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A B S T R A C T   

Pathological gross examination of breast carcinoma samples is sometimes laborious. A tissue pre-mapping 
method could indicate neoplastic areas to the pathologist and enable focused sampling. Differential Mobility 
Spectrometry (DMS) is a rapid and affordable technology for complex gas mixture analysis. We present an 
automated tissue laser analysis system for imaging approaches (iATLAS), which utilizes a computer-controlled 
laser evaporator unit coupled with a DMS gas analyzer. The system is demonstrated in the classification of 
porcine tissue samples and three human breast carcinomas. Tissue samples from eighteen landrace pigs were 
classified with the system based on a pre-designed matrix (spatial resolution 1–3 mm). The smoke samples were 
analyzed with DMS, and tissue classification was performed with several machine learning approaches. Porcine 
skeletal muscle (n = 1030), adipose tissue (n = 1329), normal breast tissue (n = 258), bone (n = 680), and liver 
(n = 264) were identified with 86% cross-validation (CV) accuracy with a convolutional neural network (CNN) 
model. Further, a panel tissue that comprised all five tissue types was applied as an independent validation 
dataset. In this test, 82% classification accuracy with CNN was achieved. An analogous procedure was applied to 
demonstrate the feasibility of iATLAS in breast cancer imaging according to 1) macroscopically and 2) micro
scopically annotated data with 10-fold CV and SVM (radial kernel). We reached a classification accuracy of 94%, 
specificity of 94%, and sensitivity of 93% with the macroscopically annotated data from three breast cancer 
specimens. The microscopic annotation was applicable to two specimens. For the first specimen, the classification 
accuracy was 84% (specificity 88% and sensitivity 77%). For the second, the classification accuracy was 72% 
(specificity 88% and sensitivity 24%). This study presents a promising method for automated tissue imaging in 
an animal model and lays foundation for breast cancer imaging.   

1. Introduction 

Alternatives to traditional microscopy for the examination of tissues 
for malignancy have recently captured attention in the field of di
agnostics and surgical treatment of breast cancer. The evaluation of 
surgical margins after breast-conserving surgery (BCS) is of special in
terest as positive margins remain a problem (Senkus et al., 2015; Car
doso et al., 2019). The rate of reoperations due to margin positivity in 

BCS is relatively high at approximately 30% (Lovrics et al., 2009; van 
Leeuwen et al., 2018). This has motivated the development of several 
tools for margin assessment that utilize different technical approaches. 
To suit clinical practice, the method should be fast, offer high spatial 
resolution, and a sensitivity approaching 95% to minimize the risk of 
false negatives (Maloney et al., 2018). 

The histopathological analysis of breast cancer aims to determine the 
tumor type and grade; surgical margin status; and pathological stage 
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(pTNM stage). During gross examination of the breast, the specimen is 
first sliced to 5–10 mm sections, which are then visually examined and 
palpated. Based on the findings on grossing, representative samples are 
taken from the areas that most likely contain malignant tissue; the 
smallest surgical margins; mamillary region if included in the resection; 
and all breast quadrants (random blocks). The entire specimen is seldom 
processed for histological analysis (Morrow, 2009). In many instances 
the grossing is straightforward. However, sometimes the examination 
poses a challenge to the pathologist. On palpation, the consistency of 
malignant tumors tends to be harder as opposed to benign areas, but this 
feature is not solely reliable. Also, the visual distinction between benign 
fibrous tissue, in situ carcinoma, and invasive carcinoma can be impos
sible in cases with concurrent mastopathy or after neoadjuvant treat
ment. Tumor multifocality and lobular subtype highlight these 
problems. The sensitivity of gross intraoperative margin assessment for 
breast cancer has been shown defective at 49%. Multifocality on final 
pathology was associated with a false negative intraoperative assess
ment (Nunez et al., 2020). When pathologists are uncertain, they are 
prone to take more samples, yielding to an increased workload for both 
the laboratory and pathologists. A sensitive tissue imaging method could 
aid pathologists by indicating neoplastic areas before or during the gross 
examination and thus enable better-focused sampling. Tissue imaging 
could also benefit staging in the determination of tumor size and be 
practical in the sampling of the surgical margin to ensure complete 
cancer removal. In addition, tissue imaging could enable a reduced 
number of blocks analyzed per specimen without compromising diag
nostic accuracy. POIS: (Balog et al., 2013; St John et al., 2017). 

The molecular differences between benign and cancerous breast 
tissues stem from their distinct lipid phenotypes and metabolic features. 
Cancer cells rewire their metabolism to promote cancer cell survival, 
proliferation, migration, invasion, metastasis, and suppression of anti
tumor responses. The distinguishing features of this phenomenon, also 
known as “The Warburg effect”, are increased glucose uptake and 
fermentation of glucose to lactate (Liberti and Locasale, 2016; Vaupel 
et al., 2019). In addition to changes in glucose metabolism, tumors 
undergo lipid metabolic abnormalities such as increased fatty acid 
oxidation and de novo lipid synthesis (Corna et al., 2020). Altogether, 
these metabolic changes are reflected in the Volatile organic compound 
(VOC) profiles of evaporated tissues and allow for the distinction of 
breast cancer from surgical smoke (Balog et al., 2013; St John et al., 
2017). Breast cancer has been shown to display increased levels of fatty 
acids and glycerophospholipids as opposed to normal breast tissues (St 
John et al., 2017; Guenther et al., 2019). In addition, tumor associated 
stroma clearly separated from the stromal tissue beyond the surgical 
resection margin, highlighting the fact that stromal tissue within the 
tumor microenvironment also undergoes detectable metabolic changes 
(Guenther et al., 2019). 

Differential Mobility Spectrometry (DMS), also known as Field 
Asymmetric Ion Mobility Spectrometry (FAIMS), enables the analysis of 
complex gas mixtures. In DMS, gaseous molecules are ionized and 
conducted to a strong, altering electric field. The trajectories of the 
molecules differ according to their shape, size and charge which con
sequents to their separation. The molecular composition of the sample is 
presented as a dispersion plot, which provides a data-rich chemical 
fingerprint of the sample (Covington et al., 2015; Cumeras et al., 2015). 
DMS has been studied in several medical applications (Covington et al., 
2015); applied as a prefilter for mass spectrometry (MS) in the analysis 
of complex lipid mixtures (Shvartsburg et al., 2011; Hancock et al., 
2019); and independently in the estimation of lipid concentrations 
(Anttalainen et al., 2021). Its core advantages are the omission of vac
uum and good intra-device stability after initial validation. 

Mass spectrometry imaging (MSI) techniques enable rapid molecular 
diagnostics of tissues. MSI has been demonstrated in the visualization of 
human liver samples with metastases (Golf et al., 2015) and colorectal 
cancer (Veselkov et al., 2014; Mirnezami et al., 2014). MS approaches 
have also been successfully applied in the molecular imaging of breast 

cancer (Guenther et al., 2015; St John et al., 2017; Zhang et al., 2017). 
Although MSI techniques are efficient, they are complex, time- 
consuming and financially straining which limit their feasibility 
outside research facilities. Tissue imaging with DMS provides a less 
complex and more economical alternative to MSI while retaining the 
ability to qualitatively assess the molecular composition of the tissue. 

We have previously presented a novel DMS system for breast and 
brain tumor identification from surgical smoke (Sutinen et al., 2019; 
Haapala et al., 2019) and explored DMS feasibility in tissue imaging 
with porcine tissues (Kontunen et al., 2020). In these studies, we have 
coupled DMS with a diathermic knife. However, former MS studies have 
also utilized CO2 laser data in tissue identification with improved 
spectral quality and good reproducibility as opposed to electrocautery 
(Sächfer et al., 2011; Genangeli et al., 2019). The advantage of laser 
sampling is the possibility to analyze non-conductive hard tissues such 
as bone (Genangeli et al., 2019). Precise laser analysis can be performed 
even on thin tissue sections along with the energy adjusted as appro
priate (Ogrinc et al., 2019). A diathermic knife creates soot during 
incision, which can lead to the cross-contamination of consecutive 
measurements, whereas a laser is positioned far from the sample to 
reduce carry-over. 

In this article, we present an automated tissue laser analysis system 
for imaging approaches (iATLAS), which utilizes a DMS device coupled 
with a laser evaporation unit. In addition, we introduce a comprehensive 
set of methods suitable for the analysis of DMS data. First, the operating 
principle is demonstrated in porcine tissues. Second, we explore the 
feasibility of iATLAS in human breast cancer imaging. The goal of the 
study is to present an efficient method for tissue imaging with minimal 
sample preparation. 

2. Material and methods 

2.1. Measurement system and sampling protocol 

iATLAS comprised a sampling stage; a K40-type computer numerical 
control (CNC) laser cutter (CO2 Laser engraving machine, BeautyDir
ectMall, China), which was enhanced by improved computer-controlled 
stepper motor drivers; a gas sample pre-processing unit; and an ENVI- 
AMC® DMS device (Environics Oy, Mikkeli, Finland). The pre- 
processing unit and the DMS device have previously been described in 
detail by Kontunen et al. (Kontunen et al., 2018) A schematic illustration 
of the measurement system is presented in Fig. 1. 

The laser source was a 40 W 10,600 nm CO2 -laser which was factory- 
installed in the K40 CNC machine. The laser was chosen for its easy 
modification and affordability. Its control electronics and software were 
replaced with custom ones. The laser cutter was equipped with a sample 
platform to facilitate easy sample height adjustment and device clean 
up. The optical path of the laser consisted of a fixed laser tube and 
moving gantry, which held the collimation lens and smoke sampling 
nozzle assembly. The nozzle assembly comprised a smoke sample port 
and an annular purge air nozzle to keep room air impurities out from the 
smoke sample. Filtered compressed air, bubbled through water, main
tained consistent moisture. 

Each specimen was analyzed in an automated measurement 
sequence. A 2 ms pulsed laser measurement was repeated 300 times 
during a 30 s time period. The laser pulsation was kept constant to 
stabilize the concentration of smoke. After laser evaporation, the smoke 
sample passed through a pre-processing unit employing a corona 
discharge filter to remove particle impurities that could contaminate the 
DMS sensor. The duration of analysis was 22 s, after which the system 
cleaned itself with purified air for 50 s to prevent carry-over. 

For each measurement point, the DMS analyzer was set to produce a 
480-point DMS data matrix for positive ions, which represented the ion 
spectrum of the smoke sample. The intensity values that formed the 
dispersion matrix were 40 Ucv values from - 2.4 kV/m to 20 kV/m and 
48 kV/m Usv values from 1400 kV/m to 2800 kV/m. 
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2.2. Study materials 

The animal tissues included in the study were gathered from eigh
teen Finnish landrace pigs (Sus scrofa domesticus) between October 2019 
and March 2020. The surgical specimens of breast cancer were gathered 
from three breast cancer patients that were operated on at Tampere 
University Hospital (TAUH) between December 2019 and January 2020. 
The porcine tissues were commercial slaughterhouse products from 
livestock animals and comprised adipose tissue, skeletal muscle, breast 
tissue, liver, and bone tissue (vertebra). The preparation of animal 
samples was performed by a medical doctor (M.L.). Breast cancer sam
ples were collected by a breast pathologist (T.T.) at Fimlab Laboratories, 
which is the principal pathology laboratory in the TAUH region. This 
study has been approved by the Ethical Committee of TAUH (code 
R19059). No written patient consent was obtained because according to 
the Finnish Act on Medical Use of Human Organs, Tissues and Cells, 
anonymized specimens obtained for diagnostic purposes can be utilized 
in medical research with the permission of the organization handling the 
specimens (Institute of Biosciences and Medical Technology, 2017). 

First, we conducted a series of measurements over a period of 13 days 
with homogenized porcine liver to assess the variance in environmental 
factors between measurement days. The porcine liver from one indi
vidual landrace pig was frozen fresh and homogenized with an immer
sion blender (ErgoMixx 600 W, BSH Hausgeräte GmbH, Germany). The 
homogenized liver samples were placed on Petri dishes and stored in a 
freezer (− 18 ◦C). The goal of tissue homogenization was to ensure alike 
samples in order to examine the effect of environmental factors on 
measurements rather than factors associated with the sample. Each day 
one sample was measured twelve times with a laser beam according to a 
pre-designed matrix (spatial resolution 2 mm) and the produced smoke 
was analyzed with DMS. 

Second, we performed a large series of porcine tissue measurements. 
The prepared tissues (adipose, skeletal muscle, breast, liver, and bone 
tissue) were either analyzed immediately after preparation or stored 
frozen (− 18 ◦C) and analyzed after defrosting. In general, skeletal 
muscle, adipose, and non-homogenized liver tissue samples were 
analyzed as artificial mosaic panels comprising 2–4 individually 

dissected tissue types. This was not applicable to porcine breast tissue as 
the volume of breast parenchyma in each specimen was little. Therefore, 
the porcine breast tissue samples were analyzed as a part of a larger 
specimen (Sup. 3). Bone samples were primarily measured separately. In 
addition, a panel tissue comprising all five tissue types was analyzed for 
the matrix-wise tissue identification analysis. Finally, another panel of 
all five tissues was measured for the independent validation set analysis. 
The samples were placed in the sampling platform and three focusing 
points were measured to ease localization of measurements. Then, the 
specimen was analyzed according to a pre-designed matrix (spatial 
resolution 1–3 mm). All samples were photographed before and after 
sampling for subsequent annotation. 

Third, an analogous procedure was applied to demonstrate the 
feasibility of iATLAS in breast cancer imaging in three carcinoma 
specimens. The inclusion criteria were 1) palpable tumor and 2) tumor 
size exceeding 20 mm (clinical tumor stage (cT) cT2 or above). The 
samples were gathered during the gross dissection of fresh surgical 
specimen, covered with a gauze moisturized with saline to prevent 
dehydration, stored at +4 ◦C and analyzed on the same day as the 
operation. After DMS sampling, the carcinoma specimens were fixated 
in formalin, stained with Hematoxylin and Eosin (H&E) and micro
scopically examined by a pathologist. The holes created by the laser to 
the first specimen were not visible on histopathological examination. 
Therefore, the laser measurements of the subsequent samples were 
reinforced with a 24 G cannula after sampling to ensure visibility after 
fixation and staining. The samples were annotated macroscopically from 
photographs similarly to the animal samples and microscopically ac
cording to their histopathological examination. 

2.3. Classification models 

Four different classification methods were employed in the classifi
cation of porcine tissue data: shrinkage linear discriminant analysis 
(sLDA); support vector machine (SVM) with linear and radial kernel; and 
convolutional neural networks (CNNs). sLDA has been shown successful 
in distinguishing porcine tissues from surgical smoke with DMS (Kon
tunen et al., 2018). However, it is possible that linear classifiers are not 
optimal in the separation of multidimensional DMS data. Thus, a rela
tively simple non-linear model was introduced with a radial kernel SVM 
and a more complex method with CNN. Data analysis was performed 
with the statistical software R (R Core Team, 2018). [sda] package was 
used for sLDA (Ahdesmaki et al., 2015); [e1071] for SVM (Meyer et al., 
2019); and [keras] for R with TensorFlow in the backend for CNN (Abadi 
et al., 2016; Allaire and Chollet, 2019). For testing the daily variance, k- 
means clustering was performed with the [stats] package implementa
tion (R Core Team, 2019). 

LDA is a simple and effective method for data classification which 
utilizes dimensionality reduction techniques. This technique sets as
sumptions on data such as the normality assumption and uncorrelat
edness of the data dimensions. In standard LDA, the number of training 
samples should be significantly higher than the number of original data 
dimensions, because otherwise the model formation is impaired. In 
these cases, regularization techniques ensure better results as they 
compensate the violation of data assumptions. For these reasons, we 
utilized a regularized version of the method, sLDA. A limitation of LDA 
and its regularized variants is that only linear separation of classes is 
enabled. (Ahdesmäki and Strimmer, 2010). 

SVM is a machine learning method that aims to segregate classes 
within data by finding a hyperplane that best divides the dataset. If 
classes are linearly separable, linear SVM can be applied. However, real- 
life data is almost never linearly separable. In these cases, the so-called 
kernel trick can be applied to perform non-linear mapping to a new 
feature space, where linear separation is possible. Using soft margins 
allows misclassifications with overlapping classes and thus regularizes 
the model. In this study, we utilized both linear SVM and SVM with 
radial basis kernel function. The parameters controlling the soft margins 

Fig. 1. A schematic illustration of the measurement system. The system con
sists of: A) Air humidifier for the carrier gas; B) Sampling platform; C) DMS 
sensor; and D) Graphical user interface. The entire system is controlled by the 
user interface, which communicates with the other components via an Ethernet 
connection. The laser is used to generate a gaseous sample from the tissue, 
which is collected by the sampling nozzle, and filtered in the sample condi
tioner. After filtration, the sample is analyzed with the DMS system, and the 
results are automatically stored in a web database. The sampling nozzle is 
equipped with buffer air to keep contamination out of the sample. 
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and the complexity of the model were optimized with internal cross- 
validation (CV) while training the models. (Cortes and Vapnik, 1995). 

Artificial neural networks consist of computational units called 
neurons. These neurons are organized in consecutive layers that perform 
computational tasks on the input data and convey the result to the next 
layers. A neural network can be perceived as a nested structure of 
functions that eventually generate the target variable (e.g., class label). 
CNNs have layers that enable feature extraction from image formats or 
two-dimensional (2D) data matrices, such as the dispersion matrices in 
this study. The classification results are formed from the extracted fea
tures of these layers. CNNs can model highly complex, non-linear phe
nomena. However, a high number of parameters need to be optimized 
when the model is formed. Despite their superior representative po
tential, they may perform deficiently if the training dataset is not vast 
(Goodfellow et al., 2016). The CNN used in this study is further 
described in the supplementary material (Sup. 1). 

2.4. Data management 

2.4.1. Porcine tissue samples 
The porcine tissue dataset included 4245 smoke samples measured in 

forty-nine matrices. The daily measurements of homogenized liver were 
incorporated in this dataset. As previously described, the samples were 
visually annotated after analysis. The measurements located in the 
border region of two tissues (n = 435) were excluded from analysis as 
these could not be reliably annotated. Also, faulty dispersion plots due to 
sporadic malfunctions in the measurement device (n = 64) were 
excluded. The remaining dataset (n = 3746) was applied in the 
respective analyses 1) the assessment of daily variance utilizing the 
homogenized liver measurements (n = 155), 2) matrix-wise tissue 
identification (n = 3561), and 3) independent validation set analysis (n 
= 185). The intensities of dispersion plots were normalized to values 
from zero to one by scaling with matrix-wise minimum and maximum 
intensities. No other data pre-processing was performed. 

To assess the daily variance, we examined the correlations between 
single measurements. The correlation was calculated as the Pearson’s 
correlation between the intensity values of two measurements at the 
same locations of the dispersion matrices. In matrix-wise tissue identi
fication and the independent validation set analysis, the performance of 
each classification models was estimated with leave-one-matrix-out CV. 
In leave-one-matrix-out CV, the data accumulated on one day performs 
as the testing dataset and the other groups as the training dataset. The 
process is repeated for all groups to achieve combined results. The 
matrix-wise tissue identification analysis assessed the suitability of each 
classification model to the analysis of DMS data. To showcase the clas
sification of DMS data with an existing classification model, we per
formed the independent validation set analysis. We classified the latter 
analyzed panel tissue which comprised all five tissue types with the 
classification models constructed during the matrix-wise tissue identi
fication analysis. The data of the validation set were not used in any part 
of the model training, selection, or hyper-parameter optimization 
processes. 

2.4.2. Breast cancer specimens 
The smoke samples included 499 measurements from three human 

breast cancer specimens. Three measurements were excluded due to 
device malfunction. 

The measurements were macroscopically annotated according to 
photographs as benign or malignant (n = 143 and n = 117, respectively). 
The measurements that were in the border region and thus could not be 
reliably annotated, were categorized as uncertain (n = 236). 

In two breast cancer specimens, we obtained the corresponding 
histology with distinguishable laser measurements. The measurement 
points were microscopically identified and annotated by a breast 
pathologist as benign or malignant (n = 131 and n = 60, respectively). 
The samples that contained only sporadic malignant cells were excluded 

as uncertain (n = 63) and the measurements that could not be identified 
from the histopathological image as missing (n = 60). Fig. 2 portrays the 
dimensions of the measurement points. 

The number of smoke samples was few as this was a proof-of-concept 
study. To enable the analyses, we applied 10-fold CV and a SVM (radial 
kernel) classification model as the adequate training of CNN classifiers 
require large datasets. The reliably annotated measurements were 
randomly divided to ten equisized groups. Each group performed as the 
testing dataset at a time and the other nine groups as the training 
dataset, and the process was repeated for all ten groups. We report the 
combined results of all ten folds. To enable visualization of results, the 
‘uncertain’ smoke samples were also classified with the trained model. 

3. Results 

3.1. Daily variation 

The analysis included 155 porcine liver samples measured over 13 
days. The result is presented as a correlation matrix (Sup. 2). The 
measurements that were analyzed on separate days correlated strongly. 
In comparison, the correlations between the first and the subsequent 
measurements of each sequence were weaker likely due to the warming 
up of the device during analysis. These findings support the generaliz
ability of data as there were no significant differences between mea
surement days. 

3.2. Porcine tissues 

3.2.1. Matrix-wise tissue identification 
The averaged dispersion matrices of each tissue type and their cor

responding standard deviation matrices show visually distinguishable 
features (Fig. 3). The dataset comprised porcine skeletal muscle (n =
1030), adipose tissue (n = 1329), normal breast tissue (n = 258), bone 
tissue (n = 680), and liver (n = 264). The results obtained with the 
classification models are presented in Table 1. The classification accu
racies ranged between 71% and 86%. The highest classification accu
racy was reached with the CNN classifier. The specificity of the CNN 
classifier exceeded 90% for all tissue types. The highest sensitivity was 
reached for adipose tissue (92%) and the lowest for bone (75%). The 
classification performance of CNN is displayed as a confusion matrix in 
Table 2. 

3.2.2. Independent validation set 
The panel tissue which performed as the validation set consisted of 

samples from porcine skeletal muscle (n = 36), adipose tissue (n = 22), 
normal breast tissue (n = 15), bone (n = 70), and liver (n = 42). The 
results are presented in Table 1. We reached the highest accuracy again 
with CNN (82%) of which the results are visualized in Fig. 4. The 
specificity for tissue identification ranged between 86% (skeletal mus
cle) and 100% (adipose tissue and liver). The highest sensitivity (93%) 
was reached for bone tissue and the lowest sensitivity for adipose tissue 
(68%) and breast tissue (0%). 

3.3. Breast cancer specimens 

The utility of iATLAS was further demonstrated with human breast 
cancer specimens. We performed analyses according to 1) the macro
scopic annotation of the samples from photographs and 2) the micro
scopic annotation of samples from corresponding histology. It should be 
noted that 10-fold CV is prone to overly optimistic results as the training 
and test sets are obtained from the same tissue matrices. The classifi
cation models can thus learn matrix-specific features which may not 
generalize to all tissue specimens. 

We reached a classification accuracy of 94%, specificity of 94%, and 
sensitivity of 93% with the macroscopically annotated data from three 
breast cancer specimens. To visualize the results, measurements 

M. Lepomäki et al.                                                                                                                                                                                                                              



Experimental and Molecular Pathology 125 (2022) 104759

5

Fig. 2. Histopathological images portraying the dimensions of the measurement points.  

Fig. 3. Averaged dispersion plots of the porcine tissues and corresponding standard deviations across the tissue-wise dispersions.  

Table 1 
The classification results achieved with shrinkage linear discriminant analysis (sLDA), support vector machine (SVM) with linear and radial kernel, and convolutional 
neural network (CNN) using the porcine dataset. The classification accuracy, sensitivity and specificity presented for both the leave-one-matrix-out cross-validation 
(CV) and the independent validation set, respectively.     

Leave-one-matrix-out CV Independent validation set 

Model Accuracy Tissue Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%) 

sLDA 79.8%; 70.8% Muscle 80.7 96.6 75.0 81.2   
Fat 84.8 90.0 40.9 97.5   
Breast 62.4 96.4 20.0 99.4   
Liver 75.4 100.0 90.5 99.3   
Bone 76.9 89.0 77.1 82.6 

SVMa 79.1%; 74.1% Muscle 79.2 93.9 61.1 92.0   
Fat 87.2 90.6 40.9 98.8   
Breast 69.4 95.6 0.0 100.0   
Liver 83.0 99.9 100.0 97.7   
Bone 65.4 92.1 91.4 73.0 

SVMb 79.0%; 75.2% Muscle 81.8 93.7 69.4 92.0   
Fat 88.9 91.0 45.5 100.0   
Breast 61.2 96.7 6.7 98.8   
Liver 76.5 99.8 100.0 94.1   
Bone 63.1 90.7 87.1 79.1 

CNN 86.4%; 81.6% Muscle 89.7 96.9 91.7 85.6   
Fat 92.0 94.2 68.2 100.0   
Breast 77.5 95.2 0.0 99.4   
Liver 81.4 99.9 90.5 100.0   
Bone 75.4 96.0 92.9 89.6  

a Linear kernel. 
b Radial kernel. 
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annotated as uncertain were also classified with the radial SVM model. A 
visual presentation of the results is presented in Fig. 5. 

The classification model for the microscopically annotated data was 
constructed with samples from two breast cancer specimens. Histolog
ically both samples were of lobular carcinoma. We reached a classifi
cation accuracy of 84%, specificity of 88%, and sensitivity of 77% for the 
first cancer specimen. For the second specimen, the classification ac
curacy was 72% and specificity 88%, but the sensitivity only 24%. A 
visual presentation of the results is presented in Fig. 6. 

4. Discussion 

The performance of a DMS sensor coupled with a laser evaporation 
unit was stable in the daily measurement series. We achieved a high 
discrimination rate in porcine tissue classification with CNN in both the 
matrix-wise CV dataset (86%) and independent validation dataset 
(82%). We were also able to demonstrate tissue imaging of breast cancer 
with DMS. The inherent advantage of DMS is its convenience. The 
samples require minimal preparation prior to analysis and the sampling 
is automated. DMS technology is robust, and the costs associated with its 

maintenance are low. 
Laser ablation of animal tissues and human colon carcinoma was first 

presented in 2011. Laser desorption ionization-mass spectrometry (LDI- 
MS) utilizing a CO2 laser obtained considerably different spectra of 
various tissue types, while the subject-to-subject reproducibility of 
identical tissues was good (Sächfer et al., 2011). The study reported no 
classification accuracies due to its preliminary nature, but the results 
support our study design and the utility of CO2 laser sampling in tissue 
identification. Genangeli et al. studied tissue identification with Rapid 
evaporative ionization mass spectrometry (REIMS) in animal tissues 
with a focus on comparing diathermic and laser sampling. They assessed 
whether data obtained from either of these methods could be employed 
to classify the data generated with the other handpiece. They reached a 
classification accuracy of 87% with a peak list based PVA/LDA model 
when the diathermy knife data were used to classify the data acquired 
with laser (Genangeli et al., 2019). Although the study design differed 
from ours, the results are comparable to our independent validation set 
results. Our classification accuracy of 82% appears comparable to their 
highest achieved accuracy and superior to their result concerning all 
tissue types. However, their model was trained to identify a wider range 
of tissues. These results emphasize the challenges in creating classifi
cation models for several tissue types with external validation datasets 
as the results consistently fall behind the generally reported leave-one- 
patient-out CV results (Balog et al., 2013; St John et al., 2017; Zhang 
et al., 2017). 

Emerging MS technologies for breast cancer identification provide a 
context to our work. The “intelligent knife” (iKnife) aims to real-time 
intraoperative breast carcinoma detection with REIMS from surgical 
smoke released during electrosurgical dissection. This system provided a 
sensitivity of 91% and specificity of 99% with 260 breast specimens 
using LDA and leave-one-patient-out CV (St John et al., 2017). A major 
advantage of our method compared to the iKnife is the low penetration 
depth of laser sampling, allowing analysis even when the biological 
material is limited. A more recent method called the “MasSpec Pen” 

Table 2 
A confusion matrix which presents the leave-one-matrix-out cross-validation 
(CV) classification results of each tissue type with the convolutional neural 
network (CNN) model. The tissue types as predicted by the CNN model are 
presented vertically and the true tissue types horizontally. The CNN classifica
tion accuracy was 86%.   

True class (n)    

Predicted class (n) Muscle Fat Breast Liver Bone 

Muscle 924 37 20 6 15 
Fat 42 1223 16 0 72 
Breast 42 39 200 0 79 
Liver 1 0 0 215 1 
Bone 21 30 22 43 513  

Fig. 4. A visualization of the classification results achieved with the independent validation set. The classification model was constructed with convolutional neural 
networks (CNNs). Uppermost the panel tissue specimen after sampling. The order of tissues in the uppermost image: skeletal muscle; liver; bone; normal breast tissue; 
skeletal muscle; liver; bone; and adipose tissue. In the middle an overlapping image of the panel tissue and the classification results. Below solely the classification 
matrix. The colour bar represents tissue types according to the CNN classification results. The classification accuracy was 82%. 
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utilizes a handheld probe which delivers a water droplet to a tissue 
surface and enables the extraction of biomolecules without damaging 
the sample. The analysis of several benign and malignant tissues 
including forty-five breast tissue measurements achieved breast cancer 
prediction with 88% sensitivity, 100% specificity, and 96% overall ac
curacy with Lasso method and leave-one-patient-out CV (Zhang et al., 
2017). The probe tip of the MasSpec Pen needs to be washed or removed 
after each use which impairs its usability in comparison to laser sam
pling. Desorption Electrospray Ionization-MSI (DESI-MSI) has been 
showcased in breast cancer imaging. The method enabled the spatial 
profiling of tissue sections and achieved an overall classification accu
racy of 88%, specificity of 90%, and sensitivity of 92%. The analytical 
process described in the publication was however laborious as all bi
opsies were first prepared as frozen tissue sections and then subjected to 
DESI-MSI (Guenther et al., 2015). The performance of MS-based systems 
surpasses ours, but the inherent advantage of iATLAS is the robustness of 
the DMS technology. The samples require minimal preparation, system 
maintenance costs are low, and profuse data pre-processing is not 
mandated strengthening its clinical suitability. 

Other studies on human tissue imaging have focused on liver me
tastases and colorectal cancer. Veselkov et al. analyzed freshly frozen 
colorectal cancer samples that were cryo-sectioned and subjected to 
DESI-MSI. The performance exceeded 98% in the classification of 
cancerous and benign tissues (Veselkov et al., 2014). Mirnezami et al. 
studied the differences in lipid biochemistry of cancerous and healthy 
colorectal tissue and tumor-adjacent tissue with Matrix assisted laser 
desorption/ionization-MSI (MALDI-MSI). They showed that cancerous 
and tumor-adjacent tissues harbor characteristic phospholipid signa
tures but did not report classification accuracies limiting the comparison 
of results to ours in this respect (Mirnezami et al., 2014). While DESI and 
MALDI yield accurate results, the associated hardware costs and main
tenance requirements are ample, and the methods are time-consuming 
due to their complex sampling, sectioning, data pre-processing, and 
imaging processes. MS-based systems are also large as opposed to iAT
LAS. To suit clinical practice, the system should be practical and operate 
without significant delay. iATLAS reaches spatially comprehensive but 
less accurate analysis with minimal sample preparation compared to 
MSI techniques. In future, the method could be utilized to direct 

sampling before the conventional gold standard analysis of fixation and 
staining. 

The achieved classification accuracies in breast cancer imaging are 
preliminary and a larger follow-up study is necessary to provide reliable 
sensitivity and specificity numbers for the method. However, we suc
cessfully presented an efficient and repeatable process to analyze breast 
cancer with DMS and to annotate these samples microscopically. We 
were unable to obtain a corresponding histology for one breast cancer 
specimen but went on to improve the study protocol. For the micro
scopic annotations, the achieved sensitivities differed significantly be
tween the two specimens. The histologic features of the lobular 
carcinomas were also distinct (Fig. 5). The invasive carcinoma was 
unifocal in the first sample. In the second sample, the carcinoma cells 
loosely dispersed throughout the fibrous stroma in a discohesive 
morphologic pattern. The scattering of malignant samples among 
benign samples can result in a low sensitivity due to the varying cell 
density and mixing of consecutive samples due to carry-over. Despite 
these limitations, the results remain encouraging and support future 
studies as we achieved a high classification accuracy with the data 
accumulated from animal tissues and demonstrated iATLAS in breast 
cancer imaging. 

The limitations of the study included system malfunctions, shift in 
measurement parameters, and restrictions of the classification models. 
The system function complications of iATLAS were due to the faulty 
production of dispersion plots. These resulted from the prototype nature 
of the system and have later been fixed with software updates. Alto
gether, these malfunctions were seldom (n = 67), and the overall system 
performance was stable. The ENVI-AMC® DMS is a first-generation 
prototype of which the analytical performance can be improved by 
developing its components. Our future goal is to utilize a next- 
generation DMS sensor to enhance classification. We identified a dy
namic drift in measurements likely resulting from a drift in the hardware 
or environmental factors. This was addressed by normalizing the mea
surement intensities. Complex classification models improve with an 
increased sample size. The majority of the porcine tissue samples were 
ample and gathered from multiple animals. However, the number of 
bone and normal breast tissue measurements were fewer, which likely 
influenced the classification results negatively. In matrix-wise tissue 

Fig. 5. A visualization of the classification results achieved with the macroscopically annotated breast cancer samples. The applied classification model was support 
vector machine (SVM) with radial kernel. 
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identification, bone samples were categorized most often falsely as ad
ipose tissue or breast tissue whereas all breast samples in the indepen
dent validation set were classified as skeletal muscle. In matrix-wise 
tissue identification, we analyzed the breast samples as a part of a larger 
specimen. For the independent validation set, we gathered samples that 
mainly comprised breast gland parenchyma after careful inspection and 
palpation. The validation set should consist of similar samples as the 
training set to ensure representative results. The differences in datasets 
likely contributed to the compromised sensitivity for breast tissue 
identification in the independent validation set analysis. Closely 
measured samples have similar qualities due to alike tissue features and 

carry-over, which can lead to overfitting with traditional n-fold CV. We 
explored the overoptimization of 10-fold CV in practice with the porcine 
classification models, and all models reached an accuracy exceeding 
95% with 10-fold CV. Therefore, we applied CV over the matrices 
instead of samples to reduce this bias. As priorly discussed, CV over the 
matrices was not applicable to the breast cancer samples due to sample 
size which limits the reliability of results and should be factored in their 
interpretation. 

Fig. 6. A visualization of the classification results achieved with the microscopically annotated breast cancer samples. The applied classification model was support 
vector machine (SVM) with radial kernel. 
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5. Conclusions 

The differentiation of tissues from surgical smoke created with a 
laser can be achieved with a first-generation DMS device in a laboratory 
setting. We showed that the DMS spectra of identical tissues correlate 
strongly regardless of the time of analysis and reached good classifica
tion results in the porcine classification models. Our results also suggest 
that non-linear classification methods exceed the performance of linear 
methods. Especially CNNs have a high potential in the analysis of DMS 
data. In addition, we demonstrated the DMS analysis of human breast 
cancer specimens successfully. In future, pre-mapping of breast speci
mens before their pathological gross examination could indicate 
neoplastic areas to the pathologist and enable focused sampling from 
areas that likely contain malignant tissue. This could allow for patho
logical examination with a reduced number of analyzed sections without 
compromising diagnostic accuracy. 
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