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a b s t r a c t   

In this study, a sensor tip with a metallic hemispherical nozzle tip (MHNT) design based on the Fabry-Perot 
interferometer was developed for surface roughness recognition (SRR). Sandpaper samples with ten dif-
ferent arithmetical mean deviations of the surface (Sa) values were used as surfaces to be recognized. The 
feature vectors were found by applying the discrete wavelet transform (DWT) to the analog signals obtained 
from the sandpaper samples. Machine learning (ML) algorithms K-nearest neighbor (KNN) and support 
vector machine (SVM) were used for classification. An in-depth recognition process was carried out using 
the classifiers’ different length criteria and kernel types. In the test process, each category consists of two 
sub-categories as testing within the training dataset (TWITD) and testing without the training dataset 
(TWOTD). The experiments were carried out in a controlled manner with the conveyor belt system (CBS) 
and manual. As a result of the experimental studies, the average recognition rates (Rave) for CBS were found 
as 84.2% and 81.6% for TWITD and TWOTD, while the Rave for the manual are found as 80% and 77.5% for 
TWITD and TWOTD, respectively. 

© 2021 Elsevier B.V. All rights reserved.    

1. Introduction 

With the development of technology, the perception of object 
surfaces’ various features has started to gain significant importance  
[1–8]. It is crucial that characteristics such as the roughness and 
hardness of the object’s surfaces can be perceived similarly to 
human perception. Thus, system behaviors can be determined based 
on object properties. Commonly used tactile sensors are transducers 
that interact directly with the surface through physical contact [7,9]. 
Tactile sensors have been inspired by human touch. The use of tactile 
sensors is increasing day by day, especially in healthcare and robotic 
applications [10]. The most widely used tactile sensor technologies 
in robotics are based on capacitive [11], piezoresistive [12], optical  
[2,3,13], magnetic [14], and piezoelectric [15] methods. Various ro-
botic systems have been developed using tactile sensor technologies 
at the robot hand and fingertip [8,16]. For example, the hand of the 
humanoid iCub robot [10] equipped with piezoelectric sensors per-
forms functions such as squeezing, pushing, and touching the ob-
jects, allowing the texture, hardness, and shape of the object to be 
perceived. Piezoelectric sensors generate an electrical signal 

proportional to the applied force or pressure. They are suitable for 
measuring vibrations and are also widely used because of their 
sensitivity and high-frequency response [11]. As a piezoelectric 
sensor material, polyvinylidene fluoride (PVDF) is the most widely 
used material in tactile sensors’ production due to its flexibility, 
machinability, and chemical stability [5]. Despite all these ad-
vantages, they have some problems when exposed to heavy en-
vironments because of their low resistance to chemicals and high 
temperatures and are affected by electromagnetic interference. 
These systems consist of many electronic components and electrical 
cabling, which can weaken the electronic signals much. This situa-
tion makes them less useful in many conditions. 

One of the essential uses of tactile sensors is surface roughness 
recognition (SRR) [15,17–19]. Besides, optical sensors developed for 
SRR are available in the literature [13,20]. On the other hand, fiber 
optic tactile sensors, which are a branch of optical sensors, can be 
used as contact [9,21–24] and non-contact [25–27] with the object. 
Although non-contact sensing surface reflectivity becomes im-
portant, this may not produce successful results for all surfaces. 
Fiber Bragg grating (FBG)s, an interferometric structure, have a 
prominent place among the tactile sensors [28–32]. Fabry-Perot, 
another important interferometric structure, was used in tactile 
sensors but not for surface roughness recognition [33–36]. 

The fiber optic tactile sensor, which is based on the Fabry-Perot 
interferometer principle that allows a functional single-point 
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detection structure and enables SRR, is the subject of this study. 
Firstly, a metallic hemispherical nozzle tip (MHNT) contacting the 
surface on a metal diaphragm is designed and produced. Then, 
sandpaper samples with ten various Sa in the same brand, model, 
and standard were used to obtain signals belonging to various sur-
faces. The sensor tip is contacted to the object in two ways: a con-
veyor belt system (CBS) or manually. Then, signals are obtained for 
each different surface. The discrete wavelet transform (DWT) 
method is used to generate the feature vectors of these signals. The 
training dataset is created with feature vectors belonging to each 
surface class. In the test phase, the feature vectors of the test signals 
obtained by DWT are classified using machine learning (ML) algo-
rithms K-nearest neighbors (KNN) and support vector machine 
(SVM). The testing process has been carried out primarily in two 
categories as CBS and manual. Each category consists of two sub- 
categories as testing within the training dataset (TWITD) and testing 
without the training dataset (TWOTD). In other words, samples of 
the training dataset are used in the TWITD, but the TWOTD is that 
the samples are used outside of the training dataset. The feature 
vectors were obtained in two different ways with DWT as “coif4” and 
“daub4”. Two different classifiers are used, KNN and SVM, which are 
well-known ML algorithms in the literature. In this study, a total of 
16 different categories have been tested. The results obtained show 
that the SRR results vary between 66.2% and 84.2%. 

2. Materials and methods 

2.1. Design and manufacture of the sensing tip 

A prominent member of the interferometric sensor family is the 
Fabry-Perot interferometer. Many sensors have been produced in the 

literature with this structure, which is pressure, vibration, refractive 
index, temperature, etc., can be reproduced. The functionality of the 
design has also yielded successful results in single-ended point 
measurement systems. The first interface is fiber-air in the structure 
with two parallel surfaces, while the second is air-diaphragm. 
Usually, the diaphragm interface interacts with the sensing medium. 
These structures are either in direct contact with the sensing zone 
or, as in acoustic pressure sensors, vibrate due to the acoustic 
pressure wave’s effect without contact and modulating the inter-
ferometer’s optical wave. In our study, the diaphragm structure 
raised outwards in the form of a hemispherical nozzle is in contact 
with the surface. Depending on the surface roughness, the vibrating 
tip causes the optical path, L of the light beam exposed to multiple 
reflections between two parallel surfaces to change. Depending on 
the optical path’s change, the optical phase is given in Eq. (1) [37]. λ 
represents the wavelength of the light source. 

= n L4 m

(1) 

Where nm, nf, and nd represent the Fabry-Perot cavity’s refractive 
indices, the fiber core, and the diaphragm’s inner surface, respec-
tively. Therefore, the reflectance R1 and R2 of the first and second 
interfaces can be calculated by Eqs. (2) and (3), respectively [38]. The 
extinction coefficient, κ can be simplified because it is very close to 
zero in dielectric materials. The situation changes when the surface 
to which the light wave will interact is metal and should be used in 
the most general form [39]. 
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Fig. 1. MHNT assembling stage.  
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κm and κd are the extinction coefficients of the air and diaphragm 
surface, respectively. 
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It is given with Eq. (4) to show the optical light intensity, Ir re-
flected from the interferometer. 
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Where α0 is optical losses in the system and I0 is input optical 
density. Finally, in Eq. (4), the transmission coefficient η of the Fabry- 
Perot cavity is calculated as in Eq. (5) [40]. w shows the spot size 
value of the fiber. 
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While R1 generally has typical values for the reflectance in Eqs (2) 
and (3), R2 varies according to the diaphragm material. The refractive 
index of the fiber core in our study is nf = 1.4682, the inner surface of 
the diaphragm is covered with a silver layer and has values of 
nd = 0.2654, κd = 11.241 @ 1550 nm [41]. Since nm = 1 and κm = 0, 
R1 = 3.60%, R2 = 99.17%. 96.4% of the optical intensity coming out of 
the fiber passes into the air medium and reaches the diaphragm’s 
surface. 99.17% of the light rays reaching the diaphragm are reflected 
(95.60%) and return to the air-fiber interface. Finally, 96.4% of the 
remaining light rays re-enter the fiber (92.16%). 

As can be understood from Eq. (4), the optical intensity at the 
output will vary depending on the L length change when all para-
meters are kept constant. In this study, the interferometer’s second 
reflective surface has a metallic hemispherical nozzle tip (MHNT) 
design. As a result of the MHNT’s contact with the rough surface, the 
L length changes. The sensor tip assembling is shown in stage Fig. 1. 
MHNT is designed per the standard FC adapter. A silver plate is af-
fixed to the inner surface of the MHNT, which has a radius of 4 mm. 
It is then fixed to the FC adapter with a polyethylene foam ring to 
provide elasticity. The sensor type obtained has been developed for 
fiber terminating with any standard FC/PC connector. 

The SRR system consists of the MHNT (Fig. 1), includes a laser @ 
1550 nm, the optic circulator (1525–1610 nm SMF with FC/PC), a 
high-speed photodetector (fiber-coupled InGaAs biased), PC oscil-
loscope-data logger (Picoscope), constant speed CBS, and PC. All 
components are shown in Fig. 2. 

2.2. Surface roughness recognition (SRR) 

This section primarily includes obtaining feature vectors from 
signals belonging to sandpaper surfaces. Then, the process of re-
cognizing the surface classes with the classifiers used was carried 
out. The stability of the property vectors belonging to the classes in 
the training dataset was tested by applying K-fold cross-validation to 
these vectors. The correct recognition of the surface roughness of the 
objects depends on the feature vectors obtained from the signals and 
on the classifiers that can distinguish them well. In general, in the 
literature, DWT is frequently used to obtain feature vectors in sur-
face roughness studies. It is seen that it gives successful results  
[42–44]. As classifiers, KNN and SVM algorithms, which are known 
to provide good results, come to the fore [17,45]. Details of these will 
be discussed below. 

2.2.1. Feature extraction 
The studies in the literature show that the frequency information 

of the signals obtained due to friction gives information about the 

Fig. 2. The schematic diagram of the experimental setup for the SRR system.  

Fig. 3. A 3-level filter bank.  
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surface roughness [46]. DWT provides a good resolution of the signal 
in both frequency and time domain [42,47,48]. The signals obtained 
from the decomposition into different frequency bands using DWT 
provide satisfactory results in the SRR studies. Thus, feature vectors 
based on both frequency and time domain can be obtained after 
transforming signals using DTW [19]. In DWT, each signal is re-
presented by an orthogonal function. The DWT of a signal is calcu-
lated by applying low and high pass filters to the signal [49]. The 
filtering process applied to the signals is given by Eqs. (6) and (7) as 
the detail and approximation coefficients, respectively [50]. 

= ×
=

d n h i a n i[ ] [ ] [2 ]j

i

r
j

0

1
1

(6)  

= ×
=
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i

r
j

0

1
1
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Where r and j are the order of filter, the detail coefficients d j [n] and 
the approximation coefficients a j [n] of level j, respectively. g[i] is 
low pass filter coefficients, h[i] is high pass filter coefficients. 

A 3-level DWT filter bank structure is given in Fig. 3. 

This separation is repeated, increasing the frequency resolution. 
While the coefficients corresponding to high frequencies are detail 
coefficients, the coefficients corresponding to low frequencies are 
approximate. First, the downsampled version of approximate coef-
ficients is found, and then high and low pass filters are applied to the 
signal obtained as a result of this downsampling process [49]. Then 
these processes are repeated for each level. 

The wavelet coefficients of an x(t) signal are given by Eq. (8) [49]. 

= x t
t s

dt( )
1

2

2
2jk j

j

j (8) 

Where j is the scale parameter, and s is the shift parameter. Both are 
integers. DWT has wavelets such as Haar, Daubechies, Coiflet, and 
Legendre [49]. Daubechies and Coiflet wavelets were used in this 
study. 

2.2.2. Machine learning algorithms 
In the study, the classification model was chosen according to the 

problem. The KNN and SVM, which are frequently used ML algo-
rithms for roughness recognition in the literature, have been used  
[15,17,50,51]. KNN algorithm makes classification estimation based 
on two fundamental concepts [52]. The first is to determine the 
number of neighbors, and the second is to choose which one to use 
among the distance criteria (such as Minkowski, Euclidean, city 
block, and Chebyshev). The test signal is assigned to the most 
probable class calculated by the nearest neighbor algorithm [53]. 
City block, one of the distance measures used by KNN, is a distance 
measure that finds the sum of the absolute values of the differences 
between two vectors [54]. The city block distance, which is always 
higher than or equal to zero, is given by Eq. (9). 

=
a b| |

i

u

i i
1 (9) 

Where u is the number of vector samples. Another length criterion, 
Minkowski, is given in Eq. (10) for vectors a and b. 
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Fig. 4. K-fold scheme.  

Fig. 5. Sandpaper samples with different Sa values.  
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Where p has real values varying between 1 and 2. It corresponds to 
the Manhattan length criterion for p = 1 and the Euclidean length 
criterion for p = 2 [54]. Minkowski, Euclidean, and city block were 
preferred in our experimental study. Also, the test signals are clas-
sified according to the nearest neighborhood of k = 1, 3, and 5. 

Another classifier, SVM, is a method that can be used for both 
regression and classification, but mainly in classification problems  
[55]. Initially, SVM was used to distinguish between two classes and 
later expanded to achieve multi-class classification [56]. If there are 
many classes, one of the three approaches is preferred. The first one 

Fig. 6. Scope of the study.  
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is reducing the problem to two groups (one-vs-one), the other one is 
modeling the problem from one group to all groups (one-vs-rest), 
and the last one is the multi-class ranking approach. The One-vs-rest 
approach was used in the study. Generally, polynomial, linear, and 
radial-based kernel functions are used for classification with SVM. In 
this study, polynomial and linear kernel functions are used. 

2.2.3. K-fold 
The K-folds cross-validation method provides meaningful in-

formation about the fit of the created recognition system. With this 
method, training and test sets can be designed flexibly. In K-fold 
cross-validation, the data is divided into different n subsets. n-1 
subset is used as train data. An average recognition value is obtained 
by using n iterations. The K-fold scheme is shown in Fig. 4. 

An average recognition rate for the jth class is found as follows. 

= = …
=

R
n

R i j M
1

( ), 1, 2, ,ave
j

i

n

1 (11)  

R(i) indicates the ith recognition rate, M denotes the total number 
of classes, and n is number of the iteration. The average recognition 
rate, Rave for all classes is found as follows. 

=
=

R
M

R
1

ave
j

M

ave
j

1 (12)  

3. Experimental results and discussion 

The experimentally used objects in the study consist of sand-
paper samples with different roughness levels. Different grit sizes 
are used for various usage purposes of sandpaper. While producing 
abrasives with these sizes, standards such as the Federation of 
European Producers of Abrasives (FEPA), American National 
Standards Institute (ANSI), Japanese Industrial Standard (JIS), and a 
Russian classification (GOST) are used. In this study, ten different 
sandpaper (P60, P80, P120, P180, P240, P320, P600, P800, P1000, and 
P3000) with macro and micro grain sizes in FEPA standard was used. 
The arithmetical mean deviation of the surface, Sa, is used as the 
measure of surface roughness of the abrasives. Sa is the most used 
roughness characterization indicator that describes surface rough-
ness in the vertical direction [57]. The Sa is defined by Eq. (13) [18]. 

=S
A

z x y dxdy
1

| ( , )|a

A (13) 

Fig. 7. Block diagram of feature extraction and classifiers.  
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Fig. 8. The CBS test results.  
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Fig. 9. Manual test results.  

S. Keser and Ş.E. Hayber Sensors and Actuators: A. Physical 332 (2021) 113071 

8 



Where A is the sandpaper surface area, the limits of the sandpaper’s 
measuring areas are x and y. z (x,y) is the height function of the 
sandpaper surface. FEPA and corresponding Sa values of the images 
of the sandpaper samples used in the experiment are given in Fig. 5. 

The experiment consists of different stages. These stages are 
shown schematically in Fig. 6. The figure’s left column represents the 
CBS stages, and the right column represents the same stages 
manually. The CBS has a mechanism that runs at a constant speed. 
This structure can apply a more stable force and a constant speed to 
the sanding surfaces than the manual. 

On the other hand, in the manual experiment, the friction speed 
and the applied force may vary more than the CBS. By applying DWT, 
whose coif4 and daub4 wavelets are used, feature vectors are ob-
tained to create a training data set to the signals obtained from 
surfaces. Then, the test signals are classified with the classifiers KNN 
and SVM suitable for this problem. Here, two approaches are used 
for the testing process. These approaches are called testing within 
training dataset (TWITD) and testing without training dataset 
(TWOTD). Thus, a total of 16 different categories were tested in the 
study. 

3.1. Feature extraction and classifiers 

The sampling rate of the analog signals generated by shifting the 
MHNT on the sandpaper surfaces is 20 kHz. Each signal was received 
at 1.5 s intervals by adjusting the conveyor belt’s speed to approxi-
mately 0.01 m/s. Each signal is equal to 1.4 s (28,000 samples) by 
discarding the unwanted parts at the beginning and the end of the 
signal. In this way, 100 signals were obtained for each sanding sur-
face. It is known that the frequency components of these signals 
obtained by sliding play a critical role [19]. DWT based on an or-
thonormal wavelet is used to separate the signals into compo-
nents [58–60]. 

For manual and CBS, a training dataset was created by sliding the 
MHNT 100 times on the sanding surfaces. While using the training 
dataset signals for TWITD, the friction process was repeated 100 
times for TWOTD. In this article, the wavelet functions applied are 
Daubechies and Coiflets. A total of four layers have been created. A 
total of 8 components have been used as an approximation com-
ponent and a detail component in each layer for a signal. Statistical 
properties in both frequency and time domain have been de-
termined for each component. These properties are used as feature 
vectors. These statistical properties have been defined as mean, 
standard deviation, energy, and kurtosis (KT). N represents the signal 
dimensional and is equal to 28,000 in this study. For each N-di-
mensional signal, a 64-dimensional feature vector obtained from 32- 

frequencies and the 32-time domain have been created. For each 
class, 100 feature vectors, each of which has 64-dimensions, have 
been obtained. 

Two different ML algorithms KNN and SVM were used for clas-
sification. The training phase was completed by using the obtained 
feature vectors and these classifiers. In the test phase, test signals are 
assigned to the most probable class. The recognition system used in 
the study is given in Fig. 7. As can be seen from the figure, the feature 
vectors of the signal were obtained using coif4 and doup4 wavelets 
of DWT. Then, classification was performed for these feature vectors 
using KNN, different distance criteria (Minkowski, Euclidean, city 
block), and various neighbor values (k = 1, 3, and 5). It was seen in 
experimental studies that the best results were obtained for k = 5. 
For SVM, the classification was carried out using polynomial and 
linear kernel functions. This classification was carried out in two 
different categories as TWITD and TWOTD. 

3.2. The results of surface roughness recognition (SRR) 

Recognition performances of the proposed system are given as 
CBS and manual, respectively, in Fig. 8 and 9. For TWITD, 100-fold 
cross-validation has been applied. The recognition rates obtained 
with CBS are shown in the graphs in Fig. 8. These graphs include the 
analyzes made based on the cases of TWITD-TWOTD, daub4-coif4, 
KNN-SVM. While applying KNN, recognition rates were examined 
using three distance measure criteria, Minkowski, Euclidean, and 
city block. Similarly, recognition rates were found in SVM using 
polynomial and linear kernel functions. For KNN, the k = 5 value, 
which gives the best result, is shown in the graphs by performing the 
recognition process based on the nearest neighborhood values of 
k = 1, 3, and 5. Fig. 8 shows that the highest recognition rate was 
84.2% (TWITD, daub4, KNN, and city block). After that, 81.6% and 
81.27% were obtained (TWOTD, daub4, KNN, and city block) and 
(TWITD, coif4, KNN, and Minkowski) respectively. The lowest value 
was obtained with (TWOTD, daub4, SVM, and linear) as 71.1%. Si-
milarly, the experimental study results, which are performed 
manually, are shown in the graphs in Fig. 9. The top three most 
successful recognition rates for Manual are (TWITD, daub4, KNN, 
and city block), (TWITD, coif4, KNN, and city block), and (TWOTD, 
daub4, KNN, and city block), respectively, 80%, 77.6%, and 77.5%. 

When we look at the most general recognition rate averages, it 
has been determined that the recognition results made with CBS 
have higher values than manual. This result is expected due to the 
more controlled operation of CBS than manual. However, the dif-
ference in recognition rate performances between CBS and manual is 
not very high, as seen from Tables 1 and 2. There is no significant 

Table 1 
SRR average rates for CBS.              

coif4 daub4 

KNN SVM KNN SVM 

City block Minkowski Euclidean Polynomial Linear City block Minkowski Euclidean Polynomial Linear  

TWITD  79.13  81.27  77.93  74.3  73.8  84.2  80.6  79.1  73.8  73.4 
TWOTD  78.3  77.7  76.7  73.3  68.56  81.6  77.3  77.3  73  71.1    

Table 2 
SRR average rates for manual.              

coif4 daub4 

KNN SVM KNN SVM 

City block Minkowski Euclidean Polynomial Linear City block Minkowski Euclidean Polynomial Linear  

TWITD  77.6  76.7  75.2  70.3  67.7  80  76.9  77.2  71.8  68.6 
TWOTD  75.6  73.9  73.4  67  66.2  77.5  74.6  74.1  68  66.3 

S. Keser and Ş.E. Hayber Sensors and Actuators: A. Physical 332 (2021) 113071 

9 



difference between the performances of daub4 and coif4, which are 
the wavelets of DWT; however, daub4 has been observed to perform 
slightly better. It has also been observed that KNN gives better re-
sults than SVM. The better recognition rate of KNN than SVM is 
consistent with the general studies conducted to recognize surface 
roughness in the literature [15,19,46,61]. In the study, the main 
purpose of performing recognition processes with CBS is to provide a 
way to show in which combination the manual performance of the 
system will reach the highest recognition rate. We wanted to un-
derstand how well the sensing tip tolerates errors in manual testing. 
As a result, it has been observed that there are minor differences 
between the recognition rates of the CBS and that of the manual test. 

4. Conclusion 

In this study, MHNT was used to identify the surface roughness 
based on the Fabry-Perot interferometer principle. Analog signals 
obtained from samples with different roughness levels with MHNT 
were subjected to a versatile test process. Sanding surfaces with 
roughness levels ranging from 6 µm to 269 µm were used. Test 
processes were evaluated in two main categories, CBS and manual, 
and in 16 categories in total. Feature vectors were found in two 
different ways using DWT’s “coif4” and “daub4” wavelets. The test 
signals were classified with ML algorithms KNN and SVM using the 
feature vectors obtained with DWT. Thus, a total of 16 different ca-
tegories were tested. The highest value for CBS (TWITD, daub4, KNN, 
and city block) was reached 84.2%. For Manual, the highest re-
cognition rate (TWITD, daub4, KNN, and city block) was achieved as 
80% with the combination. The TWOTD manual performance value 
was achieved as 77.5%. 
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