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1. Model Calibration and Impact Analysis on Water Resources from 

Agricultural Activities 

 

Distributed hydrological models are structure to enable the special variation in 

catchment characteristics to be represented by providing data for a network of grid 

points. Often model applications required several thousands of grid points, each of 

which characterized by several parameters and variables. In this way distributed 

models differ fundamentally from lumped models, where a catchment is considered as 

one unit characterized by, typically, a few tens of parameters and variables. Thus the 

number of parameters and variables in a distributed model is, in principle, often two 

or three orders of magnitude higher than it would be for a lumped model of the same 

area. Obviously, this generates different requirements to lumped and distributed 

models with regard to parameterisation, calibration and validation procedures.  

 

2. Model parameterisation and choice of calibration parameters 

A distributed hydrological modelling system such as MIKE SHE potentially involves 

a large number of model parameters to be specified by the user during the model 

setup. Some of these parameters may be assessed from field data, e.g. geological 

descriptions from well-logs, pumping test analysis, maps of soil profiles, soil analysis 

(texture, density, retention curves), and vegetation maps. Comprehensive field data, 

however, are seldomly available to fully support specification of all model 

parameters. In addition, some model parameters are of a more conceptual nature and 

cannot be directly assessed from field data. 

In the model parameterisation, the available field data should be used to define the 

spatial patterns of the parameter values to describe the most significant variations. 

This is often done by defining a conceptual model with appropriate parameter classes 

of geological units, soil types, vegetation types etc. For each class, some parameters 

are then assessed directly from field data while other parameters may be subject to 

calibration. The challenge is to formulate a relatively simple model parameterisation 

in order to provide a well-posed calibration problem but at the same time keep it 

sufficiently complex in order to capture the spatial variability of key model 

parameters.  
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Refsgaard and Storm (1996) emphasize that a rigοrοus parameterisation procedure is 

crucia1 in order to avoid methodologica1 problems in the subsequent phases of 

mode1 calibration and validation. In parameterisation, the spatial patterns of the 

parameter va1ues are defined so that a given parameter only reflects the significant 

and systematic variation described in the available field data, as exemplified by the 

practice of using representative parameter va1ues for individua1 soi1 types, 

vegetation types or geological layers. Thus the parameterisation process effectively 

reduces the number of free parameters coefficients which need to be adjusted in the 

subsequent calibration procedure. The following points are important to consider in 

the parameterisation procedure (Refsgaard and Storm, 1996).  

 

• The parameter classes (soil types, vegetation types, climatological zones, geo-

logical layers, etc.) should be selected so that it becomes easy, in an objective 

way, to associate parameter values. Thus the parameter va1ues in the different 

classes should, to the highest possible degree, be assessable from available 

field data.  

• It should explicitly be evaluated which parameters can be assessed from field 

data alone and which need some kind of calibration. For the parameters 

subject to calibration, physical1y acceptable intervals for the parameter values 

should be estimated. 

• The number of real calibration parameters should be kept low, both from 

practical and methodological points of view. This can be done, for instance, by 

fixing a spatia1 pattern of a parameter but allowing its absolute value to be 

modified through calibration. 

 

Refsgaard in his paper (Refsgaard, 1997), subdivided a catchment area of 440 km2 

into grid squares of 500 X 500 m2 and Vazquez and Feyen, (Vazquez and Feyen, 

2003) subdivided a catchment area of 586 km2 with a resolution of 600 X 600 m2.  

Sensitivity tests were made by Refsgaard in his paper (Refsgaard, 1997) using the 

model (calibrated and validated on a 500 m grid) on coarser grids: 1000, 2000 and 

4000 m. The results of the four model-simulations of discharge for the entire 

catchment are shown that the 500 m and the 1000 m models only differ marginally.  

At the project Life Strymon the model domain area of 1510 km2 subdivided in grids 
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with a resolution of 400 X 400 m2. The smaller subdivision for larger area than the 

combinations derived from the literature gives that there is no necessity for the grid 

size calibration. 

 

The elevation of the area varies approximately from a minimum of 0 m in the 

southern part to a maximum of 100 m in the surrounding area. The profiles definition 

of the river tributaries was based on interpolation/extrapolation of a few measured 

profiles. Roughness coefficients were based on values from literature for rivers. 

Drainage starts when the water table rises above the elevation of the drains and is 

proportional to the difference in level between the water table and the drainage depth. 

The drainage depth of 1,5 m was derived from LRA of Serres as the most appropriate 

for the drain area. Also, Sahoo et.al. (2005) used drainage depth of 1 m. So the 

drainage depth of 1,5 m decided not to be included in the calibration process. The 

drainage depth has more influence on the recession of the hydrograph (Refsgaard, 

1997). 

On the other hand the drainage time constant or drainage coefficient was calibrated. 

This parameter determines the velocity of the drainage and mostly influences the peak 

of the hydrograph (Feyen et al., 2000).  

 

Model performance in the calibration and validation process can be evaluated both 

qualitatively, based on visual graphical techniques, and quantitatively, based on some 

statistical measures. In this study, both methods were combined but with emphasis on 

the statistical appreciation of the model performance. A first idea of the accuracy of 

the results was based on visual inspection of their graphical representation; then 

statistical parameters for the simulations were calculated. The statistical criteria used 

in the analysis are the Relative Root Mean Square Error (RRMSE), the Coefficient of 

Determination (CD), the Coefficient of Efficiency (EF) and the Mean Absolute Error 

(ABSERR) and can be depicted by the following expressions (Feyen et al. 2000). 
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Where Pi is the i-th simulated value, Oi is the i-th observed O  is the average of the 

observed values, n is the number of observations in the consider period. 
 

The water mass balance in the Strymonas basin, except from the surface water, 

depends also from the evaporo-transpiration and the water exchange between the 

surface and ground water bodies.The established monitoring network in Strymonas 

basin gives the appropriate measurements in order to avoid uncertainties and set the 

right parameters for the surface water bodies. The lake of measurements for the 

groundwater and evaporo-transpiration parameters drives to the modeling techniques 

of sensitivity analysis, calibration and validation of those model parameters. 

The main surface water body which exchange water with the groundwater body of the 

Strymonas basin is Lake Kerkini. So the basic parameter for calibration was the 

leakage coefficient of the lake Kerkini. For this parameter used the try and error 

method. The values of leakage coefficient that were tested are 8*10-8, 1*10-7, 3*10-7, 

4*10-7 and 8*10-7. 

The outflow from Lakes Kerkini’s dam was simulated in order to keep the water level 

of the lake as it measured. 

The amount of leakage discharge for the values 8*10-7 and 4*10-7 was large enough 

and the water level of the lake was lower than the measured, as shown at the figures 5. 

On the other head the leakage coefficient values off 8*10-8, 1*10-7 and 3*10-7 

following very steeped way the water level of the lake as shown at the figures 5 and 

the statistic calculations that MIKE SHE produce.  
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  Figure 1. Application of the model with Leakage Coefficient = 8*10-6 (black line), 

observed time series (blue line).  

 

Statistical measures of the application with Leakage Coefficient = 8*10-6 

ME = 1.22567 

MAE = 1.24836 

RMSE = 1.61399 

STDres = 1.05009 

R (Correlation)=0.957414 

R2 (Nash Sutcliffe) = 0.00874 
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  Figure 2. Application of the model with Leakage Coefficient = 4*10-7  (black line), 

observed time series (blue line).  

 

Statistical measures of the application with Leakage Coefficient = 4*10-7 

ME = 0.106571 

MAE = 0.149095 

RMSE = 0.259739 

STDres = 0.236869 

R (Correlation)=0.991283 

R2 (Nash Sutcliffe) = 0.974887 
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  Figure 3. Application of the model with Leakage Coefficient = 3*10-7  (black line), 

observed time series (blue line).  

 

Statistical measures of the application with Leakage Coefficient = 3*10-7 

ME = 0.00770456 

MAE = 0.0423322 

RMSE = 0.0584749 

STDres = 0.0579651 

R (Correlation)=0.999568 

R2 (Nash Sutcliffe) = 0.998809 
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Figure 4. Application of the model with Leakage Coefficient = 8*10-8  (black line), 

observed time series (blue line).  

 

Statistical measures of the application with Leakage Coefficient  = 8*10-8   
 

ME = 0.0029944 

MAE = 0.030518 

RMSE = 0.034401 

STDres = 0.016940 

R (Correlation)=0.99996 

R2 (Nash Sutcliffe) = 0.99959 

 

 

Very important information that the local authorities obtain was that after twentieth of June 

summer period there is no outflow discharge from the dam in order to keep the water in the lake 

for irrigation purpose. This tip helped to reject the leakage coefficient values of 8*10-8and 

1*10-7 because with this values outflow discharge occurred downstream of Lake 

Kerkini’s Dam as shown at the figure 5. 

 So the most appropriate value for the leakage coefficient in the lake Kerkini is the value of 

3*10-7.     
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Sensitivity Analysis of Leakage Coefficient in Lake Kerkini
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    Figure 5. Discharge occurred downstream of Lake Kerkini’s Dam  
 

 

Model calibration by sensitivity analysis of the drainage coefficient for the cultivated 

areas. 

 

An other parameter that has calibrated is the drainage time constant or drainage 

coefficient. This parameter determines the velocity of the drainage and mostly 

influences the peak of the hydrograph as mentioned by Feyen (Feyen et al., 2000) and 

Vazquez (Vazquez et al., 2002).  

The values of drainage coefficient that were tested are 7*10-8, 1*10-7, 3*10-7, 5*10-7 

and 7*10-7. The most important period for the calibration is when the irrigation starts. 

So there are two statistical periods one for the irrigation period and one for the hole 

period. 
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Figure 6. Application of the model with drainage Coefficient = 7*10-8 (black line), 

observed time series (blue line).  
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Statistical measures of the application with drainage Coefficient = 7*10-8   
23/5/2005 - 30/7/2005 1/1/2005 - 31/12/2005  

Correlation coeficient 

R2 

0.505 Correlation coeficient R2 0.538 

Max. positive 

difference 

10.624 m^3/s Max. positive difference 9.158 m^3/s 

Max. negative 

difference 

-28.512 m^3/s Max. negative difference -28.512 m^3/s 

Volume observed 357554428.4 M^3 Volume observed 3.51E+08 M^3 

Volume modelled 244630070.8 M^3 Volume modelled 2.37E+08 M^3 

Volume error -31.582 % Volume error -32.557 % 

Peak observed value 45.284 m^3/s Peak observed value 37.28 m^3/s 

Peak modelled value 20.339 m^3/s Peak modelled value 20.339 m^3/s 

Peak error -55.085 % Peak error -45.441 % 
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Figure 7. Application of the model with drainage Coefficient = 1*10-7 (black line), 

observed time series (blue line).  
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Statistical measures of the application with drainage Coefficient = 1*10-7   
23/5/2005 - 30/7/2005 1/1/2005 - 31/12/2005 

Correlation coeficient 

R2 

0.365 Correlation coeficient R2 0.627 

Max. positive 

difference 

2.979 m^3/s Max. positive difference 8.709 m^3/s 

Max. negative 

difference 

-13.573 m^3/s Max. negative difference -27.543 m^3/s 

Volume observed 119448473.2 M^3 Volume observed 3.51E+08 M^3 

Volume modelled 85072134.46 M^3 Volume modelled 2.43E+08 M^3 

Volume error -28.779 % Volume error -30.599 % 

Peak observed value 32.687 m^3/s Peak observed value 37.28 m^3/s 

Peak modelled value 21.461 m^3/s Peak modelled value 21.461 m^3/s 

Peak error -34.345 % Peak error -42.434 % 
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Figure 8. Application of the model with drainage Coefficient = 3*10-7 (black line), 

observed time series (blue line).  
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Statistical measures of the application with drainage Coefficient = 3*10-7   
23/5/2005 - 30/7/2005 1/1/2005 - 31/12/2005  

Correlation coeficient 

R2 

0.345 Correlation coeficient R2 0.531 

Max. positive 

difference 

8.765 m^3/s Max. positive difference 9.155 m^3/s 

Max. negative 

difference 

-8.05 m^3/s Max. negative difference -28.881 m^3/s 

Volume observed 119448473.2 M^3 Volume observed 3.51E+08 M^3 

Volume modelled 118079027.1 M^3 Volume modelled 2.53E+08 M^3 

Volume error -1.146 % Volume error -27.939 % 

Peak observed value 32.687 m^3/s Peak observed value 37.28 m^3/s 

Peak modelled value 27.14 m^3/s Peak modelled value 27.14 m^3/s 

Peak error -16.969 % Peak error -27.199 % 
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Figure 9. Application of the model with drainage Coefficient = 5*10-7 (black line), 

observed time series (blue line).  
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Statistical measures of the application with drainage Coefficient = 5*10-7   
23/5/2005 - 30/7/2005 1/1/2005 - 31/12/2005  

    

Correlation coeficient 

R2 

0.859 Correlation coeficient R2 0.588 

Max. positive 

difference 

10.631 m^3/s Max. positive difference 10.631 m^3/s 

Max. negative 

difference 

-14.699 m^3/s Max. negative difference -22.721 m^3/s 

Volume observed 211655523.8 M^3 Volume observed 3.51E+08 M^3 

Volume modelled 205677164.1 M^3 Volume modelled 2.74E+08 M^3 

Volume error -2.825 % Volume error -21.978 % 

Peak observed value 32.687 m^3/s Peak observed value 37.28 m^3/s 

Peak modelled value 29.11 m^3/s Peak modelled value 29.11 m^3/s 

Peak error -10.944 % Peak error -21.916 % 
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Figure 10. Application of the model with drainage Coefficient = 7*10-7 (black line), 

observed time series (blue line).  
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Statistical measures of the application with drainage Coefficient = 7*10-7   
23/5/2005 - 30/7/2005 1/1/2005 - 31/12/2005  

Correlation coeficient 

R2 

0.302 Correlation coeficient R2 0.753 

Max. positive 

difference 

9.984 m^3/s Max. positive difference 9.984 m^3/s 

Max. negative 

difference 

-7.17 m^3/s Max. negative difference -21.89 m^3/s 

Volume observed 119448473.2 M^3 Volume observed 3.51E+08 M^3 

Volume modelled 123954327.7 M^3 Volume modelled 2.89E+08 M^3 

Volume error 3.772 % Volume error -17.713 % 

Peak observed value 32.687 m^3/s Peak observed value 37.28 m^3/s 

Peak modelled value 27.92 m^3/s Peak modelled value 27.92 m^3/s 

Peak error -14.582 % Peak error -25.106 % 

 

 

The most appropriate value for the drainage Coefficient = 3*10-7 because gives the lowest 

volume error =-1.146% and because the most important for the simulation is to 

calculate the water mass balance. 
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