
Implementation of Embedded Multiple Signal
Classification Algorithm for Mesh IoT Networks

Tiago Troccoli†‡, Juho Pirskanen†, Aleksandr Ometov‡, Jari Nurmi‡, Ville Kaseva†
† WIREPAS Ltd., Tampere, Finland

‡ Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
Contact email: tiago.troccolicunha@tuni.fi

Abstract—Angle-of-Arrival (AoA) methods are an Internet of
Things (IoT) application, which could be used, for example, in
indoor localization. Anchor nodes have an array of antennas
and could send the data via Ethernet cable to the cloud that
calculates AoA. However, having cable connections means high
installation costs, and constantly transferring big chunks of data
over some IoT networks, such as mesh, is energy inefficient.
The solution of this paper consists in executing AoA locally
in anchor nodes. Thus, the paper presents an implementation
of a Multiple Signal Classification (MUSIC) algorithm tailor-
made for embedded system devices. It calculates a complex
eigendecomposition via an equivalent real formulation. It has a
detailed memory analysis of the implemented solution that shows
its memory requirements satisfy commercial embedded systems
for IoT, such as Nordic semiconductor System-on-Chip (SoC) of
nRF52 Series and all their SoCs with direction-finding capability.
Experiments show that reducing the floating-point precision to
shrink its memory footprint does not impact the accuracy. It also
shows that minimizing the execution time of its time-consuming
peak-finding operation has a few effects on accuracy.

Index Terms—MUSIC, signal processing, angle-of-arrival, IoT,
Mesh networks, embedded systems

I. INTRODUCTION

Obtaining locations of different assets, such as tools, ma-
chines, or other equipment, is essential for efficient operations
in many different industrial areas, and it is a common Internet
of Things (IoT) application. For example, having the exact
and frequently updated status of warehouse inventories can
improve the efficiency of the operations significantly [1].
Even though Global Navigation Satellite System (GNSS) can
provide accurate outdoor locations, using those solutions is
not always practical. In indoor environments, satellite signals
are affected by various propagation aspects, or providing
additional positioning systems to the asset is not possible [2].

In network-based positioning, the locations of the assets
are estimated in relation to the anchor nodes whose locations
are known in advance [3]. Using Received Signal Strength
Indicator (RSSI) to estimate distance is a well-known method,
but its accuracy is typically limited to a few meters. Moreover,
the accuracy is heavily dependent on the density of the
anchors. Accuracy of a few meters can be acceptable in many
use cases, but on some occasions need higher accuracy. For
example, machine navigation for autonomous mobile robots,
drones, industrial automation, or navigation systems that guide
people in indoor environments. If such systems do not attain a
good enough accuracy, industrial machines could be damaged,

and people guided to wrong places. To obtain better accuracy,
positioning based on Angle-of-Arrival (al (AoA) has been
developed.

A typical architecture of the AoA solution in warehouses is
composed of sensor nodes that are battery-powered embedded
systems, and mains-powered anchor nodes with an antenna
array connected with a high throughput data interface, i.e.,
Ethernet cable or fiber to cloud or server infrastructure. An-
chor nodes perform reception of transmissions done by radio
modules of assets (sensor nodes) and send the received in-
phase and quadrature component (IQ) samples to the cloud
where actual calculation of AoA and location are performed.
However, having cable connections means high installation
costs, and transferring IQ samples over some IoT networks,
such as wireless mesh networks, is impractical. If that ap-
proach were used in such networks, anchor nodes would
constantly send chunks of IQ values to a node so that the node
would send them to another one, and so on, until reaching
the gateway to transmit them to the cloud (See Figure 1).
That would rapidly deplete the batteries of nodes, consume
an unreasonable amount of radio, network, and computational
resources, and increase the latency of AoA methods.

The solution in this research consists of executing AoA
methods locally in anchor nodes instead of in the cloud.
Thus, they only need to send the results of about 2 � 8
bytes to the cloud. To carry out the solution, we implemented
a Multiple Signal Classification (MUSIC) [4] in ANSI C99
tailor-made for embedded system devices equipped with a
Uniform Linear Array of Antennas (ULA). The solution is
intended to be executed in System-on-Chip (SoC) devices
that have Bluetooth Low Energy (BLE) technology supporting
Gaussian Frequency Shift Keying (GFSK) modulation. Al-
though it could operate on other technologies, it was out of
the scope of this research. As the anchor node would receive
one packet transmission from a sensor node at a time, MUSIC
estimates a single AoA during its execution.

The findings and contributions are as follow:
• A MUSIC algorithm tailor-made for embedded system

devices that was successfully run in a Nordic Semiconductor
System-on-Chip (SoC) with direction-finding capability. And
6, 000 tests were executed with different Signal-to-Noise Ra-
tios (SNR), precision floating-points, and IQ values generated
by clustered delay line E (CDL-E) channel model of MAT-
LAB Communication Toolbox plus Additive White Gaussian



Cloud

ULA

ULA
ULA

Gateway

Sensor 
Node Sensor

Node

Sensor 
Node

Fig. 1. Running AoA methods in the cloud is energy inefficient and expensive
for Mesh IoT networks. The solution consists in executing them in anchor
nodes.

Noise (AWGN).
• MUSIC satisfies the memory requirements for commer-

cial embedded systems for IoT verified by this research. Such
as even the most memory-constrained Nordic Semiconductor
SoC of nRF52 Series and all their SoCs with direction-finding
capability [5], [6] by the time this paper was written.

• The IQ matrix could take up more than 50% of overall
RAM consumption. However, experiments show that reducing
the floating-point precision to minimize memory consumption
does not impact accuracy.

• Experiments show that finding the peak of the MUSIC
spectrum is the most time-consuming operation by far. How-
ever, it is possible to lower its execution time in exchange for
a few reductions in accuracy.

The paper is structured as follows. First, we provide the
related works and mathematical background information in
Section II and III. Afterward, the MUSIC implementation
section has detailed explanations of under-the-hood algorithms
alongside their intricacies in Section IV. Section V lays out the
experiments and findings. The main results are summarized in
the last section.

II. RELATED WORKS
In [7], [8], researchers developed unitary MUSIC on an

FPGA. It is a version of MUSIC in which its complex
covariance matrix is converted into a real one. In this paper,
we did something similar but with a different approach. The
implemented solution solves a complex eigendecomposition
via an equivalent real formulation to be able to construct the
complex noise subspace. Also, since their implementation was
on FPGA, some operations were done in hardware.

In [9], the authors implemented MUSIC in a software-
defined-radio and carried out real-world experiments. In [10],

researchers proposed a smart antenna structure to execute AoA
methods. In [11], MUSIC was programmed in a Digital Signal
Processor (DSP) for AoA estimations for underwater acoustic
sources. This paper differs from the others since it targets
embedded systems for IoT with direction-findings capabilities.

There are many AoA methods, such as Estimation of
Signal Parameters via Rotational Invariant Techniques (ES-
PRIT) [12], Space Alternating Generalized Expectation-
Maximization (SAGE) [13], and Minimum Variance Distor-
tionless Response (MDVR) [14]. In this research, we imple-
mented MUSIC [4]. It is a very popular method and has been
widely studied for decades resulting in multiple variations
of the same algorithm. Moreover, many comparative studies
reported that it attains great accuracy capability [15]–[17], and
some researchers claim that it has superior performance com-
pared to methods based on beamforming techniques [18], such
as MDVR, which was one of the earliest categories of AoA
methods. Although some researchers agree that algorithms
based on the maximum likelihood approach have performance
superior to MUSIC and ESPRIT, they are computationally
very expensive, so they are unpopular [18], [19]. However,
the downside of MUSIC consists in its time-consuming peak-
finding operation (see eq. (6)), but it could be fairly decreased,
as shown in this paper.

III. MATHEMATICAL MODEL OVERVIEW

MUSIC is classified as a subspace-based technique
grounded on proprieties of the covariance matrix. The space
spanned by the covariance’s eigenvectors can be divided into
two orthogonal subspaces, called signal and noise subspaces.
Furthermore, the steering vectors correspond to the signal
subspace, too. With those proprieties, it is possible to find
the angle-of-arrival.

The MUSIC algorithm described in this paper is founded
on a mathematical model that takes on the following
premises [18]: the transmission medium is linear and isotropic,
far-field assumption, and the sources generate narrowband
signals propagated in an AWGN channel. Taking that into
account, let’s consider an ULA with M elements receiving
signals generated by d sources. As shown in [20], the IQ
sample for each source at a timestamp t is found by

x(t) = As(t) + n(t), (1)

where s(t) 2 Cd⇥1 is a vector of signals of d sources, n(t) 2
Cd⇥1 is a zero-mean spatially correlated additive noise and
A 2 CM⇥d is the steering matrix, that is,

A =
⇥
a(✓1) a(✓2) ... a(✓d),

⇤
(2)

where

a(✓i)
T =

⇥
1 e

jµ✓i e
j2µ✓i ... e

j(M�1)µ✓i

⇤
, (3)

is the steering vector where µ✓i =
2⇡fc
c

� sin ✓i, c is the speed
of light, fc is the carrier frequency, and � is the distance
between two adjacent antennas.

The algorithm is outlined as follows [18]:



1) Collect N samples x(tn) 2 CM⇥1 for timestamp
t1, t2, ..., tN and estimate the covariance matrix

Rxx ⇡ R̂xx = (
1

N
)XXH

, (4)

where X =
⇥
x(t1) x(t2) ... x(tN )

⇤
2 CM⇥N .

2) Compute the eigendecomposition of R̂xx

R̂xx = J⌃JH
, (5)

where ⌃ is a diagonal matrix comprised of eigenvalues
and the matrix J is made up of eigenvectors.

3) Estimate the number of sources. Let d be this number.
4) Create a matrix ⇤ that consists of eigenvectors in J

after removing the eigenvectors associated with the d

greatest eigenvalues. The matrix ⇤ is the noise subspace
of R̂xx, which is orthogonal to the d steering vectors that
make up A.

5) Let’s define a(✓i) as in eq. (3). Find the d largest peaks
of the MUSIC spectrum

P (✓i) =
1

a(✓i)H⇤⇤Ha(✓i)
, (6)

where �90°  ✓i  90°. The angles corresponding to
the d largest peaks are the angles of arrival.

The mathematical model does not consider correlated or
coherent impinging signals, in the case of multiple signals
sources. However, signals could attain such conditions in real-
world environments, especially in rich multipath scenarios.
Thus, to deal with this problem successfully, pre-processing
techniques should be applied, such as Forward-backward av-
eraging [21]. Also, the MUSIC applies ideal array steering
vectors, which could degrade its accuracy. Therefore, array
calibration could be used to lessen this problem [19]. Since
this implementation only estimates one AoA at a time, we did
not implement pre-processing techniques.

IV. MUSIC IMPLEMENTATION
This research implemented MUSIC from scratch using

ANSI C99 programming language, considering embedded
systems equipped with a uniform linear array of antennas,
with GFSK modulation that is supported by short-range ra-
dio technologies, performing reception at a single operating
channel. Thus, MUSIC can estimate only one AoA during its
execution. Nevertheless, implementing MUSIC for embedded
systems is not a simple task since it requires developing
difficult numerical methods from the ground up. It uses three
libraries from ANSI C: complex.h, math.h and stdint.h. Those
libraries do not provide all numerical methods to execute
MUSIC. Furthermore, well-known linear algebra libraries such
as LAPACK [22] and Armadillo [23] are not designed for
embedded systems. Although the Common Microcontroller
Software Interface Standard (CMSIS) DSP Software Library
is designed for them, it lacks some numerical methods used
in MUSIC. For that reason and to make the implemented
solution sufficiently compact, we implemented tailor-made
algorithms. They include a modified version of complex matrix

multiplication in which its result is a Hermitian matrix, the
eigendecomposition called Jacobi method, a slight modifica-
tion of the selection sort algorithm, the algorithm to construct
the noise subspace, and the method to find the peak of MUSIC
spectrum.

The IQ value matrix (X) is the biggest matrix by far, and it
consumes a considerable amount of RAM for an embedded
system. For instance, if the number of antennas is 6 and
samples is 250, it will consume 12000B or about 11.7KB in
case the complex numbers are represented in single precision
floating-point. Thus, storing its conjugate transpose, XH , to
calculate the covariance matrix (see eq. (4)) would double this
already big amount of memory consumption. The implemented
solution does not store XH , since the matrix multiplication
algorithm was modified. The standard way to multiply two
matrices, R̂xx = XY, is

r̂xx(i, j) = (
1

N
)

NX

k=1

x(i, k) ⇤ y(k, j), 8i, j = 1, ...,M. (7)

Since Y = XH , y(k, j) = x(j, k), eq. (7) could be
written as

r̂xx(i, j) = (
1

N
)

NX

k=1

x(i, k) ⇤ x(j, k), 8i, j = 1, ...,M. (8)

The implemented solution applies complex conjugate for
each element whenever it is needed to avoid storing XH .
Moreover, the implemented method only calculates the upper
triangular elements of R̂xx. For the lower part, it uses the
Hermitian matrix property, that is, r̂xx(i, j) = r̂xx(j, i). To
sum up, using these simple approaches, the device saves RAM
in the order of MN and reduces the matrix computation by
half.

The eigendecomposition is applied in the covariance matrix
of M⇥M , which is a small matrix since the number of anten-
nas is small for a linear array of antennas in embedded system
devices. The implemented solution uses the Jacobi eigenvalue
algorithm, based on [24], to do the eigendecomposition in
eq. (5). It is specifically devised for symmetric matrices, and it
is considered a foolproof algorithm. Although it is not the most
efficient method, it works fine for a small matrix [24], such
as in this case, and it is simpler than the more sophisticated
ones. However, the implemented Jacobi method works for real
matrices. Thus, the solution converts the covariance matrix into
a real one before calling it. In other words, it solves a complex
eigendecomposition via an equivalent real formulation to be
able to construct the complex noise subspace (matrix ⇤ from
eq. (6)). Since the covariance is a complex (Hermitian) matrix,
let’s define it as R̂xx = A+ iB. Then the M ⇥M complex
eigendecomposition problem

(A+ iB) · (u+ iv) = �(u+ iv) (9)

can be formulated as 2M ⇥ 2M real problem

A �B
B A

�
·

u
v

�
= �


u
v

�
. (10)



It is proved in [25] that the eigendecomposition (EVD) of
the augmented problem of eq. (10) is


A �B
B A

�
=


U �V
V U

� 
⌃ 0
0 ⌃

� 
U �V
V U

�T
, (11)

where U+iV or �V+iU could be the matrix of eigenvectors
of R̂xx with their respective matrix of eigenvalues, ⌃. The
eigenvalues of R̂xx are found duplicated in the EVD of the
augmented problem (11). For each duplicate valued pair of
eigenvalues, (�i,�i), its respective eigenvectors are ui + ivi

and �vi + iui. The eigenvectors of R̂xx can be one of them.
As a result, the matrix of eigenvectors of R̂xx could be also
a combination of U + iV and �V + iU, provided that it
has only one eigenvector of each duplicate valued pair of
eigenvalues [24].

The real covariance matrix is 2 times greater than the
complex one. Since the algorithm complexity of the Jacobi
method is O(N3), the computational operation is in the order
of 8 times greater. However, since the number of antennas in
the ULA of embedded systems is sufficiently small, we can
afford this modest additional operation.

However, the Jacobi method does not output ordered eigen-
values. Thus, after the EVD, the implemented solution sorts
eigenvalues with their respective eigenvectors, so that the
output looks like this �1 � �1 � �2 � �2 � ... � �n � �n.
Therefore, the implemented method is able to pick out u+ iv
or v � iu for each duplicate valued pair of eigenvalues.
However, the bottleneck of the sorting algorithm is the sorting
of eigenvectors because it needs to swap all vector elements
in every exchange of eigenvalues. Furthermore, the sorting
algorithm does not need to be sophisticated since the number
of eigenvalues is small. However, it should be good enough to
overcome the bottleneck mentioned above. The implemented
solution applies selection sort. It is a simple method that works
fine for a small number of elements (eigenvalues), as in this
case, with O(n2) number of comparisons [26]. However, it
allows to concomitantly sort the eigenvectors with at most n
swaps operation dealing successfully with the bottleneck.

A small code optimization was done to calculate eq. (6).
Knowing that a(✓)H⇤⇤H

a(✓) = k⇤H
a(✓)k, the implemented

solution sums the squared values of each elements of ⇤H
a(✓),

instead of computing three matrix multiplications. As a result,
the device saves memory and time. Moreover, as previously
mentioned, the algorithm searches for angles between �90°
and 90° that maximize eq. (6) by defining a step 0 < �  1,
so that the algorithm searches for angles ✓i = �90° +�i for
all i = 0, 1, ..., b 180°

� c. Since i is an integer number, to make
sure the search includes 90°, the � should be a number that
divides 180° without a remainder.

V. EXPERIMENTS AND FINDINGS

In the first part of the experiment, we checked the memory
requirements for three floating-point types to run MUSIC and
if they fit in commercial embedded systems with direction-
finding capabilities. In the second part, we analyzed the impact
of precision points on the MUSIC accuracy to reduce the

memory consumption of the IQ value matrix (X). We also
carried out experiments to investigate the impact of the �
parameter on the accuracy to reduce the function’s execution
time that finds the peak in the MUSIC spectrum since it
is the most time-consuming function. In the third part, we
evaluated the execution time of MUSIC on a real board using
nRF52840. The number of antennas (M ) was six with 50
samples (N ) in all experiments. We verified some commercial
linear array of antennas for embedded systems, and based
on that, we considered six a reasonable number of antennas.
Furthermore, according to our experiments, 50 samples are
enough to get accurate estimations. The ULA is composed
of isotropic antennas with frequencies 2 to 3 GHz. The ULA
was developed using MATLAB Communication Toolbox as
an intermediate step to generate IQ values that were fed to
MUSIC executed in the embedded system.

Based on the single-precision floating-point MUSIC, we
only changed the IQ values matrix (X) to the half-precision
one, since only X has a considerable impact on RAM. How-
ever, to turn X matrix into double-precision, we changed the
entire code to double-precision as well to avoid losing preci-
sion points obtained by X. Moreover, the complex.h library of
C does not have support for a half-precision floating-point, so
we created a C structure made up of real and imaginary parts
shown below.

1 / * The complex l i b r a r y o f C does n o t have s u p p o r t
f o r h a l f − p r e c i s i o n f l o a t i n g p o i n t , so we c r e a t e d

a C s t r u c t u r e shown below . * /
2 s t r u c t COMPLEX NUM{
3 fp16 r e a l ;
4 fp16 imag ;
5 } ;
6 t y p e d e f s t r u c t COMPLEX NUM Complex ;

Table I shows memory requirements for three floating-
point types. To generate those consumptions, we used a bare-
metal cross-compiler that comes with GNU ARM Embedded
Toolchain. We considered an nRF52833 SoC to configure
the compilation since it has a direction-finding capability
and an ARM Cortex-M4 with a Floating-Point Unit (FPU).
The half floating point is under IEEE 754-2008 format. The
hardware floating-point instructions and hardware floating-
point linkage were enabled, that is, the -mfloat-abi=hard flag
was set. However, those memory consumption generated by
arm-none-eabi-size.exe command line do not take into account
the memory consumption inside functions (stack and heap
memory). It provides the size of bss, text and data memory
sections that made up RAM and ROM. Thus, to get the
full picture, we generated the stack memory consumption
using the flag -fstack-usage for the single-precision floating-
point MUSIC (Table II) only. It should be noted that the
implemented solution does not consume heap memory.

Thus, we can conclude that this MUSIC implementation
satisfies the memory requirements for commercial embedded
systems for IoT verified by us, such as Nordic Semiconductor
System-on-Chip (SoC) nRF52 Series and all their SoCs with
direction-finding capability [5], [6] by the time this paper was
written. Also, Table II shows the relative execution time for



TABLE I
MEMORY CONSUMPTION FOR EACH FLOATING POINT

(N = 50 AND M = 6).

RAM
consumption

ROM
consumption

Half precision floating-point 2.58KB 13.87KB
Single precision floating point 3.97KB 12.03KB
Double precision floating point 10.98KB 19.16KB

TABLE II
STACK MEMORY AND RELATIVE EXECUTION TIME VALUES FOR SINGLE

PRECISION FLOATING POINT (� = 0.1, N = 50 AND M = 6)

Function Stack memory
consumption

Relative execution
time (%)

covmat conversion 24B 0.02%

get covmat 48B 0.62%

music function 64B -
find peak 40B 95.02%

evdcmp 184B 4.25%

eigen sort 32B -
get noise matrix 40B 0.07%

runMUSIC 16B -

each function considering � = 0.1, N = 50 and M = 6.
Considering a method with n functions, we define a relative
execution time of a function fi as

ri =
tiP

n

k=1 tk
, (12)

where ti and ri are, respectively, the absolute and relative
execution time of the function fi for 1  i  n. In other
words, the relative execution time of a function measures
the fraction or the percentage of its absolute execution time
relative to the execution time of the method. Some functions
have a dash. In the case of function runMUSIC, it is the
main one and calls other functions. The eigen sort is called by
get noise matrix, so the running time is in get noise matrix’s
execution time. The same reason for music function, which is
called by find peak. It is clear that find peak is the most time-
consuming function. Therefore, we conducted experiments to
reduce its relative execution time by means of increasing the
� parameter to verify its impact on accuracy.

Notably in Table I, there is a substantial increment in ROM
consumption for double-precision floating-point, because the
FPU of ARM-Cortex M4 does not support that precision,
but only single-precision. Thus, C runtime library functions
execute all the calculations in software instead of in hardware,
i.e., the calculations are emulated [27], [28]. As a result, more
ROM is required to execute operations using double precision.
However, the ARM-Cortex M4 processor carries out calcula-
tions in half-precision using single-precision instructions [29].
To do that, it promotes half-precision numbers into single-
precision ones before executing arithmetic operations. That is,
both precisions use the same instructions for such operations,
thus, their ROM usage is similar. The small difference between
them is probably due to the data structure mentioned pre-

viously. Due to executing mathematical operations, the half-
precision solution needs to access the numbers in such a data
structure that requires more instructions, while the difference
in RAM usage is a clear consequence of the distinct number
of bits among different floating point precisions.

Table III shows the results of Mean Squared Errors (MSE) in
degrees between the difference of 100 random angle of arrivals
and their estimations by MUSIC for each pair of SNR ⇥�
considering three distinct precision floating-point formats. To
do that, the MUSIC was fed by IQ values generated by
the CDL-E channel model from MATLAB Communications
Toolbox [30] plus AWGN. The experiments were conducted
in a Raspberry Pi 3 Model B since it has an ARM processor
with half-precision floating-point capability. Note that Table III
shows SNR of 0 dB. Although this low SNR could be imprac-
tical for wireless systems, the experiments only considered
the accuracy of MUSIC method without taking into account
whether system operation at such a low SNR value is viable.

The main takeaway of Table III is that the change of
precision in floating-point does not impact the accuracy. We
can also easily see that the accuracy improves with the increase
of SNR as expected. Moreover, the rise of the � parame-
ter generally deteriorates the accuracy by a small amount.
However, very small fluctuations are verified between 0.25
and 0.75. Since the accuracy variations are small between �
values, increasing � has a small impact on the accuracy, but
a fairly substantial effect on the relative execution time of
find peak function as shown in Figure 2.

TABLE III
MSE IN DEGREES FOR EACH PAIR OF SNR ⇥� FOR EVERY PRECISION

FLOATING-POINT.

Half-precision floating point

SNR [dB]
Delta (�)

0.1 0.25 0.5 0.75 1.0

0 3.11 3.09 3.09 3.10 3.17
10 1.92 1.94 1.95 1.99 2.00
20 1.75 1.74 1.83 1.73 1.81
30 1.72 1.73 1.78 1.75 1.80

Single-precision floating point

SNR [dB]
Delta (�)

0.1 0.25 0.5 0.75 1.0

0 3.11 3.09 3.09 3.10 3.17
10 1.94 1.94 1.95 1.95 2.00
20 1.75 1.74 1.83 1.99 1.81
30 1.72 1.73 1.78 1.73 1.80

Double-precision floating point

SNR [dB]
Delta (�)

0.1 0.25 0.5 0.75 1.0

0 3.11 3.09 3.09 3.10 3.17
10 1.94 1.94 1.95 1.99 2.00
20 1.75 1.74 1.83 1.73 1.81
30 1.72 1.74 1.78 1.75 1.80

Figure 3 shows the execution time in milliseconds of
MUSIC using a single-precision floating-point for each value
of � keeping constant IQ values generated by the CDL-



0.1 0.25 0.5 0.75 1
 parameter

60

70

80

90

100

R
el

at
iv

e 
Ex

ec
ut

io
n 

Ti
m

e 
(%

)

94.91

88.57

76.24

68.3

62.47

Fig. 2. Relative execution time of find peak method for each value of �. The
find peak is the most time-consuming function, so, increasing its � parameter
has a significant impact on MUSIC execution time.

0.1 0.25 0.5 0.75 1
 parameter

0

40

80

120

Ex
ec

ut
io

n 
Ti

m
e 

of
 M

U
SI

C
 (m

s) 133.93

57.8

31.76
23.27 18.75

Fig. 3. Execution time of MUSIC using single-precision floating-point for
each value of �.

E channel model from MATLAB Communications Toolbox
plus AWGN. It was run in a PCA10056 development board
that has an nRF52840 equipped with an ARM Cortex-M4
with FPU as shown in Figure 4. To measure the time, we
used Saleae Logic Analyzer. The PCA10056 executed MUSIC
periodically. Every time before the execution, it turned on
a pin (rising edge), and after the completion, it turned off
the same pin (falling edge). The time difference between
the rising and falling edge is the execution time of MUSIC.
From Figure 3, when the � increases from 0.1 to 0.25, the
execution time shrinks abruptly by more than a half. That
is a significant improvement considering that the accuracy is
almost the same (see Table III). However, the execution time
of find peak function still consumes most part of the MUSIC’s
execution time by a great amount, which is 88.57% as it
is shown in Figure 2. Furthermore, as the relative execution
time of find peak function decreases, the execution time of
MUSIC declines as well, with initial values falling sharply

Fig. 4. The PCA10056 development kit ran MUSIC to measure its execution
time.

and final ones reducing smoothly. Therefore, it is clear that
the impact of find peak function on execution time becomes
less significant as the � increases. To conclude, increasing the
� parameter can speed up MUSIC significantly in exchange
for compromising its accuracy by a small amount.

VI. CONCLUSIONS

This paper presented a MUSIC implementation for com-
mercial embedded systems equipped with a ULA that uses
Bluetooth Low Energy technology. By implementing MUSIC
and obtaining AoA estimation at embedded devices, the com-
munication requirements are drastically reduced compared to a
situation where IQ samples would be transferred to the cloud.
These savings directly impact radio resources, system energy
consumption, and the cost of mesh IoT networks. Further, it is
foreseen to enable a significant increase in the total number of
indoor localization events that a single system could produce,
which can be especially important, e.g., in warehouses.

Notably, we identified the possibility to mitigate the IQ
matrix footprint by decreasing its floating-point precision
without degrading the accuracy. Furthermore, it is possible to
reduce the execution time of the most time-consuming method
(find peak) in exchange for a few reductions in accuracy.
Moreover, memory requirements satisfy commercial SoC with
BLE direction-finding capabilities verified in this research,
such as nRF5340 and nRF52833. MUSIC implementation is
completed. However, we plan to study further state-of-the-art
code optimization methods and consider other AoA estimation
algorithms and communication systems aspects. Finally, we
expect to conduct real-world experiments with a set of antenna
arrays and test deployments.

ACKNOWLEDGMENT

The authors gratefully acknowledge funding from European
Union’s Horizon 2020 Research and Innovation programme
under the Marie Skłodowska Curie Grant Agreement No.
956090 (APROPOS, http://www.apropos-itn.eu/).



REFERENCES

[1] Y. Lu, M. Gerasimenko, R. Kovalchukov, M. Stusek, J. Urama, J. Hosek,
M. Valkama, and E. S. Lohan, “Feasibility of location-aware handover
for autonomous vehicles in industrial multi-radio environments,” Sen-
sors, vol. 20, no. 21, p. 6290, 2020.

[2] J. Torres-Sospedra, I. Silva, L. Klus, D. Quezada-Gaibor, A. Crivello,
P. Barsocchi, C. Pendão, E. S. Lohan, J. Nurmi, and A. Moreira,
“Towards ubiquitous indoor positioning: Comparing systems across
heterogeneous datasets,” in 2021 International Conference on Indoor
Positioning and Indoor Navigation (IPIN). IEEE, 2021, pp. 1–8.

[3] P. Pascacio, S. Casteleyn, J. Torres-Sospedra, E. S. Lohan, and J. Nurmi,
“Collaborative indoor positioning systems: A systematic review,” Sen-
sors, vol. 21, no. 3, p. 1002, 2021.

[4] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE transactions on antennas and propagation, vol. 34, no. 3, pp. 276–
280, 1986.

[5] Nordic Semiconductor, “Bluetooth direction finding,” https://www.nord
icsemi.com/Products/Bluetooth-Direction-Finding, 2022.

[6] Nordic Semiconductors, “nrf52 series,” https://infocenter.nordicsemi.co
m/index.jsp?topic=%2Fstruct nrf52%2Fstruct%2Fnrf52.html, 2022.

[7] M. Kim, K. Ichige, and H. Arai, “Implementation of FPGA Based Fast
DOA Estimator Using Unitary MUSIC Algorithm [Cellular Wireless
Base Station Applications],” in Proc. of IEEE 58th Vehicular Technology
Conference. VTC 2003-Fall (IEEE Cat. No. 03CH37484), vol. 1. IEEE,
2003, pp. 213–217.

[8] M. Kim, K. Ichige, and H. Ari, “Real-time smart antenna system incor-
porating FPGA-based fast DOA estimator,” in Proc. of 60th Vehicular
Technology Conference, 2004. VTC2004-Fall. 2004, vol. 1. IEEE, 2004,
pp. 160–164.

[9] M.-C. Hua, C.-H. Hsu, and H.-C. Liu, “Implementation of direction-
of-arrival estimator on software defined radio platform,” in Proc. of
8th International Symposium on Communication Systems, Networks &
Digital Signal Processing (CSNDSP). IEEE, 2012, pp. 1–4.

[10] H. Wang and M. Glesner, “Hardware implementation of smart antenna
systems,” Advances in Radio Science, vol. 4, no. C. 2, pp. 185–188,
2006.

[11] S.-Y. Hou, S.-H. Chang, H.-S. Hung, and J.-Y. Chen, “DSP-based
implementation of a real-time DOA estimator for underwater acoustic
sources,” Journal of Marine Science and Technology, vol. 17, no. 4, pp.
320–325, 2009.

[12] R. Roy and T. Kailath, “Esprit-estimation of signal parameters via rota-
tional invariance techniques,” IEEE Transactions on acoustics, speech,
and signal processing, vol. 37, no. 7, pp. 984–995, 1989.

[13] J. A. Fessler and A. O. Hero, “Space-alternating generalized expectation-
maximization algorithm,” IEEE Transactions on signal processing,
vol. 42, no. 10, pp. 2664–2677, 1994.

[14] S. A. Vorobyov, “Principles of minimum variance robust adaptive
beamforming design,” Signal Processing, vol. 93, no. 12, pp. 3264–
3277, 2013.

[15] N. Dheringe and B. Bansode, “Performance evaluation and analysis of
direction of arrival estimation using MUSIC, TLS ESPRIT and Pro
ESPRIT algorithms,” Perform. Eval, vol. 4, no. 6, pp. 4948–4958, 2015.

[16] R. Feng, Y. Liu, J. Huang, J. Sun, and C.-X. Wang, “Comparison of
music, unitary esprit, and sage algorithms for estimating 3d angles
in wireless channels,” in 2017 IEEE/CIC International Conference on
Communications in China (ICCC). IEEE, 2017, pp. 1–6.

[17] O. A. Oumar, M. F. Siyau, and T. P. Sattar, “Comparison between
music and esprit direction of arrival estimation algorithms for wireless
communication systems,” in The First International Conference on
Future Generation Communication Technologies. IEEE, 2012, pp. 99–
103.

[18] Z. Chen, G. Gokeda, and Y. Yu, Introduction to Direction-of-arrival
Estimation. Artech House, 2010.

[19] E. Tuncer and B. Friedlander, Classical and modern direction-of-arrival
estimation. Academic Press, 2009.

[20] P.-J. Chung, M. Viberg, and J. Yu, “Doa estimation methods and
algorithms,” in Academic Press Library in Signal Processing. Elsevier,
2014, vol. 3, pp. 599–650.

[21] S. U. Pillai and B. H. Kwon, “Forward/backward spatial smoothing
techniques for coherent signal identification,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 37, no. 1, pp. 8–15, 1989.

[22] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney et al.,
LAPACK Users’ guide. SIAM, 1999.

[23] C. Sanderson and R. Curtin, “Armadillo: a template-based C++ library
for linear algebra,” Journal of Open Source Software, vol. 1, no. 2, p. 26,
2016.

[24] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nu-
merical recipes 3rd edition: The art of scientific computing. Cambridge
university press, 2007.

[25] D. Day and M. A. Heroux, “Solving complex-valued linear systems via
equivalent real formulations,” SIAM Journal on Scientific Computing,
vol. 23, no. 2, pp. 480–498, 2001.

[26] R. Sedgewick, Algorithms in C++, parts 1-4: fundamentals, data
structure, sorting, searching. Pearson Education, 1998.

[27] J. Yiu, The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4
Processors. Newnes, 2013.

[28] I. Johnson. (2022) 10 useful tips for using the floating point unit on
the cortex-m4. [Online]. Available: https://community.arm.com/arm-co
mmunity-blogs/b/architectures-and-processors-blog/posts/10-useful-ti
ps-to-using-the-floating-point-unit-on-the-arm-cortex--m4-processor

[29] Arm, Arm Compiler armclang Reference Guide Version 6.12. Arm
Ltd., 2019.

[30] MATLAB. (2022) Communications toolbox: Design and simulate
the physical layer of communications systems. [Online]. Available:
https://se.mathworks.com/products/communications.html


