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A B S T R A C T

This paper aims to reconstruct the internal structure of a two-dimensional test object via numerically simulated
full-wave time domain radar tomography with the presence of wavelength-induced (WI) uncertainties,
following from a complex domain structure, and domain diameters 21 or 64 times the wavelength of the
signal propagating inside the target. In particular, we consider an application in planetary scientific studies
of reconstructing the interior structure of an arbitrary high contrast small Solar System Body (SSSB), i.e., an
asteroid, with a probing signal wavelength limited by the instrument and mission payload requirements. Our
uncertainty reduction model finds the reconstruction via averaging multiple inverse solutions assuming that
the WI deviations in the solutions correspond to random deviations, which we assume to be independent
and identically distributed (IID). It incorporates error marginalisation via a randomised signal configuration,
spatial-averaging of candidate solutions, frequency-based error marginalisation, and the truncated singular
value decomposition (TSVD) filtering technique, based on our assumptions of the phase discrepancy of the
signal, domain parameters, and the full-wave forward model. The numerical experiments are performed for
20 and 60 MHz centre frequencies proposed for CubeSat-based radars, the latter being the centre frequency
of the Juventas Radar which will be aboard Hera mission to investigate the interior structure of asteroid
Dimorphos. A benchmark reconstruction of the target was obtained with the spatial averaging, sparse point
density and frequency randomised configuration for both 20 and 60 MHz frequency systems.
1. Introduction

Radar tomography (RT) has emerged as a powerful technique for
obtaining high resolution images of complex target domains in recent
years. With the application of tomographic radar imaging spanning
across several fields of research, such as biomedical imaging, geo-
science, and engineering; sophisticated and computationally efficient
inversion techniques to characterise the interior properties of such a
target domain from the scattered field of the probing radar signal
have also been developed extensively (Chew and Wang, 1990; Carlsten
et al., 1995; Semenov et al., 2005; Ernst et al., 2007; Pursiainen and
Kaasalainen, 2016; Wiskin et al., 2020). The inverse scattering problem
of full-wave tomography, however, is an ill-posed inverse problem that
can result into a less accurate reconstruction of the target domain as
the signal frequency and, thereby, the measurement and modelling
uncertainties increase. In particular, the inversion is very sensitive to
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the carrier, hence we propose a method to help mitigate this sensitivity.
This paper aims at reconstructing the interior structure of a com-
plex domain, e.g., an arbitrary high contrast Small Solar System Body
(SSSB), via full-wave time domain RT, and specifically, investigating
the wavelength-induced uncertainties, which follow as a consequence
of complex multipath signal propagation inside the target due to high
contrast details in the permittivity distribution.

The first attempt to use radio waves transmission to infer the deep
interior structure of an SSSB was the COmet Nucleus Sounding Exper-
iment by Radio-wave Transmission (CONSERT) (Kofman et al., 2007,
2015), which was part of the European Space Agency’s (ESA) Rosetta
mission to comet 67P/Churyumov-Gerasimenko. The emergence of
small spacecraft technology as a part of deep space missions has im-
proved the future possibilities to perform RT investigations of SSSBs
with a sufficient signal coverage (Bambach et al., 2018; CDF, 2018).
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Such a plan is included in ESA’s coming Hera mission; the Juventas
CubeSat carried by the Hera probe will perform tomographic radar
measurements of Dimorphos, the asteroid moon of 65 803 Didymos,
with its Juventas Radar (JuRa) (Herique et al., 2020a,b).

In this study, we concentrate on full-wave modelling, an important
tool to distinguish how the different part of the domain (e.g., the
voids or surface) contribute to the observed scattered signals (Eyraud
et al., 2020). This requires that the differences between the modelled
and measured field are small enough compared to the measurement
inaccuracies. Our focus is suppressing the effects of these inaccuracies
in the reconstruction process, which is of utmost importance, e.g., based
on the recent numerical study by Deng et al. (2021), where the en-
velope inversion method was used in suppressing local minima points
in the observed signal with a misfit function. The asteroid model in
this study has an average real relative permittivity of 𝜀′𝑟 ≈ 4 which is
higher than that of some comets at 𝜀′𝑟 ≈ 1.4, i.e., comet 67P and Wild
2 (Brownlee et al., 2012; Kofman et al., 2015; Hérique et al., 2018).
In JuRa, the centre frequency is 60 MHz, hence, from 𝜆 = 𝚌0𝜀

′−1∕2
𝑟 ∕𝑓 ,

the wavelength is 5 m outside and approximately 2.5 m inside the
target, where 𝚌0 is the speed of light in vacuum. The diameter of
Dimorphos is about 160 m, which is approximately 64 times larger
than the wavelength of the signal propagating inside it. We define the
wavelength-induced uncertainties as modelling errors in form of phase
inaccuracies brought about by the nonuniformity of the permittivity
distribution, change in wave velocity and irregular propagation path
in the target domain.

In full-wave modelling with the finite element time domain (FETD)
method (Pursiainen and Kaasalainen, 2016; Takala et al., 2018b), the
WI uncertainties in the modulated signal can result in modelling or
measurement errors produced by (1) wavelength-induced uncertainties’
factors i.e., nonuniform permittivity distribution, change in wave ve-
locity and wave path length in the target domain, (2) discretisation,
(3) wave propagation accuracy, and (4) numerical inaccuracy due to
noise in demodulation of the carrier signal. This study concentrates
on the errors due to (1), wavelength-induced uncertainties, which
are caused by the short wavelength of the signal as compared to
the target object diameter, and propagation through a high contrast
domain. To marginalise these errors, we propose a Gaussian prior
model for the uncertainty of the phase in form of a discrepancy func-
tion. This discrepancy gives the maximum limit for the applicable
baseband frequency considering the real part of the permittivity that
can be reconstructed. The numerical experiments performed on a two-
dimensional domain show how the discrepancy-based prior model,
combined with total variation regularised-inversion approach, allows
for the marginalisation of the wavelength-induced uncertainties via
independence sampling. The experiments also show how data obtained
for a dense spatial point distribution can be effectively utilised in the
process of marginalising wavelength-induced uncertainties, taking into
account the Nyquist sampling condition which depends on both the
modulated and demodulated wave (Khare and George, 2002; Chaparro
and Akan, 2018).

This article is organised into Sections 2–4. Section 2 focuses on the
model description, and statistical formulations of spatial and frequency-
based error marginalisation process. Furthermore, the total variation
inversion technique and the truncated singular value decomposition
filtering are discussed in Section 2.5. In Section 2.6, the experimental
setup and signal configurations are highlighted, and the corresponding
parameters related to the numerical implementation are documented.
Section 3 includes the numerical results for the two-dimensional ana-
logue model and the discussion of these results is presented in Sec-
tion 4.

2. Materials and methods

2.1. Inverse wave propagation problem

We consider transverse electric (TE) wave propagation in which the
2

total electric field 𝑢 propagating in the horizontal plane is oriented c
along the vertical direction. The TE-field satisfies the wave equation

𝜀′𝑟
𝜕2𝑢
𝜕𝑡2

+ 𝜎 𝜕𝑢
𝜕𝑡

− 𝛥𝑢 = 𝜕V
𝜕𝑡

(1)

in a given spatio-temporal domain [0, 𝑇 ] ×𝛺, in which the spatial part
includes the scattering target 𝛺1 and its near surroundings 𝛺2. Here,
𝜀′𝑟 is the real part of the relative permittivity (𝜀′𝑟 = 𝜀𝑟 − 𝑗𝜀′′𝑟 ), 𝜀′′𝑟 the
maginary part of the relative permittivity, 𝜀𝑟 the relative permittivity,

the conductivity 𝜎 = 2𝜋𝑓𝜀′′𝑟 , 𝑓 denotes the signal frequency, and
V∕𝜕𝑡 is a point source term for which V = V(𝑡, 𝑝0) represents the
urrent density of a vertical antenna set at point 𝑝0. The spatial scaling
s assumed to be such that the velocity of the wave in vacuum is
ne (𝚌0 = 1). The time 𝑡, position 𝑟, permittivity 𝜀′𝑟, conductivity

𝜎, and velocity 𝚌 = 𝜀′−1∕2𝑟 can all be scaled to SI-units through the
expressions 𝑠𝚌−10 𝑡, 𝑠𝑟, 𝜀0𝜀′𝑟, 𝑠−1𝜀0𝚌0𝜎, and 𝚌0c, respectively. Here, 𝑠 is

spatial scaling factor (metres), 𝚌0 = (𝜀0𝜇0)−1∕2 is the speed of the
lectromagnetic wave in vacuum, 𝜀0 = 8.85 ⋅ 10−12 F/m is the electric

permittivity of vacuum, and 𝜇0 = 4𝜋 ⋅ 10−7 H/m is the magnetic
permeability which is assumed to be constant in 𝛺.

The domain is assumed to be decomposed by a triangular mesh T =
{𝑇1, 𝑇2,… , 𝑇𝑀}, whose 𝑗th triangle T𝑗 corresponds to a set indicator
function 𝜒𝑗 , with 𝜒𝑗 (𝑟) = 1 if 𝑟 ∈ 𝑇𝑗 and 𝜒(𝑟) = 0 otherwise. The mesh
T discretises the real relative permittivity as

𝜀′𝑟 = 𝜀̃′𝑟 +
𝑀
∑

𝑗=1
𝑠𝑗𝜒𝑗 , (2)

where 𝜀̃′𝑟 is a constant background permittivity, 𝑠𝑗 is the corresponding
coefficient of 𝜒𝑗 , and x̃ =

∑𝑀
𝑗=1 𝑠𝑗𝜒𝑗 is the perturbation of the discretised

real relative permittivity. Replacing the total electric field 𝑢 in the wave
Eq. (1) which is a smooth function, by its partial derivative with respect
to 𝑠𝑗 results in

𝜀′𝑟
𝜕2

𝜕𝑡2

(

𝜕𝑢
𝜕𝑠𝑗

)

+ 𝜎 𝜕
𝜕𝑡

(

𝜕𝑢
𝜕𝑠𝑗

)

− 𝛥 𝜕𝑢
𝜕𝑠𝑗

= 𝜕
𝜕𝑡

(

𝜕ℎ
𝜕𝑠𝑗

)

, (3)

where ℎ on the right-hand side is referred to as the scattering source
which follows from Ampere’s law, and relates directly to V, as V = 𝜕ℎ

𝜕𝑠𝑗
.

Here, ℎ is denoted by

ℎ = 𝜀′𝑟
𝜕𝑢
𝜕𝑡

|𝑠=0 =
𝑀
∑

𝑗=1
𝑠𝑗𝜒𝑗

𝜕𝑢
𝜕𝑡

|𝑠=0 + 𝜀̃′𝑟
𝜕𝑢
𝜕𝑡

|𝑠=0, (4)

hence, its partial derivative with respect to 𝑠𝑗 gives 𝜕ℎ∕𝜕𝑠𝑗 = 𝜒𝑗
𝜕𝑢
𝜕𝑡 |𝑠=0.

This scattering source can be interpreted as the source of the dif-
ferentiated full-wave as, e.g., in Liu et al. (2018). We obtained the
measurement data y as a difference between a full-wave detailed model
and a full-wave constant background model (𝑢(𝑡, 𝑝𝑖) − 𝑢̃(𝑡, 𝑝𝑖)). Here,
the detailed model can be interpreted as the superposition of the
background model and the perturbation x̃. Furthermore, a differential
operator 𝐽𝓁 is used to obtain a linearised approximation of the detailed

odel taking into account the coupling of the respective scatterers and
ulti-path effects with the background. However, it omits the coupling

etween the scatterers (scatterer-to-scatterer interaction). This approxi-
ation is similar to the Extended-Born Approximation (EBA) (Abubakar

nd Habashy, 2005; Gao and Torres-Verdín, 2006), i.e., it is a model
hich tries to estimate multiple scattering effects in addition to the
irect ones. Unlike the classical Born approximation in which the total
ield 𝑢 has been replaced with the incident field (Van Hove, 1954; Chew
nd Wang, 1990; Sorsa et al., 2020), this linearisation incorporates
igher-order or multi-path effects between the scattering obstacle and
he target body. It is one of the two common ways to approach full-
ave inversion, the second method being to solve a local nonlinear

east-squares optimisation problem (Virieux and Operto, 2009).
The wavefield is assumed to consist of two complex quadrature

mplitude modulated (QAM) components (Sorsa et al., 2021b). The
omponents of QAM consist of the in-phase and quadrature component,
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of which, the latter has a 𝜋∕2 phase difference compared to the in-
phase signal. Consequently, the amplitude of the signal can be obtained
accurately anywhere in the spatio-temporal domain. The reconstruction
process utilises baseband frequency data y obtained via QAM demod-
ulation as a full wave recorded for time steps 𝑡1, 𝑡2,… , 𝑡𝑁 at spatial
points 𝑝1, 𝑝2,… , 𝑝𝐾 . The data corresponds to the difference between
the wavefields 𝑢(𝑡, 𝑝𝑖) and 𝑢̃(𝑡, 𝑝𝑖) associated with the actual real relative
permittivity distribution 𝜀′𝑟 and its background estimate 𝜀̃′𝑟. Using the
differentiated signal, this difference can be estimated as follows:

𝑦𝑗 (𝑡) =DM[𝑢(𝑡, 𝑝𝑖) − 𝑢̃(𝑡, 𝑝𝑖)] =DM

[ 𝑀
∑

𝑗=1
𝑠𝑗

𝜕
𝜕𝑠𝑗

𝑢(𝑡, 𝑝𝑖)

]

, (5)

where DM denotes a QAM demodulation operator. Defining Jacobian
matrices J𝓁 with

(𝐽𝓁)𝑖,𝑗 =DM
[

𝜕
𝜕𝑠𝑗

𝑢(𝑡𝓁 , 𝑝𝑖)
]

, (6)

where 𝜕
𝜕𝑠𝑗

𝑢(𝑡𝓁 , 𝑝𝑖) denotes a linearised approximation of the full wave-

field with respect to the permittivity perturbation of a single point
scatterer (triangle), one obtains a linearised forward model

y𝓁 = J𝓁 x̃ + n𝓁 𝓁 = 1, 2,… , 𝑁, i.e., y = Lx̃ + n (7)

for the inverse problem of reconstructing x given the data y. Here,

y =

⎛

⎜

⎜

⎜

⎜

⎝

y1
y2
⋮
y𝑁

⎞

⎟

⎟

⎟

⎟

⎠

, L =

⎛

⎜

⎜

⎜

⎜

⎝

J1
J2
⋮
J𝑁

⎞

⎟

⎟

⎟

⎟

⎠

, and n =

⎛

⎜

⎜

⎜

⎜

⎝

n1
n2
⋮
n𝑁

⎞

⎟

⎟

⎟

⎟

⎠

. (8)

The matrix L determines the linearised effect of the scatterers on the
data y as a function of the perturbations of the exact discretised real
relative permittivity x̃, and the vector n is the noise term. We assume
here that the noise term includes both measurement and modelling
inaccuracies. Of these, the latter are associated with the difference 𝑢−𝑢𝑠,
where 𝑢 is the actual wave and 𝑢𝑠 is its simulated counterpart which can
include both discretisation and general modelling errors.

2.2. Wave propagation in high and low contrast medium

We focus on inverting Eq. (7) under the assumption that L contains
inevitable modelling errors following from wavelength-induced uncer-
tainties in the wave simulations. The carrier wave, in which the inputs
are imposed, has 4 and 6 times the frequency of the baseband signal
for the two systems of this study. In QAM, the transmitter uses the
input signal to vary the carrier’s amplitude, hence creating a modulated
signal.

Specifically, a wavefield propagated through a complex domain
undergoes changes as a result of permittivity variations within the
spatial domain leading to effects such as refraction and reflection, on
the material boundaries. The boundary effects give rise to changes in
the wave amplitude, phase, and direction of propagation depending on
the contrast of the medium described by the refractive index (Bousquet,
2017). The greater the refractive index is, the stronger the effects are.
The refractive index 𝚗 = 𝚌0∕𝚌 =

√

𝜀′𝑟 is obtained as the ratio of the
free space velocity 𝚌0 and the velocity 𝚌 in the medium, via the real
relative permittivity 𝜀′𝑟. Since the frequency is maintained everywhere
in the medium, there is a smaller velocity and a shorter wavelength in
the high-contrast (high permittivity) target than in free space or low-
contrast target. Hence, the complexity of the wave propagation, and
thereby the occurrence of wavelength-induced uncertainties increases
along with the value of the refractive index causing an increase in
the point-wise difference between the actual and simulated wave; See
Fig. 1.
3

Fig. 1. Forward modelling error sources, their effect and discrepancy. Schematic
illustration of signal propagated through a high contrast (A) and low contrast (B)
domain. Since the velocity of the wave, and thereby wavelength decreases when the
contrast increases, there is a phase shift of 𝜋 as the signal propagates from a medium
of low to a medium of high refractive index (Daniels, 2004). Moreover, the increase
in the probing signal energy concentrated at the target surface is likely to increase
the amplitude errors, resulting into larger refraction in the high contrast medium due
to increased deviations from the signal energy. (C) Wavelength-induced uncertainties
as a result of phase misfit can lead to large random fluctuations in the demodulated
baseband data; three (1, 2 and 3) of the local maxima of the demodulated red wave
coincide with those of the blue wave. The second peak has a flipped sign due to an
opposite phase of the carrier (areas with matching peaks shaded in red and flipped
peaks shaded in blue). More generally, phase misfit can cause any phase error in the
complex plane while the difference between the sign corresponds to the phase angle
of 𝜋 in the complex plane. (D) Two signals (solid and dotted wave) are considered
to be in the same phase if the phase angle difference is less than or equal to a
quarter of pi, i.e., 𝜙 ≤ 𝜋∕4. We assume that this discrepancy condition is satisfied for a
wavefield propagating the length 𝓁 inside the target 𝛺 with real relative permittivity
𝜖′𝑟, if the maximum frequency of the wavefield is less than or equal to the baseband
frequency (pulse bandwidth) 𝑓𝐵 , and if the uncertainty of these parameters satisfies
the discrepancy condition in Eq. (17). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

2.3. Structure detectability in inverse reconstruction

The inverse wave modelling in this study is characterised by a
limited spectrum as described in the wave propagation phenomena
in Section 2.2. It can be expected that there are intense scattering
peaks from different parts of the domain that cannot be predicted
by our forward model, meaning that the deviations are replicated or
amplified in the inverse solution. Therefore, it is difficult to distinguish
the surface and void back scattering data with the full-wave modelling
approach in the absence of prior information on the domain structure.
While the existence of a scattering obstacle, for example, a void beneath
a surface layer might be predicted based on the difference between
the simulated and background data, obtaining the magnitude of the
scattering perturbation for the full domain is difficult under limited
spectral coverage of the data (Dogan et al., 2017). Hence, our focus
in this study is on the overlap obtained between the exact structure
and reconstruction.

2.4. Prior model for wavelength-induced uncertainties

Wavelength-induced uncertainty in a propagated wave signal can
be viewed from the spatial and spectral perspectives. The Nyquist
sampling criterion plays an important role in determining the number
of points, sampled from a wave signal. We consider a pulse of length
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Fig. 2. Schematic diagram of (A) modulated and (B) demodulated signal pulses. The
radar bandwidth 𝐵 bounds the pulse bandwidth 𝑓𝐵 from above, hence the propagated
pulse is always limited by the instrument capacity. Here, 𝑓𝐻 and 𝑓𝐿 are the upper
and lower cut-off frequencies respectively, 𝑓𝐶 is the centre frequency of the modulated
signal pulse, while 𝑓max is the maximum frequency of the demodulated signal pulse.

𝑇 and pulse bandwidth 1∕𝑇 = 𝑓𝐵 ≤ 𝐵 which matches the twice
maximal frequency of the demodulated signal and is bounded by the
radar bandwidth 𝐵 from above; See Fig. 2.

The pulse is modulated via the QAM approach which incorporates
an in-phase and quadrature components into the signal resulting in the
centre frequency 𝑓 centre, corresponding to the centre of the spectrum
with a pulse bandwidth 𝑓𝐵 . The Nyquist criterion is defined by the
spatial and temporal sampling rate Ss and St, stating Ss ≥ 2𝑓max∕𝚌 and
St ≥ 2𝑓max. This implies that, the QAM demodulated baseband signal
can be captured fully if the sampling frequency is greater than double
the highest frequency 𝑓max contained in the baseband signal (Orfanidis,
1995). In case of QAM, 𝑓max = 𝑓𝐵∕2 i.e., the maximum pulse frequency
corresponds to half the pulse bandwidth for a smooth pulse. We use
the first derivative Blackman–Harris (BH) pulse, which is employed
often in geophysical FETD modelling applications as the probing pulse
of a radar signal. The modulated signal is transmitted and propagated
through the tomographic target 𝛺1, after which it is demodulated to
obtain the final simulated measurement data y containing frequencies
on the baseband frequency interval [0, 𝑓max].

2.4.1. Model for grid reduction
The principles of compressed sensing, see, e.g., Egiazarian et al.

(2007), provide a viable means to reduce the wavelength-induced
uncertainties. That is, a sparse and a stable reconstruction of the
unknown permittivity perturbation can be obtained utilising a reduced
data coverage in the reconstruction process. To avoid phase shifts in
the eventual signal, i.e., the demodulated data wave, a statistically
motivated approach is needed to reduce spatial uncertainty based on
the assumption that the wavelength-induced uncertainties are random.
Among other possible approaches are the classical regularised inver-
sion methods or nonlinear data fitting in the form of least squares
optimisation (Liu et al., 2018; Tejero et al., 2018; Dong et al., 2020).
We assume that the pulse bandwidth has been set so that any data
fluctuation z related to frequencies higher than that of the demodulated
wave, i.e., the pulse bandwidth 𝑓𝐵 , are noisy due to modelling inac-
curacies, and therefore, constitute a nuisance to be marginalised out
of the final reconstruction. Because the higher frequency fluctuations
are regarded as noise, we set the spatial sparse grid density to half
the wavelength corresponding to the bandwidth frequency. Given a
simulated measurement data y, and the corresponding data fluctuations
z, the permittivity perturbation distribution of a target domain can be
approximated by a reconstruction (x = x̃+ 𝜂) assuming the distribution
of the permittivity perturbation is unknown for a target domain with
a low-to-moderate complexity in terms of its geometry, where 𝜂 is
the deviation from the exact permittivity perturbation. Associating the
unknown permittivity perturbation distribution x with a conditional
posterior probability density of x given y and z, 𝜋(x ∣ y, z), the effect
4

of z on x in which both are dependent, can be marginalised as (Finetti,
1972):

𝜋(x ∣ y) = ∫Rm
𝜋(𝑧)𝜋(x ∣ y, z)dz, (9)

where 𝜋(z) is a probability density for the modelling errors, especially
wavelength-induced uncertainties; 𝜋(x ∣ y) is the marginalised density,
and R𝑚 is the space of z. Furthermore, the expectation of x given the
data y can be obtained as:

E(x ∣ y) = x† = ∫Rn
x𝜋(x ∣ y)dx, (10)

where R𝑛 is the space of x. In our current approach, x given y and z
is determined by a classical regularised inversion scheme, that is, the
conditional distribution of x given y and z corresponds to Dirac’s delta
function. Substituting Eq. (9) in Eq. (10) where 𝜋(x ∣ y, z) is replaced
with the Dirac’s delta function 𝛿(𝐹 (y, z) − x). According to the delta
function’s sifting property, this gives

x† = ∫R𝑚 ∫R𝑛
x 𝛿(𝐹 (y, z) − x)dx𝜋(z)dz. (11)

The simplest model is to assume that the wavelength-induced un-
certainties are IID or nearly IID and that the posterior is set by a
deterministic function x = 𝐹 (y, z). Thus, the expectation is obtained
as

x† = ∫R𝑚
𝐹 (y, z)𝜋(z)dz. (12)

Eq. (12) can be resolved by the Monte Carlo sampling to save com-
puting resources (Liu, 2008). However, to ensure convergence of the
sampling, the realisations z𝑘 should be sampled from the distribution
𝜋(z) or an arbitrary distribution very close to 𝜋(z) and assumed to be
uniform in this case. The law of large numbers and the generalised
central limit theorem (Liu, 2008) motivate the convergence if the
sample in question is weakly enough correlated and the convergence
rate O(𝐾−1∕2) of the sample-based mean

1
𝐾

𝐾
∑

𝑘=1
𝐹 (y, z𝑘) → x†, when 𝐾 → ∞. (13)

To formulate this approach for spatial point sets, we define sets P𝑘
and Q in which the mutual distance between any two points is less
than or equal to 𝜆𝑓max

∕2 = 𝚌0∕(2𝑓max) and 𝜆 centre∕2 = 𝚌0∕(2𝑓 centre),
respectively. That is, P𝑘 is dense enough to satisfy the spatio-temporal
Nyquist criterion w.r.t. the information content of the scattered field
(Bucci and Franceschetti, 1987). It is further assumed that Q contains
the full set of measurement points and P𝑘, 𝑘 = 0, 1, 2,… , 𝑘 with
an equal number of points in each is its subset, P𝑘 ⊂ Q. As the
measurements are inverted after the QAM demodulation, if modelling
errors are absent, each dataset to be inverted has a full coverage when
the criterion w.r.t. 𝑓max is satisfied. However, due to the existence of
the modelling errors, each dataset satisfying this criterion needs to be
considered rather as a subset of the full data fulfilling the criterion
w.r.t. 𝑓 centre. As we consider the modelling error for a given set to be
a random variable, the sample-based mean in Eq. (13) can be realised
by first finding a suitable point set sample P𝑘 which can be obtained
either by a regular or randomised point selection process.

2.4.2. Model for phase error formation
A complementary approach to reduce uncertainty in the spectral

sense is to apply a discrepancy condition. Assuming that the phase
angle shift between the modelled and measured demodulated signal is
maximally 𝜋∕4, the signal is measured for a two-way path whose length
inside the target is 𝓁. If the signal penetrates to the centre of the target
from each direction, providing a full signal coverage for the interior,
then 𝓁 can be associated with the largest diameter of the target. In order
to maintain the phase angle difference within the interval [0, 𝜋∕4], the
path length per wavelength inside the target, defined as

𝑁 = 𝓁∕𝜆𝑓 =

√

𝜀′𝑟𝑓𝓁 , (14)

𝚌0
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𝐹

for the modelled and measured wavefield, must not differ more than
𝜋∕4 in phase which is equivalent to one-eighth of the pulse cycle. This
gives rise for the following definition of the phase discrepancy, 𝚍, which
s based on the maximum relative difference of 𝑁 :

=
𝑁 + 1

8
𝑁

− 1 =
8
√

𝜀′𝑟𝑓𝓁 + 𝚌0

8
√

𝜀′𝑟𝑓𝓁
− 1, (15)

where 𝜀′𝑟 represents the average real relative permittivity of the tar-
get. The maximum deviation between 𝑁𝑠𝑖𝑚 and 𝑁 resulting from the
simulated and actual wave propagation is, thereby,

1 − 𝚍 ≤
𝑁 sim
𝑁

≤ 1 + 𝚍 or
|

|

|

|

𝛥𝑁
𝑁

|

|

|

|

≤ 𝚍, (16)

here 𝛥𝑁 = 𝑁𝑠𝑖𝑚 −𝑁 . By combining the Eqs. (14) and (16), this can
e expressed in terms of absolute total derivative as

|𝛥𝜀′𝑟|

2
√

𝜀′𝑟
+

|𝛥𝑓 |
𝑓

+
|𝛥𝓁|
𝓁

≤ 𝚍. (17)

Firstly, this inequality allows for estimating the discrepancy, given the
uncertainty of the a priori real relative permittivity estimate 𝜀′𝑟 and that
of the path length 𝓁, i.e., the more complex the geometry and the higher
he contrast of the domain the more uncertain 𝓁. Secondly, together
ith the definition of the discrepancy in Eq. (15), it also enables
stimating the maximal bandwidth applicable in the measurement; that
s, the discrepancy implied by the permittivity, path length and fre-
uency deviation should coincide with the a priori uncertainty estimates
btained for these quantities. Thirdly, the uncertainty given by Eq. (17)
an be incorporated into the forward modelling process through a sur-
ogate approach, assuming that all uncertainty follows from frequency
eviation 𝛥𝑓 , which refers to the possible frequency fluctuations of the
odulated signal which are reflected to the baseband data through

he demodulation process. Since the effect of such deviations can be
valuated via signal demodulation, one can use surrogate approach
hich allows avoiding repetitive and computationally expensive wave

imulations. We define a surrogate frequency 𝑓𝑠 to be a Gaussian
andom variable with mean 𝑓𝑚 and standard deviation 𝚍 matching with
he discrepancy, i.e.,

𝑠 = 𝑓𝑚 + 𝚍𝚛, (18)

here 𝚛 is a zero-mean Gaussian random variable with standard devi-
tion equal to one and 𝑓𝑚 is the actual centre frequency 𝑓 centre. The
ormulation in Eq. (18) models the uncertainty as a surrogate frequency
𝑠 for other uncertainty types explained in Eq. (17). Eq. (17) shows
ow frequency, velocity, and path-length uncertainties contribute to
he wavelength-induced uncertainties. Thus, we can use frequency per-
urbations as a surrogate for the velocity and path-length uncertainties.
amely, it is difficult to perturb the permittivity distribution for each
ase and similarly the domain structure to account for the uncertainties
elating to velocity and path-length. This would require performing
n extensive set of computationally costly full-wave simulations, in-
reasing the already expensive calculations by a large factor. Hence,
erturbing the frequency is used to create similar effect as what would
e obtained by perturbing the permittivity and domain structure. This
s further described in Section 2.6.2 and implemented in the case of
andomised averaging approach experiments in this study.

.5. Inversion techniques

Full-wave tomography is challenging, partly because there is a need
o select an inversion method that appropriately solves the problem
f reconstructing scattered waves from the target domain. Expectedly,
here is a trade-off between the performance and complexity of several
5

nversion methods available. 𝑖
.5.1. Total variation
Total variation (TV) is an inversion method that has evolved from

mage denoising application to more robust applications of inverse
roblems (Luisier and Rodríguez, 2013). It has been found to be stable
n tomographic reconstruction of distributional information based on
parse data and to even enable finding a robust reconstruction assuming
hat the distribution to be reconstructed is also sufficiently sparse (Sorsa
t al., 2020; Candes et al., 2006; Candès et al., 2006). We obtain a TV
egularised solution of the linearised forward model, i.e., x = minx 𝐹 (𝑥)
ith

(x) = ‖Lx − y‖22 + 2
√

𝛼‖Dx‖1, (19)

following the approach of Pursiainen and Kaasalainen (2016) and
Takala et al. (2018b), i.e.,

x‡ = L∗y, (20)
x𝜅+1 = (L∗L + DT𝛤𝜅D)−1x‡. (21)

Here, x‡ is a backpropagated estimate for x. 𝛤𝜅 = diag(|𝐷𝑥𝜅 |)−1 for
all 𝜅 ≥ 0, where 𝛤0 = I, is the weighting matrix limiting the magnitude
of x to avoid numerical instability due to division by a very small value.
𝐷 is a normalised positive definite and invertible derivative operator
computed over the edges of T , defined as

𝐷𝑖,𝑗 =
‖L‖ fro
√

𝑁

⎛

⎜

⎜

⎝

𝛽𝐼𝑖,𝑗 + 𝛼
(2𝐼𝑖,𝑗 − 1) ∫T𝑖∩T𝑗

𝑑𝑠

max𝑖,𝑗 ∫T𝑖∩T𝑗
𝑑𝑠

⎞

⎟

⎟

⎠

, (22)

where 𝐼𝑖,𝑗 = 1 if 𝑖 = 𝑗, 𝐼𝑖,𝑗 = 0 if 𝑖 ≠ 𝑗, and 𝛼 and 𝛽 are the regularisation
and smoothing parameters of the solution, and the average Frobenius
or column norm ‖L‖ fro∕

√

𝑁 is regarded as a normalising constant. The
final reconstruction is found as a vector containing the absolute value
of the entries in the final iterate.

According to the general theory of regularisation (Engl et al., 1996;
Kaipio and Somersalo, 2006) the noise effects in the reconstruction
should be suppressed by ensuring that the regularisation level is great
enough to prevent noise corruption of the objective function. Here, the
TV regularisation is considered to be balanced when the two terms
in Eq. (19) are roughly equal, i.e., if

√

𝛼 approximately matches the
expected relative noise fluctuations in the data. For example, if the
total effect of known and unknown noise is ≈ 20 dB, then 𝛼 ≈ 0.01.
The smoothing parameter 𝛽 defines a diagonal weight for TV, ensuring
that D is invertible. We choose the magnitude of this parameter to
be slightly less than 𝛼2 to ensure the appropriate invertibility of D of
the TV regularisation while keeping the contribution of the diagonal
weighting below the expected noise effects.

2.5.2. Filtering via truncated singular value decomposition
Singular value decomposition (SVD) (Golub and Van Loan, 2013)

is a traditional means of data compression. We combine the statistical
approach described in Section 2.4 with the truncated SVD (TSVD) to
filter spatio-temporal data (Ludeno et al., 2020). This is motivated by
the assumption that scattering consists of separate scattering patterns
𝑛 = 1, 2, 3,… , 𝑚, organised in descending order by their amplitude. The
spatial pattern and time-dependence are described by two orthogonal
sets of vectors u1,u2,… ,u𝑚 and v1,v2,… ,v𝑚. The vector entries in u𝑛
and v𝑛 correspond to the spatial points and time steps of the mea-
surements, respectively. Consequently, the matrix Y = (y1,y2,… ,y𝑁 )
contains the full data and the TSVD filter is defined as follows:

x‡ = L∗y ≈
𝑝
∑

𝑛=1
𝜎𝑛K∗

𝑛u𝑛, where K𝑛 =
𝑁
∑

𝓁=1
𝑣𝓁,𝑛J𝓁 , (23)

𝜎𝑛 denotes the amplitude of the 𝑛th most intense pattern, and 𝑝 ≤ 𝑚
is selected so that the energy corresponding to the remaining sum
is approximately that of the noisy signal, i.e., ∑𝑚

𝑛=𝑝+1 𝜎
2
𝑛 = ‖n‖22. In

essence, we choose 𝑝 such that ∑𝑝
𝑖=1 𝜎

2
𝑖 ∕

∑𝑚
𝑛=1 𝜎

2
𝑛 ≥ 1∕(1+10−

𝜇
20 )2, where

= 1,… , 𝑚 and 𝜇 is the noise level. The right-hand side provides a lower
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Fig. 3. The target 𝛺1 applied in the two-dimensional numerical simulations. (A) The domain consists of an interior part, three voids and a surface layer (mantle) with complex
relative permittivity values 𝜀𝑟 = 4.0 + 𝑗0.03, 𝜀𝑟 = 1.0, and 𝜀𝑟 = 3.0 + 𝑗0.02, respectively. The synthetic orbit used in the numerical experiments is visualised by the circle surrounding
the target. The blue and red dots depict two monostatic signal configurations with uniform distance between the points on the synthetic orbit. The sectors are depicted by the
intervals between the green lines. The complete measurement point set including all the sectors satisfies the Nyquist criterion w.r.t. the centre frequency of the signal. (B) In the
regular turn, such monostatic point sets are obtained by rotating an initial set of points from different sectors as shown by the arrows and, thus, covering each point in the full
set of measurements. In the randomised approach, a uniformly distributed random point is picked independently from each sector, whose length satisfies the Nyquist criterion
w.r.t. the pulse bandwidth as described in Section 2.4.1. (C) In the sparse density configuration, points are selected from each sector with intervals large enough to cover the total
receiver points on the synthetic orbits. The dense point configuration has twice as many points as the sparse case i.e., half the interval for point selection as compared to the
sparse configuration. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
bound by the assumption that the amplitude of the signal is a sum of
the noiseless and noisy signals.

In this study, the TSVD approach is applied in the backpropagation
part in Eq. (20) of the TV regularisation process. We compare its
performance to the case of full data. Here, K∗

𝑛u𝑛 can be interpreted as
a backpropagated pattern u𝑛 with intensity 𝜎𝑛 and time dependence
v𝑛. This formulation of TSVD is used since the scattering patterns are
assumed to be well localised in the time domain.

2.6. Numerical experiments

2.6.1. Two-dimensional domain
In the numerical experiments, we investigate inverting

full-waveform data in two dimensions using the target 𝛺1 of Sorsa et al.
(2020) with unitless diameter 0.28 scaled to the estimated diameter
160 m (𝑠 = 571) of Dimorphos and a synthetic orbit of diameter 0.32;
see Fig. 3. The far-field formulation is omitted due to the difference
in attenuation between 2- and 3-Dimensional domain (Takala et al.,
2018a). We considered a background model with a constant permit-
tivity 𝜀̃′𝑟 = 4 and a detailed (exact) model 𝛺1 as shown in Fig. 3. The
interior part of the detailed model is given a real relative permittivity
𝜀′𝑟 = 4, excluding the three voids having a vacuum permittivity (𝜀′𝑟 = 1)
and the surface layer (mantle) with real relative permittivity value
of 𝜀′𝑟 = 3. The existence of a surface layer for an asteroid target is
predicted in the impact studies by Jutzi and Benz (2017) and the overall
structure is considered to have a relatively low density (Carry, 2012).
The permittivity of asteroid minerals such as kaolinite and dunite
match roughly these values regarding solid and powder composition
(with grain size distribution of approximately 1-10 μm) for the interior
and surface layer, respectively (Herique et al., 2002; Hérique et al.,
2018). The loss tangent δ which determines the imaginary part of
the complex relative permittivity 𝜀𝑟 = (1 + 𝑖δ)𝜀′𝑟 is considered as a
nuisance parameter, as the internal absorption distribution is known
to be challenging to be reconstructed (Barriot et al., 1999). Hence,
we are not inverting for this parameter, but it causes an error source
in the simulation. We set δ to be in the range from 0.0005 to 0.04
proposed for asteroid minerals in Kofman (2012). Here, we consider
the internal absorption simply as a source of error; however, it should
be noted that for an average loss tangent tan(δ) = 0.008 and 𝜀′𝑟 = 4,
an attenuation of 30 dB/km is fully realistic when using a frequency
of 20 MHz and 78 dB/km when using 60 MHz given by −8.68𝛼, where

𝛼 = 2𝜋𝑓

√

𝜀′𝑟

√

1 +
(

𝜀′′𝑟
′

)2
− 1 (Ulaby et al., 2014).
6

𝚌0 2 𝜀𝑟
Fig. 4. Monostatic signal propagation path in the two-dimensional domain for the
signal pulse (A) 20 and (B) 60 MHz at 0.22 μ𝑠 measurement time (𝑠𝚌−10 𝑡) after
propagation from the transmission point marked with red asterisk. The 20 MHz signal
has a single strong wavefront propagating in the domain while the 60 MHz signal has
multiple weak wavefronts propagating through the domain, which is a potential source
of wavelength-induced uncertainty.

2.6.2. Signal specifications
The data y was obtained as the (noisy) difference between the two

simulated full wavefields corresponding to the background and detailed
domain described above. To avoid an inverse crime, i.e., an overly
accurate data fit, these domains were discretised using two different
finite element meshes.

We apply QAM modulated Blackman–Harris window as a signal
pulse centred at (A) 20 and (B) 60 MHz frequencies covering the
bandwidths of 10 and 20 MHz, respectively; See Table 1 and Fig. 4.
The centre frequency of 20 MHz has been proposed as a potentially
feasible low end for a CubeSat-based penetrating radar exploration in
a recent concept study (Bambach et al., 2018), while 60 MHz will be
applied in the JuRa investigation (Herique et al., 2019, 2020a). The
general knowledge of asteroid composition and radar signal penetration
suggests that the centre frequency should be between 10 and 100
MHz (Binzel and Kofman, 2005; Kofman, 2012) to enable full coverage
of the wavefield inside the target.

We consider the following four monostatic signal configurations
(I)–(IV) (Fig. 3, Table 2) for obtaining the full-wave data. These con-
figurations differ by the averaging and filtering strategy applied in
processing the data. The averaging process utilises the simulated full-
wavefield which has been obtained around the tomographic target,
with spatial and temporal resolution satisfying the Nyquist criterion
with respect to the centre frequency.
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Table 1
Blackman–Harris signal pulses and their corresponding frequencies, bandwidths, pulse durations, cycles per pulse, wavelengths,
signal wavelength–diameter ratios, and sampling rates (Ss).
Signal Centre Bandwidth Pulse Cycles 𝜆 Diameter/𝜆 Ss
pulse freq. (MHz) (MHz) duration (μs) per pulse (m)

(A) 20 10 0.190 4 7.5 21 0.067
(B) 60 20 0.095 5.5 2.5 64 0.134
Table 2
Spatial resolution of the full dataset before and after the averaging process with their corresponding averaging techniques.
The approach to the spatial averaging in configurations (I)–(IV) of the numerical experiments is described in Fig. 3, and the
signal pulses (A) 20 and (B) 60 MHz described in Table 1. The 3rd and 4th columns give the total and averaged number
of spatial points in the full dataset and after the averaging process, respectively. The 5th column includes the number of
turns in the regular averaging process for each averaging resolution, and the 6th gives the number of spatial point sets and
frequencies applied in the randomised averaging. The last column indicates the type of filtering applied to each case in the
experiment.
Signal Signal Total Spatial Regular Randomised Filter
pulse configuration points averaging turns turns/frequency

(A) (I) 128 dense/64 2 – Unfiltered
(II) 128 dense/64 2 – TSVD
(III) 128 dense/64 – 8/5 Unfiltered
(IV) 128 dense/64 – 8/5 TSVD

(I) 128 sparse/32 4 – Unfiltered
(II) 128 sparse/32 4 – TSVD
(III) 128 sparse/32 – 8/5 Unfiltered
(IV) 128 sparse/32 – 8/5 TSVD

(B) (I) 384 dense/128 3 – Unfiltered
(II) 384 dense/128 3 – TSVD
(III) 384 dense/128 – 8/5 Unfiltered
(IV) 384 dense/128 – 8/5 TSVD

(I) 384 sparse/64 6 – Unfiltered
(II) 384 sparse/64 6 – TSVD
(III) 384 sparse/64 – 8/5 Unfiltered
(IV) 384 sparse/64 – 8/5 TSVD
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2.6.3. Averaging approaches
The regular averaging approach refers to a systematic method of

selecting measurement points located at uniform angular distances
from each other and averaging the (reconstructed) candidate solutions
corresponding to such signal configurations. The points are indepen-
dently selected at intervals corresponding to the spatial sampling rate
Ss in Table 2. Two different spatial resolutions, sparse and dense, are
considered in the reconstruction averaging process in this study. The
sparse cases have an average point density corresponding to the Nyquist
criterion for the pulse bandwidth, and the dense cases have twice as
much of the point density of the sparse cases. Thus, 32 (sparse) and
64 (dense) points are sampled for system (A), while 64 (sparse) and
128 (dense) points are sampled for system (B), where systems (A)
nd (B) have a total of 128 and 384 points, respectively. To ensure
hat the resulting point sets cover the full set of measurement data,
ultiple constellations of measurement points are sampled. In essence,

he regular averaging approach essentially has 4 × 32 (4 constellations
f sparse) and 2 × 64 (2 constellations of dense) points for system (A),
nd 6 × 64 (6 constellations of sparse) and 3 × 128 (3 constellations
f dense) points for system (B). The number of constellations (4, 2, 6,
nd 3) in the regular averaging approach are referred to as the regular
urns in Table 2 and illustrated in Fig. 3.

In the randomised averaging approach, the spatial points are se-
ected in a uniformly distributed random manner (no equal distance
etween points) from the sectors constituted by the regular turn. In
ddition, the centre frequency is slightly perturbed by varying the
urrogate centre frequency in the demodulation process according to
he discrepancy condition in Eq. (18). However, the number of constel-
ations of the measurement points was fixed to 8 for both sparse and
ense points in the two systems. In essence, we demodulate the wave-
ield data for 5 different surrogate centre frequency realisations, using
he discrepancy 𝚍 as the standard deviation and actual centre frequency

centre as the mean, 𝑓𝑚. Hence, the estimated inverse solution for each
7

oint is averaged over 5 different frequencies and then all 8 spatial l
onstellations. The sampling rate of the regular averaging approach was
etained, resulting to a system with similar number of measurement
oints i.e., 32 (sparse) and 64 (dense) points for system (A), and 64

(sparse) and 128 (dense) points for system (B). This guarantees that
every point has the chance to be selected and the full coverage of the
data is ensured since a uniformly distributed random point is selected
from each sector illustrated by the green lines in Fig. 3.

In configurations (I) and (II), regular spatial averaging is applied to
nfiltered (full) data in (I) and TSVD filtering (II). Configurations (III)
nd (IV) utilise a randomised point set and frequency perturbed data
ith full data (III) and TSVD filtering (IV).

.6.4. Noise
The measurement noise was simulated by adding a constant noise

evel relative to the maximum signal amplitude (Peak SNR). The inver-
ion results are obtained for two different magnitudes of the noise; with
he lower noise level, the signal-to-noise ratio (SNR) of the simulated
ata was 20 dB and with the higher one, it was 12 dB. The higher
NR is motivated by the observations of the CONSERT team suggesting
hat the main signal peak of the measurement was found to have at
east 20 dB SNR with respect to noise peaks (Kofman et al., 2015). The
ower SNR has been set based on recent numerical and experimental
odelling studies (Sorsa et al., 2019; Eyraud et al., 2020; Sorsa et al.,
021b) suggesting that a SNR above 10 dB might be sufficient for re-
onstructing the internal permittivity of a complex-structured asteroid
nalogue and that such an accuracy between a numerically modelled
ield and a laboratory measurement can be achieved experimentally.
he experimental setup in Table 2 was implemented for both 20- and
2-dB noise cases.

.6.5. Similarity and error measures
To analyse the accuracy of the reconstructions in different parts

f the target 𝛺1, we define sub-domains S1 (voids) and S2 (surface

ayer) restricted by the contours of the permittivity distribution in a
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descending order. The structural similarity (SSIM) of the reconstruction
to the exact distribution is computed to measure the quality of the
reconstructed image relative to the background (Wang et al., 2004).
We also evaluate the Root Mean Squared Error (RMSE) between the
exact distribution and reconstruction for 𝛺1, S1 and S2. The Overlap
Error (OE) between the detail S𝑖 and a reconstructed permittivity
perturbation is defined as the ratio

area(S𝑖 ∪ O𝑖)∕area(S𝑖), (24)

where O𝑖 =
⋃

𝑖∈𝐼𝜁 𝑇𝑖 is a set composed by triangles 𝑇𝑖 in the index set 𝐼𝜁
which includes the most intense part of the reconstructed distribution
with surface area equals to that of the given detail excluding the sets
O𝑗 for 𝑗 = 1, 2,… , 𝑖− 1, that is, 𝐼𝜈 = {𝑖 | |𝑥𝑖| ≥ 𝜈, 𝑇𝑖 ∈ 𝛺1 ⧵

⋃𝑖−1
𝑗=1 O𝑗} and

𝜁 = argmax𝜈{
∑

𝑖∈𝐼𝜈 area(𝑇𝑖) ≤ area(S𝑖)}.
The Wilcoxon rank sum (WRS) test, a nonparametric alternative to

the two-sample t-test for two populations 𝑋 and 𝑌 of assumably inde-
pendent samples, was used to analyse the significance of the differences
observed. The WRS tests the null hypothesis that data in 𝑋 and 𝑌 are
samples from continuous distributions of equal medians, against the
alternative that they are not, with the assumption that the samples are
independent (Gibbons and Chakraborti, 2014).

2.6.6. Numerical implementation
The computations are implemented using the openly available GPU-

Torre package,1 (Sorsa et al., 2020) which utilises the Matlab platform
(Mathworks, Inc.). GPU-Torre combines a GPU-accelerated FETD for-
ward routine and a multigrid-based inversion approach, where the
triangular mesh T applied to discretise the permittivity distribution
in the inversion stage is coarser than the one applied in the forward
wave propagation. Each matrix L was found by a GPU-accelerated
deconvolution process, obtained in less than 10 s. Using Dell 5820
Workstation equipped with 256 GB RAM and 8 GB NVIDIA Quadro
RTX 8000 GPU RAM, the complete FETD simulation of the signals
took approximately 30 and 134 h, while it took 14 and 21 min for
a single point of the (A) 20 and (B) 60 MHz frequencies, respectively.
The inversion mesh T consisted of 896 triangles. The total variation
regularisation parameter 𝛼 in Eq. (20) was chosen experimentally to
be 0.02 and 0.005 for the 20 and 60 MHz systems respectively, while
𝛽 in Eq. (22) was chosen to be 0.5𝛼2 for both cases. In all, a total of
32 numerical experiments are considered as described in Table 2 given
that two noise level cases are implemented in this study.

3. Results

The results from the numerical experiments of Section 2.6 are
presented in Figs. 5–11. Of these, Figs. 5 and 6 show the amplitude
of the reconstructed real relative permittivity perturbation visualised
on a linear scale between 0 and 1 after setting an upper threshold with
the 98% quantile of the data as our normalisation. These also show
the relative Overlap Error (OE) between the reconstructed details and
those of the actual permittivity distribution. In Table 3, Figs. 7 and 8,
the robustness of the reconstructions are analysed in a tabular form and
via boxplots obtained with 10 different noise vector realisations. The
norm of the reconstructed permittivity distribution, x, for the different
sampling steps is shown for the randomised configuration and full data
in Fig. 10. The results show that the aim of reconstructing the permit-
tivity perturbation distribution of the complex domain incorporating
phase errors formulation, was achieved by a monostatic full-wave sim-
ulation and inversion with the spatial averaging, and discrepancy-based
frequency averaging methods as stated in Sections 2, 2.4.1 and 2.4.2.
The results show that the point selection, spatial density, and noise
level used are highly consequential to how robust reconstruction can

1 https://github.com/sampsapursiainen/GPU-Torre.
8

Fig. 5. Domain reconstructions obtained using the 20 MHz signal pulse (A) with SNR
of 20 dB (1st–4th row) and 12 dB (7th–10th row). The reconstructions are presented
in the odd rows while their corresponding overlap reconstructions (even rows) depict
how much of the surface and void details are reconstructed in black (grey parts are
those which do not overlap). The top row shows the results for the dense configuration
with 64 points and the bottom row for the sparse one with 32 points. The results for
configurations (I)–(IV) are shown in columns from left to right, respectively.

be obtained. The ideal reconstructions obtained for the low frequency
case is the Low-noise-Sparse-Random-TSVD configuration with surface
overlap error of 36.16% and void overlap error of 52.77%, see Fig. 5
column (IV). The ideal reconstruction obtained for the high frequency
case is the High-noise-Sparse-Random-Unfiltered configuration with
surface overlap error of 27.15% and void overlap error of 78.21%, see
Fig. 6 column (III).

3.1. Low vs. high centre frequency

The global structure of the two-dimensional test domain, includ-
ing the surface layer and voids, was reconstructed with an average
surface overlap error of 38.87% and 31.7% and void overlap error of
58.39% and 78.67% for both 20 and 60 MHz signals, respectively, see

https://github.com/sampsapursiainen/GPU-Torre
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Table 3
Similarity and error estimates of the reconstructions for different numerical configurations. The 1st column presents the two signal pulses
(A) 20 and (B) 60 MHz, described in Table 1, while the 2nd column shows several configurations over which these frequencies have been
experimented. The corresponding levels of the configurations are also highlighted in the 3rd column. The 4th to 8th columns gives the mean
values with respect to the different centre frequencies, configurations, and levels for SSIM (scales between 0 & 1 and 1 shows the best result),
RMSE of the void and surface (lower limit of 0, which shows the best result), OE of the void and surface (in %, scales between 0 & 100 and
0 shows the best result)). The WRS test values are also highlighted, with 0 implying no significant differences and 1 implying a significant
difference in the median values of the corresponding distributions.
Signal Configuration Levels SSIM RMSE OE %

pulse Void Surface Void Surface

WRS WRS WRS WRS WRS

(A) 20 MHz 0.530 2.074 1.602 58.387 38.868

Spatial Dense 0.527 1 2.286 1 1.725 1 60.476 1 40.741 1Averaging Sparse 0.533 1.863 1.480 56.298 36.995

Point Regular 0.521 1 2.224 1 1.751 1 60.671 1 43.176 1Selection Random 0.539 1.925 1.453 56.103 34.559

Filtering Unfiltered 0.530 0 2.060 0 1.603 0 58.389 0 38.435 0TSVD 0.530 2.088 1.602 58.384 39.301

Noise Low 0.530 0 2.085 0 1.657 1 55.933 1 39.795 0High 0.530 2.064 1.548 60.840 37.940

(B) 60 MHz 0.673 4.787 3.833 78.668 31.785

Spatial Dense 0.672 0 4.797 0 3.787 0 79.527 1 31.612 0Averaging Sparse 0.674 4.777 3.880 77.810 31.957

Point Regular 0.680 0 4.840 1 3.957 1 80.045 1 33.058 1Selection Random 0.667 4.735 3.708 77.292 30.511

Filtering Unfiltered 0.672 0 4.780 0 3.827 0 78.339 0 31.560 0TSVD 0.673 4.794 3.839 79.000 32.009

Noise Low 0.710 1 4.855 1 4.094 1 76.195 1 33.483 1High 0.636 4.720 3.572 81.142 30.086
Table 3. The former gave a more ideal reconstruction outcome, see
Fig. 5 columns (I–IV), in terms of RMSE and OE of the void, while
the latter with higher SSIM, shows faint details and hot spots on the
surface, especially in the concave part of the target and parts close
to the receiver, see Fig. 6 columns (I–IV). This is expected in the
high frequency case as there is more reflection at shallow depth and
fewer wavefronts are received from the deeper part of the target. This
anomaly limits the visibility of the voids which is obvious based on
their increased RMSE and OE of the void, as there is more contrast at
the surface compared to the interior part. However, the surface layer
has a lesser OE in comparison to the lower frequency case, see Fig. 5
rows 2 & 4 vs. Fig. 6 rows 2 & 4.

3.2. Signal configuration

For the sparse configurations, the global structure, surface layer,
and voids are generally more pronounced and uniform, with an en-
hanced contrast compared to the dense ones, which are of deteriorated
reconstruction quality reflected by, for example, fluctuating artefacts
and inconsistent intensity of the voids, see Fig. 5 row 1 vs. 3. Due to
these anomalies, the average RMSEs and OEs of the dense configura-
tions are higher than those obtained for the sparse ones, see Table 3.
The difference between the results obtained with dense and sparse
point density is less pronounced when the randomisation of the points
and frequencies is applied. The randomised and frequency-perturbed
configurations have a smooth outcome compared to the cases of regular
turn configurations, which result in a weaker visibility of the interior
details and structure, as well as fractures within the voids and the
surface layer, see Fig. 5 columns (III–IV). For the distinguishability
of the details, the randomised configuration with sparse density is
a preferable set-up, especially in the lower frequency case as shown
in Fig. 5 columns (III–IV), which is the benchmark reconstruction
in this study. We observe that in the high frequency results, based
on the SSIM, RMSE, and OE in Table 3, the global structure of the
reconstructed domain is more conspicuous for the regular turn case, but
9

not necessarily with respect to the void and surface layer. The choice
of signal configuration is more significant with higher frequency which
is revealed by the comparison between results from dense regular
turn and sparse randomised configurations in Fig. 6 columns (I–II) vs.
(III–IV) and Fig. 8 columns (I–II) vs. (III–IV). This is also evident in
Table 3 where the average OE of the void and surface are 80.04%
and 33.06% for the regular turn and 77.29% and 30.51% for the
randomised configuration.

3.3. Low vs. high noise

As expected, the reconstruction quality of the void was observed
to be maximised with low noise (SNR 20 dB), while the higher noise
level (SNR 12 dB) was observed to cause artefacts in the void. However,
the latter allowed finding the interior details with a bias towards the
surface, see Fig. 6 (SNR 20 dB) vs. (SNR 12 dB). The differences
between the low frequency and the high frequency configurations
are maintained regardless of the noise level. The structure obtained
with the latter remains smooth while the visibility of the void details
weakens with higher noise. This is also revealed in the results presented
in Table 3, where the low noise has a lower overlap error of the void
compared to high noise for both 20 and 60 MHz systems. Similarly,
the global structure with respect to SSIM suggests that the difference
between the noise levels seems comparable to the difference between
the configurations in terms of their significance. The high noise case has
lower RMSE and OE of the surface as presented in Table 3, indicating
that the surface layer is better reconstructed at higher noise level.
This is more pronounced in the high frequency case, see Table 3, and
expected since the noise leaves more signature on the surface layer
which is coupled with the intense surface reflection thus reducing the
OE of the surface. The void RMSE in the 20 MHz system has a small
difference between their respective noise levels as compared to the 60
MHz system, see Table 3. The noise levels are insignificant in the 20
MHz system in terms of the SSIM measure, and largely significant in
the 60 MHz system, where the low noise level performs better with a
similarity of 0.71 compared to the high noise at 0.64. The WRS test

shows that all the error measures have significant difference between



Icarus 387 (2022) 115173Y.O. Yusuf et al.
Fig. 6. As in Fig. 5 obtained using the 60 MHz signal pulse (B). The top row shows the
results for the dense configuration with 128 points and the bottom row for the sparse
one with 64 points. The results for configurations (I)–(IV) are shown in columns from
left to right, respectively.

the two noise levels in the high frequency case while only the void
RMSE and surface OE have significant differences between the noise
levels for the low frequency case.

3.4. Unfiltered vs. TSVD

The TSVD filter can be observed to preserve the main details of
the reconstruction, i.e., the global structure, while filtering out minor
fluctuations. The effect of the TSVD filter is pronounced in the low
frequency case as it smooths out random background noise from the
global structure, see Fig. 5. Similarly, the ideal reconstruction in low
frequency case is from the set where the TSVD has been applied, hence
suggesting this has an effect in reducing background noise from the
data. The reconstructions found with TSVD are biased towards the
surface layer in the high frequency case, which can be considered as
a predominating structure with respect to the scattered energy, and,
10
Fig. 7. Structural Similarity (SSIM, scale of 0–1 and 1 shows the best result), Root
Mean Squared Error (RMSE, lower limit of 0, which shows the best result) and Overlap
Error (OE %, scale of 0–100 and 0 shows the best result) for the 20 MHz signal pulse
(A) with SNR of 20 and 12 dB. The red boxes correspond to the dense configuration
and the cyan boxes correspond to the sparse configuration, both having their respective
noise levels indicated on the horizontal axis. This figure indicates that the RMSE & OE
of the surface and void are in most cases (I)–(IV) lower for the sparse as compared
to the dense configuration. Similarly, the SSIM is higher for the sparse case across all
the levels of configurations (I)–(IV) shown in columns from left to right, respectively.
Here the most ideal reconstructions are those obtained from the sparse randomised
configurations. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

therefore, its contribution to the large singular values and vectors
constituting the TSVD is enhanced. The unfiltered set, however, has
a superior effect on the average measures in Table 3 especially for
the high frequency case, hence limiting the importance of the TSVD
filtering. The unfiltered configuration has its RMSE and OE of the
surface and void lower than that of the TSVD for the high frequency
case, while only the surface RMSE is higher than that of the TSVD
configuration in the low frequency case. The WRS test indicates that
there is no significant difference in the Unfiltered and TSVD median
values with respect to the error measures for both 20 and 60 MHz
systems.

3.5. SSIM, RMSE, and OE

The RMSE and OE are two complementary measures with the objec-
tive of evaluating the quality of the reconstructed domain. The RMSE
shows the exact difference between two different distributions, while
OE gives an idea of the localisation and contrast of the reconstructed
details. The effect of the signal configurations on the reconstruction can
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Fig. 8. As in Fig. 7 obtained for the 60 MHz signal pulse (B) with SNR of 20 and
12 dB. The regular configuration has higher SSIM, RMSE & OE of the surface for the
sparse (cyan) point density as compared to the dense (red). This is opposite for the
random configuration which has lower SSIM, RMSE of the surface and void for the
sparse (green) point density as compared to the dense (red). The OE of the surface is
lower for both random and regular configuration for the spare density points. Here the
most ideal reconstruction are those obtained from the sparse randomised configurations.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

be observed based on the values of the metrics used in evaluating recon-
struction quality, i.e., RMSE and OE. The results show that the RMSE
and OE give a similar pattern in evaluating the voids and the surface
layer, see Table 3. The SSIM was further used as the evaluating criteria
for the global structure of the reconstructed domain, complementing
the noise effect in the interior structure, hence a lower SSIM in the low
frequency case as compared to the high frequency case in Table 3.

The WRS test shows that the configuration levels, i.e., dense vs.
sparse and regular vs. random are significantly different for the 20
MHz case as shown in Table 3. The point selection is significant for
all the measures in the low frequency case and significant for 4 out of
5 measures in the high frequency system. Similarly, when evaluating
the noise level configurations, the RMSE for the surface and OE for the
void also have significantly different medians for the low and high noise
configurations. The TSVD vs. unfiltered levels are insignificant for all
their corresponding measures. For the 60 MHz case, only the low vs.
high noise configurations have significantly different medians for all
their corresponding measures.

The correlation heatmap in Fig. 9 shows that the SSIM has a strong
negative correlation with other measures ranging from −0.97 for OE of
the surface, −0.9 for RMSE of the surface, −0.82 for RMSE of the void,
and −0.72 for OE of the void for the 20 MHz case. This is expected
since the best SSIM values are the highest and they correspond to the
11
Fig. 9. Correlation heatmap between structural similarity (SSIM), Root Mean Squared
Error of the void (RMSE-v), Root Mean Squared Error of the surface (RMSE-s), Overlap
Error of the void (OE-v) and Overlap Error of the surface (OE-s) with respect to the
mean values in Table 3. The significant correlations are shown with the asterisk sign *,
the insignificant correlations are depicted with no asterisk at a 5% significance level.
The size of the circle shows the magnitude of significance and insignificance; larger
circle implying high significance or insignificance. The colour shows the magnitude of
the correlation for both centre frequencies (A) 20 and (B) 60 MHz, configurations. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

best values of other measures which are the lowest and vice versa as
shown in Table 3. The negative correlation here does not relate to the
reconstructions, but the measures used in assessing the reconstructions.
Other measures are positively correlated with the highest being 0.96
between RMSE of the surface and OE of the surface, and the least being
0.58 between OE of the void and RMSE of the surface. In the 60 MHz
case, OE of the void is also negatively correlated with other measures,
the strongest being −0.74 for SSIM and the least being −0.33 for RMSE
of the void. The other measures have strong positive inter-measure
correlations ranging from 0.98 between RMSE of the void and OE of
the surface to 0.87 between RMSE of the void and SSIM. Here, the

3.6. Convergence

An investigation of the convergence and performance of several
configurations on the full data is presented in Figs. 10 and 11. The plots
in Fig. 10 all start from zero on a norm scale to indicate the variation
of the magnitude for each configuration. The upper limits are however
retained for clear visibility of the spread in the respective distribution.
The uncertainty in the reconstructed estimates x spreads as the noise
increases for both 20 and 60 MHz frequencies.

The magnitude of the norm in the high frequency case is greater and
its spread extends frequently outside the interquartile range. Fig. 10
also indicates the effectiveness of the sampling process. Since the sam-
ple realisations are computationally demanding to obtain, the discrep-
ancy conditions and averaging are selected such that the randomness
in the process is present and the IID assumption holds. The plot in
Fig. 11 gives a comparison of the perturbation distribution between the
dense (magenta histogram) and sparse configurations (cyan histogram).
From this plot, it was evident that the sparse configurations have
higher spread in the perturbation distribution for both 20 and 60 MHz
frequencies. The dense configuration is of lower magnitude and spread
compared to the sparse case, which also shows spurious outliers beyond
the 10% to 90% quantile range. The effect of the randomised frequency
perturbation is less evident in the dense configuration, especially in the
low frequency case. The plot also shows that the outliers are smaller in
the low noise case as compared to the high noise.
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Fig. 10. The average absolute value for the entries of x as a function of the different
sampling steps in the case of the unfiltered & randomised data. The 1st row shows the
results for the dense configuration, while the 2nd row presents the results for the sparse
configuration. The red marker indicates an update in the centre frequency applied in
the signal demodulation process. The magenta area shows the range from 5 to 95%
quantile of the sample variation, the cyan area shows 25 to 75% quantile (interquartile
range), and the dashed line shows the median of the samples. The magnitude of x can
be observed to grow as the noise, signal frequency, and sparsity of the measurement
point configuration grows. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

3.7. Beyond a piece-wise constant domain

We carried out a numerical comparison between the benchmark
reconstructions for the 20 and 60 MHz systems and two random
field models shown in Fig. 12. The first having background amplitude
fluctuation of 1 (i.e., surface, and interior part of the domain excluding
the void have a permittivity distribution between 3.5 and 4.5) and the
second having a background amplitude fluctuation of 4 (i.e., surface,
and interior part of the domain has a permittivity distribution between
1 and 5). The reconstruction obtained for the 20 MHz system for the
random field models show clear visibility of the voids and surface layer.
However, when compared to the benchmark model as shown in Fig. 12,
we see that the benchmark reconstruction has more visibility of the
voids and surface layer. This is expected as the background permittivity
contrast variation increases the discrepancy formulated in Eq. (17).
The benchmark reconstruction of the 60 MHz system outperforms the
reconstruction from the two random field models, in the sense that
we can see the voids and surface layer of the benchmark model by
visual inspection of the reconstruction. The surface layer and a faint
strand of the bottom void is visible in the other reconstruction. The
OE of the surface and void are also presented for this investigation in
Fig. 12. The Figure shows that the OE grows almost linearly from the
benchmark to the high background contrast variation case for the 20
12
Fig. 11. The average permittivity perturbation distribution for the(A) 20 and (B) 60
MHz systems. The magenta histograms correspond to the dense configuration and the
cyan histograms correspond to the sparse configuration, both having their noise levels
indicated in their respective legends. The 𝑦-axis is the probability density function
(PDF) of the estimated permittivity perturbation. This figure indicates that there is a
larger median value in the higher frequency estimates and wider spread in the sparse
configurations. The lower noise has smaller spread for both density configurations and
systems. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

MHz system. In the 60 MHz system, the OE reaches a plateau at low
background contrast variation case which either increases or decreases
as it progresses to the high background contrast case depending on
the quantile considered. The interquartile and interdecile range of the
samples are shown in the cyan and magenta respectively. The spread in
the void OE is wider for both the 20 and 60 MHz systems as compared
to the surface OE, indicating that the uncertainty in reconstructing the
void is higher than that of the surface.

4. Discussion

This article describes and evaluates numerically a filtering ap-
proach, which allows marginalising wavelength-induced random errors
from a large full-waveform dataset. This approach enables obtaining a
reconstruction of the surface layer and voids of a 160 m diameter non-
convex two-dimensional asteroid model, via a monostatic measurement
of a full-wavefield signal, having centre frequencies of 20 and 60 MHz
and bandwidths of 10 and 20 MHz, respectively. Finding a reconstruc-
tion was feasible with 20- and 12-dB SNR, of which the former has been
estimated as the lower bound of the CONSERT measurement of Kofman
et al. (2015) and the latter is slightly (2 dB) above the 10 dB limit
which has been suggested as the lower bound for finding a reasonable
reconstruction for the interior structure of an asteroid model in the
recent numerical simulations and laboratory experiments (Takala et al.,
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Fig. 12. Benchmark reconstructions compared to the random field model reconstruc-
tions for the 20 and 60 MHz systems. The 1st row shows the variation in the
background permittivity contrasts for the respective models. The 2nd and 3rd rows
present the reconstruction of the models for the 20 and 60 MHz systems, respectively.
The surface and void OE for the different background models is shown in the 4th and
5th rows with their interquartile and interdecile range coloured cyan and magenta,
respectively. This figure shows that the benchmark reconstruction outperforms the
random field models which can be observed by visual inspection and the OE curves.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

2018a; Sorsa et al., 2019; Eyraud et al., 2020; Sorsa et al., 2021b; Deng
et al., 2021).

We demonstrate through numerical experiments on a
two-dimensional domain that, when a centre frequency applicable
in a space investigation is used in the numerical simulation of the
full-wavefield together with quadrature amplitude modulation and
demodulation of the simulated signal (Sorsa et al., 2021b), the recon-
struction of the domain is improved i.e., lessening wavelength-induced
uncertainty, when it is found via averaging several candidate recon-
structions or decomposing the signals into meaningful and noisy parts.
The present results show that the expected effect of phase errors is
of significantly higher magnitude in comparison to the noise level,
and that their effect on the final reconstruction can be reduced via
averaging over a sample of candidate reconstructions obtained by a
randomising signal configuration in the spatial and spectral domains.
Comparing the results obtained with regular and randomised signal
configurations, the latter ones demonstrate an overall improved recon-
struction quality which we interpret as a consequence of a successfully
created larger sample of candidates. Namely, the convergence of the
13
sample means as stated by the generalised central limit theorem (Liu,
2008) depends only on the sample size 𝐾 as O(𝐾−1∕2), if it is ap-
propriate otherwise. Here the frequency randomisation constituted an
important way to extend the sample size, accounting as a surrogate for
the uncertainties due to wave propagation and domain structure.

As for the dense and sparse configurations, the wavelength-induced
uncertainties can be identified as the cause of the difference in the
reconstructions obtained. The sparse configuration yields a higher con-
trast as compared to a dense one, since phase fluctuations lead to
larger fluctuations in the reconstruction the greater the number of data
point in the constellation set. Hence, aggregating small collections of
phase fluctuations over a large number of constellations preserves the
phase information as compared to aggregating large phase fluctuations
over a small number of constellations. We can infer from Fig. 11 that
obtaining the exact permittivity values from the inversion process is
challenging task if the full-wave data is not augmented with some
additional information such as the signal travel-time. The permittivity
perturbation norm spreads in the sparse configuration case with the
low noise level cases having shorter-tailed distribution compared to the
high noise cases. The estimated permittivity perturbations are large,
since the formalism in Eqs. (2), (9), and (19) show that we can only get
an estimate x for the permittivity perturbation (x̃), and this estimate is
largely dependent on the model and wavelength-induced uncertainties
that cannot be totally marginalised. We have shown distribution of the
estimated permittivity perturbation in Fig. 11. The challenge of esti-
mating exact permittivity distributions and perturbation distribution
i.e., minimising the errors in the estimate x obtained in this current
study is to be considered as a future research goal. Since we assume
that the errors in the perturbation estimates obtained are not flat and
cannot be fitted to the exact perturbation distribution as that would be
an inverse crime, a more robust marginalisation method or supporting
data would be needed to solve this task.

In this study, we assume that the averaged total variation regu-
larised estimates in the marginalisation process are independent
(enough) and identically distributed (IID) so that the convergence
conditions of the central limit theorem or its generalisation to weakly
correlated samples hold (Liu, 2008). This assumption sets a challenge
for choosing the measurement point configuration and phase discrep-
ancy appropriately. We covered two possible strategies for spatial point
selection, otherwise known as statistical sparsity-based learning with
a suitable prior model (Mirbeik et al., 2021). The sample size of
the present randomised configuration was found to reduce the phase-
dependent fluctuations by 2%–26% relative to the regular configuration
in terms of the OE and RMSE measures, see Table 3. Further im-
provement of the current estimates might be obtained by applying
a larger sample, relying on the asymptotic central limit theorem,
which states that the accuracy of a sample-based estimate is inversely
proportional to the square root of the sample size. Alternatively, as the
IID condition is only assumed due to the missing a priori information on
the wavelength-induced uncertainties the formation of the sample can
be supervised by filtering out the possible outliers. In such a procedure,
the principal component analysis (Lee et al., 2008), or machine learning
and deep neural network (Geng et al., 2021; Li et al., 2019; Ji et al.,
2021) might be utilised. In particular, a deeper investigation on the
dependence of the wavelength-induced uncertainties on the frequency
and receiver positions might be conducted to gain more a priori un-
derstanding of how the receiver positions could be distributed around
the orbit, hence determining if the point selection approach can be
improved.

From a potential mission design viewpoint, the results obtained
suggest that setting the bandwidth of the modelled signal pulse based
on the discrepancy principle and averaging the measurement point
density following the Nyquist criterion is crucial w.r.t. the stability
of the reconstruction process. If the number of averaging points is
limited further from the current setup, the size of the reconstructed
details grows, or they tend to get blurred as a natural consequence
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of the lower measurement point density. Due to the importance of
selecting the measurement point configuration suggested by the WRS
test, it is also obvious that a sparse configuration alone will not allow
obtaining an optimal reconstruction quality. However, sampling can
be applied without having a point density matching with the Nyquist
criterion w.r.t. the centre frequency, which can be the case of in-situ

easurements. This is important if the global internal structure of an
steroid is to be explored during a space mission, to provide answers
o the scientific questions on the internal composition asteroids and/or
omets (Carry, 2012; Jutzi and Benz, 2017; Hérique et al., 2018).

The TSVD filter is based on excluding the less significant signal
omponents out of the inversion process, which is known to improve
he outcome of Ground-penetrating radar (GPR) reconstructions (Lu-
eno et al., 2020). The TSVD was found to have a regularising effect
n the reconstruction, while it did not affect the major fluctuations
ue to the wavelength-induced uncertainties but rather increased the
rror values. As our concentration is on the monostatic data, i.e., the
oints of transmission and measurement coincide, similar to the future
uRa investigation, TSVD was considered as a way to decompose the
ignal. If more complex signal patterns e.g., bistatic or multistatic
easurements will need to be processed as suggested in several pre-

ious studies (Sorsa et al., 2019), then more advanced decomposition
pproaches will be necessary. For example, the decomposition of the
ime reversal operator DORT (Décomposition de l’opérateur de re-
ournement temporel) (Prada et al., 1996; Fink et al., 2000) finds the
ost ‘reflective’ multistatic patterns by finding the eigenvalues and

igenvectors of a symmetric (reciprocal) transfer matrix between the
ransmission and measurement points.

While our concentration is on reconstructing the real part of the
elative permittivity structure, motivating real-valued discretisation
f the forward and inverse problem (Sorsa et al., 2020), a complex
ormulation follows from the complex-valued QAM signal, where the
n-phase and quadrature component compose the real and imaginary
art, respectively. Inverting a complex-valued system was found to be
dvantageous to reduce any possible fluctuations due to wavelength-
nduced uncertainties. Namely, the wavelength-induced uncertainty
ight affect only one of the QAM signal components, in which case,
real-value Jacobian matrix might contain two opposite fluctuations,

otentially cancelling each other, while a complex Jacobian treats both
erturbations appropriately as two complex components with a positive
bsolute value, thereby, preserving the visibility of the scatterer causing
he deviation.

The inversion process applied relies on the linearisation of the
ull wavefield w.r.t. the permittivity perturbation in a given posi-
ion (Virieux and Operto, 2009). Hence, while the wave propagation
s modelled as a nonlinear process, taking into account indirect signal
aths including reflection and refraction and higher-order or multi-path
cattering effects between the scattering obstacles and the structure
f the target, the mutual coupling effects between the obstacles, are
mitted in this study. Based on earlier results of the same model,
he improvement obtained with a higher-order polynomial or Born
pproximation via a recursive use of the present linearisation (Sorsa
t al., 2020) is assumed to be a minor one. In particular, as the higher-
rder approximation was shown to be sensitive to noise which cannot
e avoided in the present application due to the wavelength-induced
ncertainties. Notably, the numerical inaccuracies in the modelled
aterial distribution, which gives rise to the requirement for the dis-

repancy condition, are always present regardless of the order of Born
pproximation incorporated in the model. However, another modelling
pproach for the nonlinear higher-order scattering effects might yield
n improvement. Therefore, comparisons between different methods
nd solvers, e.g., ray-tracing techniques (Gassot et al., 2020; Ciarletti
t al., 2015) and frequency-based methods (Eyraud et al., 2019, 2020)
ill be important.

We have chosen a two-dimensional reference domain for this study,
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s it allows examining the effects of wavelength-induced uncertainties
on numerical inversion efficiently without the need of high-
performance cluster computations. In addition, our domain has a few
features that makes it relevant from the mission design viewpoint,
in particular, considering asteroids as potential targets. Firstly, our
model includes a surface layer which is a potential structure in asteroid
interiors as shown by impact simulation studies (Jutzi and Benz, 2017).
As a surface layer is known to significantly hinder the detection of
buried objects (Dogan et al., 2017), it can be considered as important
from the practical applicability aspect. Many studies, however, omit
this aspect, e.g., Deng et al. (2021), thus, potentially somewhat exag-
gerating the detectability of the deep interior structures. In addition
to the surface layer, another important modelling feature ensuring the
relevance of our model is the realistic value of the real background
relative permittivity which, based on the assumed mineral composition
of the target (Herique et al., 2002; Hérique et al., 2018), was set to
be 4. A significantly lower value 1.6 has been used in Haynes et al.
(2021), hence, reducing the complexity of the wave propagation inside
the target as compared to our present study. Furthermore, the extension
of the piece-wise constant domain to a random field domain gives an
indication of how the complexity of the wavelength-induced uncertain-
ties grows. In essence, the high frequency (60 MHz) is more sensitive
to all kinds of uncertainty which in turn, reduces the reconstruction
quality of the target domain. The experimental relevance of the present
structural model composition can be motivated by the recent successful
laboratory experiments with 3D-printed analogue targets (Sorsa et al.,
2021a,b; Eyraud et al., 2020) with a comparable structure compared
to the present case.

The next step will be to investigate the present methodology with
a three-dimensional analogue object and with experimental scattering
data similar to Sorsa et al. (2021b,a) and Eyraud et al. (2020). In such
a process, the outcome of this study to understand combining point
cloud data into a single reconstruction is important. The current two-
dimensional implementation can, in principle, be directly extended to
the three-dimensional laboratory coordinates as done in the previous
analogue studies. This study also allows for further numerical investi-
gation of the uncertainties relating to the wavelength-induced uncer-
tainties, which is essential due to the significance of their magnitude
based on the current results.
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