующим $\alpha \rightarrow \gamma$ -переходом при медленном охлаждении. Экспериментально процесс аустенизации для трубного образца из стали 20 проведен по следующей схеме:

- 1) α -Fe \rightarrow нагрев до 925 °C, выдержка 1 ч $\rightarrow \gamma$ -Fe;
- 2) γ -Fe → охлаждение до 800 °C при υ =1,67 °/мин → (γ -Fe)+(α -Fe);

- 3) $(\gamma$ -Fe)+ $(\alpha$ -Fe) \rightarrow охлаждение до 700 °C, υ =1,67 °/мин \rightarrow (γ -Fe)+ $(\alpha$ -Fe);
- 4) $(\gamma$ -Fe)+ $(\alpha$ -Fe) \rightarrow охлаждение до 10 °C, υ =5,83 °/мин \rightarrow $(\gamma$ -Fe)+ $(\alpha$ -Fe);
- 5) $(\gamma$ -Fe)+ $(\alpha$ -Fe) \rightarrow нагрев до 1000 °C за 20 мин $\rightarrow \gamma$ -Fe;
- 6) отжиг *ү*-Fe при 1000 °C за 40 мин;
- 7) γ -Fe \rightarrow нагрев до 1050 °C за 5 мин, отжиг 5 мин;
- форсированное охлаждение с печью до 550 °С за 5 мин;
- 9) отжиг при 550 °С в течение 3 ч.;
- 10) форсированное охлаждение с печью до 10 °С за 30 мин.

Методика рентгенодиагностики при термоциклировании включает определение параметров кристаллической решетки (*a*) α -твердого раствора горячего и холодного образца, мгновенных коэффициентов линейных термических расширений кристаллических решеток (α), изменения внутренних структурных напряжений I и II рода при теплосменах.

Параметр кристаллической решетки вычислялся по линии (211) [3]:

$$a = \frac{\lambda}{2\sin\theta} \cdot \sqrt{H^2 + K^2 + L^2},$$

где λ – длина волны рентгеновского излучения, Å; θ – угол дифракции, определяемый по положению «центра тяжести» дифракционной линии θ_{um} ; *H*, *K*, *L* – индексы Миллера. Ошибка определения периода решетки оценивается из выражения, получаемого дифференцированием уравнения Вульфа-Брэгга, и составляет при постоянной точности измерения θ ($\Delta \theta$ =2,6·10⁻⁶ рад): Δa =*a*·ctg θ · $\Delta \theta$ =±0,0006 Å.

Мгновенный коэффициент термических линейных расширений кристаллических решеток определяется из выражения [4]:

$$\alpha = \frac{a_i^{20p} - a_{i-1}^{x_{0,1}}}{t_i - t_{x_{0,1}}} \cdot \frac{1}{a_{i-1}^{x_{0,1}}}$$

где a_i^{xop} , a_{i-1}^{xoa} — параметры элементарных ячеек при температуре t_i и для холодного металла предыдущего термоцикла; t_{xoa} — температура охлаждающей воды (всегда 10 °C); t_i — рабочая температура.

Методика измерения средних внутренних микронапряжений II рода заключалась в измерении экспериментальных профилей дифракционных линий и определении истинных физических уширений β , т. к. ширина дифракционной линии складывается из геометрического и физического уширений. Первое зависит от геометрии съемки, а во втором случае дифракционная линия приобретает уширение, зависящее от структуры и свойств материала, т. е. при наличии микронапряжений σ_{II} и при измельчении кристаллитов D [3, 5].

Известно, что физическое уширение каждой дифракционной линии β , в свою очередь, связано с *m*-уширением от дисперсности и *n*-уширением от

микронапряжений и описывается выражением:

 $\beta = \frac{(m+2n)^2}{m+4n}$ [3, 5]. Т.к. в уравнении два неизвест-

ных, для анализа используются две линии рентгенограммы. Для первой из них физическое уширение равно

$$\beta_1 = \frac{(m_1 + 2n_1)^2}{m_1 + 4n_1}$$

для второй —

$$\beta_2 = \frac{(m_2 + 2n_2)}{m_2 + 4n_2}.$$

После разделения эффектов блочности m_1 , m_2 и миронапряжений n_1 , n_2 устанавливаются значения размеров кристаллитов, микронапряжения II рода в соответствии с выражениями:

$$D = \frac{0,89 \cdot \lambda}{m_1 \cos \theta_1} \text{ M } \sigma_{\text{II}} = \frac{n_2}{4 \cdot \text{tg} \theta_2} E,$$

в которых индексы 1 и 2 относятся соответственно к структурным параметрам первой и второй дифракционных линий, и плотности дислокаций $\rho = \frac{3}{161}$.

$$-\frac{1}{D^2}$$

Величина средних внутренних макронапряжений І рода (зональных) рассчитывалась по формуле:

$$\sigma_I = \frac{a_{i+1} - a_i}{a_{i+1}} E$$

где *a*_{*i*+1}, *a*_{*i*} – параметры элементарных ячеек горячих образцов при рабочей температуре и температуре предыдущего микроцикла.

Обсуждение результатов

Экспериментальные результаты исследования представлены в зависимости от температуры: для внутренних макронапряжений первого рода (зональных) на рис. 1, а для линейных термических расширений кристаллических решеток на рис. 2.

Зональные напряжения в образце при теплосменах в первом термоцикле изменяются в упругопластической области деформаций в диапазоне 62...215 МПа (кривая I). Процесс искусственного старения образца термоциклированием уже в течение 40 ч первого термоцикла привел к существенному изменению свойств, что проявилось во втором термоцикле испытаний (кривая II). В частности, при служебной температуре 350...380 °С внутренние напряжения близки к нулю. Это означает, что за счет уменьшения доли упругой деформации в материале нарастает пластичность и он подвержен наиболее часто наблюдаемым повреждениям трубных поверхностей нагрева - порообразованию за счет ползучести. В результате испытаний наиболее приемлемая температура эксплуатации обозначилась при 300 °C в области сжимающих напряжений, повышающих усталостную прочность и снижающих чувствительность стали к концентраторам напряжений.

В процессе разогрева во втором термоцикле внутренние напряжения в условиях отсутствия стесненности образца дважды релаксируют. Явление релаксации напряжений, определяемое обычно как процесс самопроизвольного падения напряжений в образцах или деталях, работающих в условиях, исключающих возможность изменения линейных размеров, связывается с микроструктурной повреждаемостью границ зерен, образованием пор и цепочек пор. Температуры релаксации внутренних напряжений эксплуатационно опасны ползучестью и формоизменением. Это обстоятельство необходимо учитывать при частых теплосменах и проведении «горячих» гидропрессовок, снижая их количество и температуру.

Аустенизация стали, проведенная после второго термоцикла, привела к восстановлению зональных напряжений в диапазоне служебных температур (до 400 °C) и устранению межзеренной пористости за счет разницы в объемах элементарных ячеек γ - и α -фаз при фазовых превращениях. Кривая III изменения внутренних напряжений после аустенизации обнаруживает наличие особой точки при температуре 100 °C, когда внутренние напряжения близки к нулю. Это обстоятельство необходимо учитывать при гидроиспытаниях на плотность и прочность, когда перед подъемом давления в контуре необходимо разогреть оборудование и трубопроводы из стали 20 выше 100 °C в соответствии с особенностями ее внутриструктурных термических превращений.

Рис. 1. Зависимость внутренних макронапряжений І рода от температуры для образца трубы из стали 20: І, ІІ, ІІІ – последовательные термоциклы образца

Сравнение температурных зависимостей линейных термических расширений кристаллических решеток образца в I и III термоциклах со справочными значениями, приведенное на рис. 2, позволяет констатировать следующие факты. Вопервых, коэффициенты линейных термических расширений кристаллических решеток в зависимости от температуры для трубы (кривая 1) заметно отличаются от справочных значений для данной марки стали (кривая 3) в аномальных температурных точках 50, 150, 250 и 450 °С. Эти аномалии в процессе пуска и останова энергооборудования при наличии градиентов температур будут приводить к накоплению повреждаемости в стенке котельной трубы, термической усталости металла и снижению его работоспособности. Во-вторых, предлагаемый регламент аустенизации, направленный на получение фазовой однородности структуры и стабилизацию зональных напряжений, приводит к стабилизации коэффициентов линейных термических расширений кристаллических решеток в диапазоне служебных температур (кривая 2).

Рис. 2. Температурная зависимость коэффициентов линейного термического расширения кристаллических решеток для образца трубы из стали 20: 1) экспериментальные данные (1 термоцикл); 2) экспериментальные данные (термоцикл после аустенизации); 3) справочные значения (макродилатометрия) [7]

Изложенное подтверждается изменением параметра кристаллической решетки «холодного» образца в зависимости от продолжительности действия термической нагрузки в каждом термоцикле, рис. 3. Можно видеть, что в процессе форсированного старения образца термоциклированием происходят необратимые изменения параметра решетки, т.е. накопление микроповреждаемости и структурная деградация. После аустенизации средний параметр кристаллической решетки стабилизируется. В качестве количественной характеристики стабилизации выбрана скорость изменения параметра $\upsilon = \frac{1}{\tau} \frac{\Delta a}{a} \cdot 100 \%$, которая составляет для I–III тер-

моциклов: $\upsilon_1 = 2,7 \cdot 10^{-3}$; $\upsilon_{II} = 1,1 \cdot 10^{-2}$; $\upsilon_{III} = 8,9 \cdot 10^{-4} \%/ч$. Таким образом, аустенизация уменьшает скорость изменения параметра кристаллической решетки (скорость ползучести) и замедляет процесс «старения» образца за счет уменьшения плотности структурных дефектов.

Таблица. Значения плотности дислокаций образца при фиксированной температуре в трех последовательных макроциклах

Температура	Плотность дислокаций в макроциклах, 1/см², 10-10		
микроцикла, °С		II	III
250	6,8	8,9	3,2
300	8,9	7	2,2
400	7,46	153	3

В таблице представлено изменение плотности структурных дефектов (плотность дислокаций) в

диапазоне служебных температур для трех макроциклов измерений.

Рис. 3. Зависимость периода кристаллической решетки для холодного образца от продолжительности термической нагрузки

Полученные результаты показывают, что в результате аустенизации, проведенной после второго макроцикла, плотность структурных дефектов уменышается и стабилизируется на уровне 2...3·10¹⁰ 1/см⁻², что свидетельствует об эффектив-

СПИСОК ЛИТЕРАТУРЫ

- 1. Тумановский А.Г., Резинских В.Ф. Стратегия продления ресурса и технического перевооружения тепловых электростанций // Теплоэнергетика. – 2001. – № 6. – С. 3–10.
- Скоробогатых В.Н., Борисов В.П., Щенкова И.А. Перспективы совершенствования трубной продукции для изготовления котлов и паропроводов высокого и сверхкритического давления // Теплоэнергетика. – 2001. – № 4. – С. 3–10.
- Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электронооптический анализ. – 2-ое изд., перераб. и доп. – М.: Металлургия, 1970. – 366 с.

ности проведенного процесса стабилизации структуры и может быть положено в основу разработки технологии ВТО и контроля технического состояния труб паровых котлов после ВТО.

Заключение

рентгенодилатометрические Выполненные температурные исследования и полученные зависимости коэффициентов линейных термических расширений кристаллических решеток, внутренних структурных напряжений от температуры, плотности структурных дефектов в процессе искусственного форсированного старения образца термоциклированием позволяют диагностировать текущее физическое состояние металла труб паровых котлов, в том числе накопление повреждаемости по изменению параметра элементарной ячейки и плотности структурных дефектов, разрабатывать и контролировать режимы восстановительной термической обработки, в частности, диагностировать эффективность восстановления структуры металла труб, и, следовательно, принимать научно-обоснованные решения по продлению срока службы энергооборудования.

- Руководство по рентгеновскому анализу минералов / Под ред. В.А. Франк-Каменецкого. – Л.: Недра, 1975. – 399 с.
- Любимова Л.Л. Методика рентгенометрического анализа внутриструктурных напряжений // Известия Томского политехнического университета. – 2003. – Т. 306. – № 4. – С. 72–77.
- Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов. – М.: Гос. изд-во физ.-мат. литературы, 1961. – 864 с.
- Стали и сплавы для высоких температур: Справ. изд. в 2-х кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. – М.: Металлургия, 1991. – 383 с.