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Verification is now the most time-consuming step in the design flow for digital circuits. Design 
organizations are constantly researching improvements to accelerate verification tasks so that a 
functional and efficient silicon can be released to a demanding market to improve the company’s 
competitive position. Today, EDA (Electronic Design Automation) tools are a part of the 
development of each designed circuit and contribute to the verification work. Automating and 
simplifying the verification flow will help focus on resolving the underlying system issues. The 
company is interested in improving its verification flow to take advantage of the features available 
in the EDA market. Recognizing more synchronization structures, an improved hierarchical 
verification flow and incremental verification flow could potentially improve verification process 
throughput in the company. This study examines how changing the tool improves the static 
verification flow for the company. 

This research examines the background of EDA tools and the most relevant theory to 
understand the tool roles and the static rule checks they make. In addition, the deployment of 
static verification tools will be discussed, and clock-domain crossing and lint checking tools will 
be introduced from an EDA toolkit. A modular inspection flow compatible with the server 
infrastructure will be built for this purpose. The company’s proprietary and problematic 
synchronization structures will be implemented as an interface-level script, so that the inspection 
software understands the used structures to be suitable for specific use-cases. Design constraints 
are developed to improve the accuracy of the results. In addition, this study measures the 
performance of the programs. The use of computing resources is measured in the company’s 
design environment and compared to the current verification flow. In addition, the quantity and 
quality of the reported messages are compared to the old flow, and the user experience and 
correctness of the results are briefly assessed. In the study, configured software checks are 
performed on the company’s own subsystem under development, and the suitability of the 
software for the organization’s purposes is determined by examining the results. Flow 
performance, duration, and utilization of computational resources are measured with the 
generated script and software reports. In addition, the functionality and user-friendliness of the 
software's graphical user interface are briefly reviewed. 

The research finds that the clock-domain crossing verification flow is accelerated by over three 
times and the lint verification flow by a quarter. The inspections detect almost three times more 
potential issues in the code. The new tool flow requires under a third of the disk space and system 
memory consumed by the old verification flow. In addition, it is observed that the new software is 
overall more pleasant to use: The software is perceived to be somewhat more challenging to 
learn, but in return it provides more information to solve the underlying issues in the code. Finally, 
it is concluded that the company should consider adding the tool to complement its verification 
tool belt due to the performance, verification thoroughness and more moderate use of 
computation server resources. 
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Suunnittelun varmennus on nykyään aikaa vievin vaihe digitaalipiirien suunnitteluvuossa. 
Suunnitteluorganisaatiot pyrkivät jatkuvasti kehittämään nopeampaa varmennusta, jotta toimiva 
ja tehokas piiri saataisiin julkaistua vaativalle markkinasegmentille oman kilpailuaseman 
parantamiseksi. Nykyään EDA-työkalut (engl. Electronic Design Automation) ovat osana jokaisen 
suunnitellun piirin kehitystä ja osaltaan ne tukevat myös varmennustyötä. Varmennusvuon 
automatisointi ja yhdenmukaistaminen auttavat keskittymään järjestelmän ongelmien 
ratkomiseen. Eräs yritys on kiinnostunut varmennusvuonsa parantamisesta hyödyntääkseen 
tarjolla olevia ominaisuuksia tunnistaakseen synkronointirakenteet paremmin ja parantaakseen 
hierarkkista sekä inkrementaalista tarkastusvuota. Nämä saattaisivat osaltaan nopeuttaa ja 
helpottaa varmennustyön vaiheita järjestelmäpiirien suunnittelussa. Tutkimuksessa selvitetään 
millä tavoin työkalun vaihtaminen parantaisi yrityksen tarkistusvuota. 

Tässä diplomityössä tutkitaan EDA-työkalujen taustaa ja asennettavien työkalujen kannalta 
olennaista taustateoriaa, jotta voidaan ymmärtää työkalujen asemaa digitaalisuunnittelussa sekä 
niiden tekemiä tarkistuksia. Tämän lisäksi työssä käsitellään staattisten tarkastustyökalujen 
käyttöönottoa ja hyödynnetään vaihtoehtoisia EDA-työkalukokonaisuuden kellorajapintojen ja 
koodirakenteen tarkastustyökaluja. Näiden työkalujen ympärille rakennetaan modulaarinen 
palvelininfrastruktuurin kanssa yhteensopiva tarkastusvuo. Tämän jälkeen määritetään 
ongelmallisena pidetyt yrityksen omat synkronointirakenteet rajapintatarkasteluna, jotta 
tarkastusohjelmisto ymmärtää käytetyt rakenteet käyttötilanteisiin sopiviksi. Tarkistusrajoitteita 
kehitetään tuloksien oikeellisuuden parantamiseksi. Tässä tutkimuksessa mitataan ohjelman 
suorituskykyä ja laskentaresurssien käyttöä yrityksen suunnitteluympäristössä nykyiseen 
varmennusvuohon verrattuna. Havaittujen ongelmien määrää ja laatua verrataan vanhaan 
tarkastusvuohon. Lisäksi työssä sivutaan ohjelmiston käyttökokemusta ja tuloksien oikeellisuutta. 
Tutkimuksessa suoritetaan konfiguroidut ohjelmistotarkistukset yrityksen omalle kehityksessä 
olevalle alilohkolle ja tuloksia tarkastelemalla määritetään ohjelmiston soveltuvuus organisaation 
käyttötarkoituksiin. Tarkastusten suorituskyky, kesto ja laskentaresurssien käyttö mitataan 
luodulla koodilla ja ohjelmistoraporteilla. Lisäksi ohjelmiston graafisen käyttöliittymän 
toiminnallisuutta ja käyttäjäystävällisyyttä tarkastellaan lyhyesti. 

Tutkimuksessa havaitaan, että kellorajapintojen tarkasteluvuo nopeutuu yli kolminkertaiseksi 
ja koodin tarkastusvuo neljänneksellä. Vastaavasti tarkastuksissa havaitaan melkein 
kominkertainen määrä mahdollisia ongelmia koodissa. Uusi työkaluvuo vaatii alle kolmasosan 
vanha tarkastusvuon levytilasta ja järjestelmämuistista. Lisäksi havaitaan, että uusi ohjelmisto on 
kokonaisuutena miellyttävä käyttää, sillä vaikka se koetaan nykyistä hieman haastavammaksi 
opetella, tarjoaa se vastaavasti enemmän tietoa ongelmien ratkaisemiseksi. Lopuksi havaitaan, 
että yrityksen kannattaa harkita edellä mainitun ohjelmiston lisäämistä muiden käyttämiensä 
tarkastustyökalujen joukkoon tarkastusvuon suorituskykyisyyden, tarkistusten perusteellisuuden 
ja maltillisemman palvelinresurssien käytön ansiosta.  
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1. INTRODUCTION 

 

Semiconductor structures can now be built to be smaller than ever before with constantly 

evolving manufacturing technology, while market demands increased feature sets in IC 

(Integrated Circuit) products [1]. Humans currently use more ICs than ever before, and 

at the time of writing, there is said to be an ongoing silicon circuit shortage, which limits 

the productions of cars, for example [2] [3]. Simultaneously IC power consumption, 

computational and silicon area demands have historically been mutually exclusive with 

each other and servicing all these conflicting areas of interest partly contributes to 

increasing design complexity. [4, p. 2]. As verification gap widens every year, an 

increasing number of chips will not meet the original development schedule goals, partly 

because of all-encompassing feature improvements [5]. 

As design complexity increases rapidly, the complexity of verification increases 

exponentially in relation, while the importance of releasing a product in time increases 

as well [4, p. 4] [6, p. 1] [7, p. 1] [8]. Design verification is trying to keep up with the pace 

of increasing product feature sets and is consuming most of the design time and effort 

nowadays [9, p. 2–3]. To ensure that a logic design conforms to the set of specifications, 

deploying EDA (Electronic Design Automation) tools is done to automate and 

standardize the verification process. Verification EDA tools are commonly used in the 

industry to systematically locate, report, and fix typical functional errors in the design 

before the product is manufactured. The sooner an error is found and fixed, the cheaper 

the repercussions will be in general [4, p. 194]. 

This financial incentive keeps costly EDA tools relevant in the very competitive ASIC 

(Application-Specific Integrated Circuit) design industry [10]. Nowadays, the highly 

competed market space of ASIC business aims to produce systems in time to satisfy the 

market needs, while avoiding errors to minimize the chance of needing to re-do a silicon 

product, which would waste a lot of time and money [11].  

There are different vendors offering EDA solutions, which usually are targeted towards 

their own respective design flows [12, p. 8]. The goal of this thesis is to evaluate 

improvements made by switching EDA tools, such as CDC (Clock-Domain Crossing) 

and linters. This information in turn is then used to assess if an alternative design flow 

with a competing software can be used to perform tasks more efficiently. To achieve that, 

the requirements for the verification software must be established. In this research, an 
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alternative static verification solution is evaluated for the company. The verification 

performance data being compared to the currently used design flow is included in the 

results and analysed for this purpose. 

This document is structured as follows. Chapter 2 introduces a theoretical background 

behind using EDA tools and includes information about the static check tools evaluated 

in this research. Chapter 3 addresses clock-domain crossing theory. Chapter 4 

discusses the research strategy for the software analysis and explains the test 

methodology, environment, and the created workflow. Chapter 5 focuses on displaying 

the measurement data and chapter 6 summarizes the research.  
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2. EDA AND STATIC CHECKS 

 

This chapter introduces the incentives behind using EDA tools for verification, starting 

from the brief history of EDA tools in digital design. Some aspects in verification tools 

today are defined to justify the feature set to improve the design flow. Finally, influential 

digital design theory behind lint and CDC verification is investigated for the final study, in 

which a new static verification suite is deployed for evaluation. In this evaluation,  

Unfortunately, the terms of licensing do not allow disclosing the tool name. For that 

reason, the comparative study focuses on the benefits and drawbacks of the new 

workflow versus the old one used in the company. 

2.1 The importance of EDA tools 

EDA is one of the key enablers of the semiconductor industry: It is used in designing 

every IC (Integrated Circuit) nowadays and the semiconductors on the other hand drive 

improvements in EDA technology [13, p. 1–2]. The improvements enabled by advanced 

technology nodes are exploited in the design flow to reduce costs by using more 

advanced design tools in the process. Therefore, a new design will in turn be further 

refined, fuelling an observation called Moore’s law. This phenomenon solidifies the 

design tools’ position in ASIC design flow, as placing ever-increasing transistor nets 

manually was already becoming humanly impossible in the 1980’s. [1] 

In Figure 1, ASIC (Application-Specific Integrated Circuit) design costs are categorized 

as a function of a shrinking process node. Verification cost increases significantly as the 

technology node shrinks. This is because the number of design states increases 

exponentially as more features, which all need to be verified, fit into the same area. It 

should be noted that software development has an even steeper curve in Figure 1. 
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Figure 1: Categorization of increasing design cost in ASIC development as a function of 
shrinking technology node. [4, p. 3]. 

The long-lasting revolution of the semiconductor industry has required help from the EDA 

tools, which have proven to be an important asset in VLSI (Very Large-Scale Integration) 

design [6, p. 287] [14]. As the EDA tools always enable the next generation of computing, 

they must logically be ahead of the current paradigms in hardware design. 

The EDA development started as automatic place-and-route layout tools were introduce 

to the market in the late 1970’s. From the late 1980’s onwards, logic synthesis tools 

became available to help improve design efficiency. It is estimated that some designers 

would benefit from using high-level synthesis tools to improve throughput. [5] 

The trend in the semiconductor industry is to increase component reusability as much 

as possible. This increases productivity by reducing design verification gap: Focusing 

the efforts into the system level integration in SoC (System on a Chip) structure while 

using as many verified blocks and IP (Semiconductor Intellectual Property core) as 

possible minimizes redundant verification [15] [16]. One main benefit of SoC is design 

reuse enabled by modularity. Dire time-to-market demands, on the other hand, restrict 

design reuse, because designing a reusable platform takes more time in general and is 

typically not as high a priority as optimization or costs [5]. An example of a SoC structure 

containing hierarchical elements is presented in the following Figure 2, which displays 

the main hierarchical elements in the design, such as the main interconnects and multiple 

sub-IPs. 
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Figure 2: An example of a hierarchical system architecture. This functional block is used as 
a test platform in this study. 

Reusability of IP increases in the designs produced in the industry, but as hierarchical 

SoC structures have become more common, the demand to verify the integration needs 

more attention than before [16]. As verification consumes the majority of pre-production 

efforts, reuse is a powerful method to direct efforts to the necessary system level 

checking [17, p. 83]. EDA tools fulfil an important role in the process of turning the HDL 

(Hardware Description Language) based IP into a physical IC on silicon [5]. The best-

known EDA tool vendors are Synopsys, Siemens EDA (previously Mentor Graphics) and 

Cadence [12, p. 8]. These EDA tools will address the ever-increasing design complexity 

by enabling more efficient designing of electronic systems [18]. 

In Figure 3, An example of a cumulative number of bugs found in a design is provided 

as a function of time. Multiplying the values of both curves at every point will provide bug 

costs affecting the financial ASIC project overhead. These all summed together would 

yield the total cost. 
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Figure 3: Cost of finding a bug in an ASIC device as a function of time categorized by the 
hierarchical level. [17, p. 81] 

It is important to achieve a successful silicon wafer tape-out at the first try as re-spins 

are costly and time consuming [11]. To prevent re-spins, it is advised to accomplish RTL 

(Register-transfer Level) signoff at IP, subsystem and SoC hierarchy levels as the design 

matures. This means that the verification flow was not able to find any suspicious 

structures or clear mistakes in the design. Also, unclear cases have been reviewed and 

deliberately accepted on a case-by-case basis for each DUT (Device Under Test). 

Preferably this so-called “sign-off” process is done on IP, subsystem and SoC top levels. 

This allows to start the verification flow early in design flow to reduce the number of bugs 

and to improve the quality of the design [19] [20]. The tools discussed in this research 

are rule-checkers, which are meant to provide exhaustive lists of the possible violations 

to be forwarded to other types of verification [21, p. 88]. 

It is also possible to enable CI-tools (Continuous Integration), such as Jenkins to 

periodically run the EDA tool flow in the development environment to set a project wide 

verification standard, which most people can access and gather feedback from. This 

makes the results more accessible, peer-reviewable, and transparent, improving project 

management, clarifying status, and easing the integration tasks [22]. However, running 

CI is not always ideal either, as it increases the requirements for software licences and 

computing requirements remarkably. CI verification is more complex to setup for 

specialized runs and for that reason, CI is preferred only when doing the standard runs 

periodically with no human interaction in between the quality checks. 

EDA tools typically work in conjunction with rule sets or methodologies, which typically 

can be configured to serve the needs, phases, and hierarchical levels of different VLSI 
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designs. These sets will define verification errors and warning notifications ranging from 

readability improvement suggestions to unnecessary type casts and floating data pins. 

Naturally, the rule sets are not always purpose-built for each design by the software 

vendor, and therefore some configuration is typically recommended to reduce 

overlapping in violation messages. Redundant information is typically unwanted, as it 

misrepresents the severity of the real issue by giving it an inherent weight by error count. 

This causes some other issues in turn to have a smaller priority in many design flows 

without a justifiable reason since designer time is limited. 

EDA tools aim to improve issue readability and process automation, reduce redundant 

information noise, ease creating and sharing reports, provide methodology, improve 

reliability and consistency, and enable analyses early in the flow. In this work, the focus 

is on CDC and lint functionality to improve the workflow for quality checking for ASIC 

development. 

2.2 Lint 

Humans make careless mistakes over time because of miscommunication, interruption 

and forgetfulness caused by a plethora of different reasons ranging from simple thought 

errors to misunderstandings. When creating HDL code for ASIC, these daily mishaps 

might be the cause of functional errors in the code and that in turn can make the product 

deviate from the specification or set standards. If left unnoticed, this can be a 

considerable hindrance when trying to create a holistic SoC product with high complexity 

and many hierarchical levels, as making sure that everything is working correctly in ASIC 

tape-out is critical. Generally holistic means “more than the sum of its parts”. In SoC 

design, system level considerations define the characteristics of its subsystems which 

the SoC is built on. [23, p. 21–24] [17, p. 13–14] [24, p. 20]. 

For these reasons, vendors have long been offering lint tools with mature rulesets to 

provide syntax and coding style checks. Lint is used with purpose-built rules to pinpoint, 

for example, suspicious declarations, unreachable code, and infinite loops. The main 

benefit is running the checks to catch bugs early in the design flow even before 

compilation and synthesis phases. [25, p. 54] 

Even though some IDEs (Integrated Development Environment) can nowadays support 

some basic lint functionality to provide the earlier step of the design flow with some 

feedback, lint tools have developed to support synthesis and design compilers to offer 

even more in-depth information. Typical lint issues include, but are not limited to, 

unsynthesizable constructs, unintentional latches, unused declarations, driven and 
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undriven signals, race conditions, incorrect usage of blocking and non-blocking 

assignments, incomplete assignments in subroutines, case statement style issues and 

out-of-range indexing [12, p. 36]. 

Lint tools, also known as linters, also have their limitations when it comes to error 

analysis. Even though it can identify structures well, questions rise when a linter 

observes a suspicious but allowed structure with more depth to it than the structure 

alone: Stability of a combinational loop, severity of contentious buses and unconnected 

nets remain out of the verification scope for lint alone. Additional tests and actions are 

required to justify keeping these structures in a design. Alternatively, a workaround can 

be developed to save verification time. [26, p. 86] 
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3. CLOCK-DOMAIN CROSSINGS 

 

Ever-increasing design complexity typically accounts for an increased clock signal count 

and control logic, both of which in turn increase the number of clock-domains and flip-

flops in a modern ASIC design. Signal synchronization when entering a different clock 

domain is done to prevent glitches and metastability from propagating through the 

design, which could cause a critical failure in functionality [21, p. 74–78]. Metastability 

refers to the unstable behaviour of a flip-flop caused by setup and hold-up time 

specification violation in the input, causing the bistable storage element to output an 

unstable voltage value between logical 0 and 1 [11] [27]. Metastability is a symptom of a 

CDC issue, which can lead to a rapid and unexpected device malfunction if handled 

poorly: Unreliable or lacking data transfer can hinder the reliability of the design unit in 

question [11] [21, p. 73–74]. The importance of CDC issues is underlined by the fact that 

roughly a quarter of silicon re-spins are results of a clocking issue [4, p. 249]. The typical 

cause for metastability is inspected in the following Figure 4, where mutually 

asynchronous clock signals clk1 and clk2 are displayed. In the picture, the dynamic time 

until the next rising edge of target clock clk2 can be observed. This could lead to setup 

time violations across flip-flops due to the clock domain crossing, causing unreliable data 

transfer and possibly metastability. In Figure 4, a setup time of 3.5 units is considered to 

be out of specification for the flip-flop. [11] 

 

Figure 4: Asynchronous clock signal clk1 and clk2. [21, p. 73–74] 

Shurivala and Gard define a separate clock domain as follows: “For any given pair of 

clocks, if the phase relationship between their active edges cannot be determined 

predictably, the two clocks are considered to be in separate domains. And, if the phase 

relationship between the edges can be determined predictably – then the two clocks are 

considered to be in the same domain.” [21, p. 88] 
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Metastability will temporarily increase the transient power consumption of the fanout cells 

utilizing CMOS (Complementary Metal-Oxide-Semiconductor) transistors, because a 

temporary short-circuit is developed for all the transistors driven by the metastable flop’s 

output. Having a two-flip-flop synchronizer already mitigates this issue by limiting the 

number of target cells to the first input transistor in the synchronizer. The metastable 

value can also be interpreted differently in any of the driven inputs due to miniscule 

differences in electrical parameters in the signal transmission lines and fanout. [21, p. 

75–76] 

In addition to the previous issues, metastability has a tendency to propagate within the 

design unit if not synchronized accordingly. Therefore, the previously mentioned effects 

also propagate on the path on the RX (Receiving side of the data transmission) chain of 

structures, usually multiplying the unwanted effects. The delay of the synchronizer allows 

the temporarily unstable value to settle. Depending on the clock rate of the signal, the 

number of synchronizers and the tenacity of metastability, this is in most cases resolved 

with an intentional delay in the signal transmission. [27] [21, p. 74–77] 

For example, in a design where data propagates though 2 sequential D-type flip-flops, 

both of which are operated by a clock signal with deviating oscillation frequencies. Over 

time, the latter asynchronous flip-flop will experience a data-path metastability when a 

timing violation inevitably occurs due to constantly changing phase shift with respect to 

the two clock signals. Metastability can be observed in Figure 5 receive-side data. [4, p. 

150] 
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Figure 5: A demonstration of metastability in an unsynchronized design. [4, p. 150] 

Figure 5 describes the RxData region as metastable. The logical value for the signal level 

during the first full clock cycle of RxClk is undefined, as the voltage level does not 

represent a strict binary 1 or 0, but rather an intermediate transient value between them. 

In Figure 5, an RTL illustration is located below and corresponding timing graph above. 

Each connection in RTL is represented with a named domain. The metastability related 

oscillations in RxData should be noted even though TxData is firmly bound to a logical 

value. There is no clock frequency slow enough or delay in synchronization long enough 

to absolutely eliminate this issue, but there are methods to alleviate the frequency of 

metastability occurrence down to acceptable levels [4, p. 150] [28]. 

The possibility of metastability negatively impacts the MTBF (Mean Time Between 

Failures) of a finished product in which the synchronization scheme is not ideal [29]. 

Even though the probability of a metastable occurrence is rather low with 

synchronization, the ever-increasing clock frequencies due to technology improvements 

with numerous clock-domain crossings in cumulate the probability of an issue occurring. 

In addition, ASIC circuits are designed to be produced in high volume, which means that 

there will be multiple circuits existing simultaneously, which further increases the odds 

of cumulative singular failure in any circuit. Even though a double DFF (D-type Flip-Flop) 
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synchronization offers moderate protection against metastability, in theory it merely 

increases the average number of clock cycles required to trigger metastability instead of 

completely preventing it. There is no limit to how long a single metastable incident can 

last in a circuit, and it can happen to any binary state cell holding information, such as 

latches. To improve MTBF, additional DFFs can be inserted in each synchronizer unit to 

target high-speed and high-reliability designs to add latency in order to solve the 

metastability. The chance of metastability occurring cannot be completely removed, but 

it can be mitigated to an extent which is reliable enough. [27] [21, p. 74–78] 

To complement the previous Figure 5, using 2-FF synchronization would affect the RTL 

and timing graph in the following manner [21, p. 77] in Figure 6. The timing graph above 

corresponds to the RTL below. By implementing an additional synchronization step, the 

probability of metastability is now considerably lower and thus the design is much more 

robust against register timing violations. 

 

Figure 6: A demonstration of alleviating metastability with a synchronizer. [4, p. 150] 

When compared to the previous Figure 6, the previous metastability issue has now been 

resolved at the destination RxData, as the logical value of RxData1 has a full clock cycle 

length intermediate step to settle into a desired logical value before it is in turn interpreted 

as the final RxData. Multiple fanout within the synchronizer is not allowed and therefore 

synchronizers limit the metastable fanout transistor count. If they were MOSFET (Metal-

Oxide-Semiconductor Field-Effect Transistor) type transistors, then synchronizers would 
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also limit the amount of wasted power during the metastable period caused by an open 

transistor channel. In addition, this structure also solves the data ambiguity issue 

between multiple fanout targets, as there exists only one target cell to interpret the 

temporarily metastable logical value of Rx1Data. [21, p. 74–77] 

One solution is to gate the clock signals when they are not needed. This is mainly done 

to save power, as the line capacitance of a clock tree will typically consume a 

considerable amount of energy, but this also has the additional benefit of preventing 

metastability within the gated parts of the system: The likelihood of metastability is 

directly related to the number of propagated clock cycles through the registers. [30] 

Even though the metastability issue can be alleviated by using synchronization, 

conforming to this solution for every clock domain crossing in an SoC will consume some 

silicon area in the final product. The gate count increases along with the added 

synchronizers, which will increase the design complexity by itself. In addition, 

implementing a synchronizer with multiple flip-flops will naturally increase latency in the 

communication link. This can be a meaningful drawback in some latency and area 

sensitive applications. [1, p. 111] 

Glitches are also a typical source of issues in a design [31]. The synchronization scheme 

will only be effective whenever the data is stable: Data should be properly set up before 

an ‘enable’ signal is asserted. This potential issue can be solved by using a “full 

handshake” process with mutual acknowledgements for data transmission. This involves 

some additional latency but will in turn be more reliable in the application in which it is 

needed the most. [32] 

Figure 7 introduces some general design rules to reduce the chance of a glitch occurring 

in the DUT. It is a recommended design practice to not insert combinatorial logic before 

registers in the control path or in in the feedback of the data path: The red connections 

depict the restricted areas for combinatorial logic in Figure 7. 
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Figure 7: Design rules to avoid glitches. [32] 

Glitches are effectively a result of mutually asynchronous clock frequencies combining 

in a logical port causing an output, which, for the transient time period of its existence, 

resembles a clock rate which may not correspond to any of the specified input 

frequencies. This short-lived pulse cannot be trusted to comply with any timing 

standards. A recurring timing violation will eventually cause metastability, which in-turn 

justifies handling glitch logic as errors in CDC tool. Glitches, however, sometimes 

propagate through the design, which can cause functional errors. [33] 

3.1 Preferable features 

ASIC design development is moving at a rapid pace, and the design tools should have 

setup properties to enable both conventional and new development strategies, such as 

top-down versus bottom-up development flow and flexible configuration possibilities for 

modern design solutions [10]. Running static-check software, even for a subsystem, 

takes some time in itself and making bug handling and reporting as effortless and quick 

as possible will help alleviate the increasing verification productivity gap [4, p. 3]. Some 

features are given a weight integer to emphasize their value in Appendix A. 

The company was particularly interested in three main features of the new EDA tools. 

Testing incremental flow to reduce designer hours was proposed. Also, a hierarchical 

flow has been requested to be inspected for the same reason. In addition, customizable 

synchronization schemes should be configured to help the software understand the DUT 

[33, p. 24]. However, any other features that speed up or simplify the flow setup, runtime, 

user experience, debug or reporting will also be appreciated in their own right. 
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3.1.1 Flexible constraints 

Verification tool flow sometimes benefits from using constraint files to limit the scope of 

the test. Typically, the reason behind this is to reduce the required computing time and 

violation messages from uninteresting areas to speed-up and simplify the runtime and 

debug processes. Moving into SoC structures makes accurate constraining even more 

prevalent, as typically the number of different clocks and resets in these systems is 

greater when compared to flat designs. Most rule-checkers expect some sort of 

information about the design to identify correct issues, which reduces noise on the 

exhaustive rule checks reports [21, p. 88].  

Constraint file is a powerful tool against a phenomenon called “state space explosion”. 

The more complex the design is, the exponentially larger the number of possible DUT 

state combinations. They all need to be verified against the proposed use-case which 

eventually becomes laborious. This problem for model checking is especially common 

for systems with many interacting parts or a high number of functional states, such as a 

data bus [34, p. 1]. This is the main reason behind verification gap in digital design and 

partly explains the graph evolution in Figure 1 [4, p. 3]. By constraining the DUT correctly, 

the number of DUT test scenarios can be reduced, effectively limiting the amount of 

verification to sufficiently cover the realistic DUT use case. The goal is to express the 

design intent as a list of functional properties [17, p. 51–52]. 

Correct constraining is instrumental in displaying a correct state of the design, while 

simultaneously these constraints can hide redundant and unwanted details [35, p. 29–

35]. Therefore, understanding the DUT purpose and technical details alike typically 

require obedient documentation of the DUT. This is important in linting and CDC. 

However, CDC’s dimensions exceed the structure of RTL due to dynamic clocking 

required by modern power management systems and evolving synchronization schemes 

used by design houses [4, p. 162]. In practice this means the constraints would 

effectively need to change in tandem with the transient operational mode of the design: 

Whenever DUT is powering on, idle, reset or in operational mode, different constraints 

can be required.  

In addition, EDA verification software defaults to general good practices and design 

rules. Therefore, it should not make assumptions of analog macros, stability of 

combinatorial loops, unorthodox synchronization structures, gray-boxed third-party IPs 

in subsystems or limited use cases of a bus in design. All of these rely on external forms 

of verification, such as formal, analog, or careful simulation to cover the use case of the 

feature. With these scenarios in mind, it is safe to say that flexible and accurate creation 
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of constraints is a very important feature for any verification tool, because they are 

essential for representing the correct verification status while reducing the computational 

complexity of model checking. 

Constraint files are systematic command lists executed as a script. They can be used to 

exclude and abstract a computationally heavy block from testing, reduce noise by listing 

false paths unknown to the tool, and link clock signal frequencies with corresponding 

domains. Also, defining reset signals with their active states, constants with their values, 

and quasi-static signal paths with no CDC requirements are typical parameters to 

constrain for a CDC run. Noisy paths can be filtered either in constraints, later in GUI 

(Graphical User Interface) or in a waiver file. The rest of the related tool configuration 

can be done outside the constraint file with a scripting language, such as TCL (Tool 

Command Language) [36]. 

3.1.2 Incremental flow and reporting 

Incremental flow properties will limit the scope of RTL check results to previous design 

changes. Getting rapid feedback from a verification check limited in this manner could 

improve the design flow remarkably and decrease the cost of bugs found in the DUT. It 

is unideal to completely run every verification check after each change, never mind 

reading daily all the lengthy reports generated by the tools. This type of incremental flow 

would shorten these reports, showing only the differences in the run results compared to 

the previous version of RTL. Reports could separate the previously reported issues to a 

different section and only the new issues would need to be emphasized. This lowers the 

effort of running the verification flow more often by reducing the designer time and 

computational footprint [34, p. 1]. 

Accurate reporting is crucial in ensuring success in verification [17, p. 101]. Metrics 

enable people who have limited technical knowledge about the verification status of the 

DUT to understand the design maturity [17, p. 102]. Having a sufficient selection of 

exportable report formats ready will help the organization find a suitable template for 

most needs. Having a single easily readable summary report as a baseline can offer 

most designers with sufficient information. This format could be established as the main 

report for CI-flow as well. As a more advanced feature, HTML (Hypertext Markup 

Language) report publishing is also an interesting way of complementing the verification 

results. It enables categorizing and visualizing the distribution of violations by hierarchical 

blocks or by violation category to form a solid understanding of the state of verification. 

In addition, seeing the common denominators of new violations briefly can also help track 

the root cause of the issue. As mentioned in the setup phase, reports can be used to 
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validate the DUT setup for verification as well. Log files can be parsed for errors, inferred 

clocks and resets can be specified when found by the tool, and missing port domains 

can be elaborated faster when there is a list existing about the missing information, which 

can then be passed on to developers. 

3.1.3 Ease of use 

User experience is a complex topic and will not be focused on in this evaluation [37, p. 

95]. Even if an unintuitive software is functional, any unnecessary learning curve in setup, 

analysis and debug phases will inevitably widen the verification productivity gap 

compared to designer throughput [5]. This could also simultaneously reduce the amount 

of verification passes done for DUT. In that case, not as many users would be competent 

with the tool, delaying the discovery of unintentional bugs in DUT and thus increasing 

the design costs according to Figure 1. In the worst possible case, this might cause 

delays in product releases [10]. Creating quantifiable metrics is difficult in UX (User 

experience), because even though some of the preferences might be shared between 

users, typically not everyone agrees with the shared approach. This would require a 

different research approach overall to produce results. Doing this could, however, be 

investigated further in upcoming research topics.  

Batch runs can most of the time be configured to work similarly to each other. A best-

case scenario is to enter a single command and let a script take care of the check 

because this way the workflow can be kept constant. Fully automatic verification would 

be preferable, but in practise human intervention is required [34, p. 4]. Standardized 

workflow between designers with adequate methodology enables results to be compared 

in a fair manner between runs. Standardizing this approach enables basic status 

checking by an external checker, who might not know about the functional details of the 

block to solve the issue by themselves. However, reporting the issue could nevertheless 

speed up the development process if any previously unknown cases are found. The 

generated database is openable in GUI after the check is done and the generated plain 

text report can either be viewed in GUI or in a text editor of choice. It can be difficult to 

differentiate batch workflows from each other, as their differences are seen mostly in run 

time duration, terminal verbosity, and output reporting types. These items are also 

separately configurable and sometimes affect each other: Generating only the required 

reports can reduce software runtime. 

Of course, nowadays a GUI is a main part of an EDA verification tool for debug tasks: 

Displaying clock and reset trees, dynamic schematics, reorganizing and categorizing 

violations and reviewing design hierarchies is a completely normal procedure. An 
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integrated source code viewer or editor is commonplace as well. Displaying only the 

required information for the DUT in a limited screen-space is a daunting challenge, and 

thus support for modern display setups can boost productivity. There are numerous 

combinations of views in both lint and CDC GUIs, which would benefit the designer by 

displaying only the necessary information. Being able to customize the software layout 

to solve different kinds of issues is beneficial. Even if the GUI layout is not ideal all the 

time, the information should be accessible effortlessly without leaving the main GUI to 

find it. This will improve the rate at which the user can understand the different aspects 

of the issue and its context. For example, automatically emphasizing constant signals 

and displaying their value in a schematic could speed up the analysis greatly. 

3.1.4 Performance 

Software responsiveness is an interesting topic. With EDA, software related crashes are 

unacceptable because editing files in between the analyses in the GUI is important. In 

an exemplary case of a segmentation fault, all pending changes in RAM (Random 

Access Memory) are lost for the crashed instance and the changes will have to be re-

done, as no pending write operations were done to the non-volatile parts of the file 

system. This becomes problematic when the program has pending changes in the 

system memory to reduce file system write accesses during the analysis. This is typically 

done to improve performance in the GUI client and to reduce continuous system load. 

This aspect is even more important if the files are accessed over a network, which 

introduces some systematic delays in file accesses and unpredictable effects caused by 

shared server resources.  

Resources, such as software licenses and RAM, are unallocated when rule checking has 

ended, and so a longer run time withholds these resources. As a ground rule, the shorter 

the run time is, the better. However, this comes with some caveats: Dedicating all server 

computing resources to favour a single process while freezing others is usually an 

unideal compromise to make, as this invalidates other people’s work. For that reason, 

granting elevated process priority should be handled with care. In addition, the perceived 

improvements in run-time are not linear: Being able to finish a daily check overnight is 

important. Similarly, finishing weekly regression checks within the weekend is also 

favourable. These conditions allow work to progress normally in a local environment 

when the results are available at normal working hours. To elaborate, regression runs 

can hinder other people’s ability to work, whereas overnight runs are crucial for gaining 

incremental information as feedback about recent changes. While complex, the SoC 

structure on the other hand typically allows to run the verification jobs on a specific 
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hierarchical level, which can be completed in the set time frame. After that, verifying 

multiple suitable parts of the design at the same time will enable process parallelization 

and therefore shared computational resources start to matter more. 

Design houses typically have numerous computationally intensive applications running 

in parallel, such as simulations, power estimations, formal verification runs and so on. 

These are typically run whenever needed. If the DUT status is known to be interesting in 

long-term verification, regressive runs could also be implemented. These regressions 

are run automatically with a timer, for example. Regressive checks could also be done 

with a differing hierarchical scope with the DUT in it. As today’s  oC designs contain a 

lot of different functional blocks, this could easily become very computationally intensive 

if multiple people and CI use it simultaneously. This phenomenon encourages preferring 

EDA tools with good support and scalability for the used server hardware: Even though 

there typically is a lot of memory available, some parallel processes could simultaneously 

heavily use CPU (Central Processing Unit) and RAM in certain use cases, making their 

availability desired. Therefore, having the EDA software inherently use less resources is 

preferable, especially if the runtimes do not suffer from the resource scarcity. Even 

though changing the process priority could help with the issue, any savings in other 

people’s performance usually come with a run time penalty to the others.  

3.1.5 Tool documentation and reporting 

A sufficient and transparent documentation of project details along with straightforward 

EDA flow improve both the quality and quantity of verification passes, eventually refining 

the final product. Understanding documentation is important, because otherwise the user 

might not have a clear understanding of the testing methodology: How strict are the 

applied reference rules, is there overlap in some of the violations, are there possibly 

uncovered but available checks and so on. 

An integrated help viewer in GUI which opens the contained documentation for the 

necessary setup, violation and methodology information is considered a bare minimum 

standard. Every tool is slightly different when it comes to these aspects.  

Results are the most influential part of any verification software as they determine the 

actions to be taken. Usually, the software is configured according to the standard of an 

organization or even that of a project. The goal of this decision is to reflect what kind of 

errors are hoped to be seen in a design. There usually is a small contradiction of interests 

depending on who is asked, as the verification pass is typically wished to be seen as 

free of all serious design violations. Simultaneously the designers want to be certain that 

the software has considered all possible scenarios. Minimizing the runtime with 
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constraints while limiting the number of false positives speed up the debug work. 

Therefore, the setup affects the observed results. For the most part, the interesting 

parameters are constraints, the chosen methodology, applied waivers and filters, the 

hierarchy selected for the DUT, the software version, and the tool config. 

The reports should contain at least an output log, a list of all the notifications along with 

their severity, notification type and the hierarchical path of occurrence. For the 

transparency of the setup, including a collective list of enabled settings along with the 

results made by the tool is a good practice. A good addition would be a list of inferred 

information, which should be validated by the designer of the DUT to help setup the 

software or the DUT. A summary with violation types and counts will help form a clear 

picture of the situation of the DUT. Enabling report viewing and regeneration in the GUI 

to review the changes made during the debug process is recommended. In some tools 

the reports can also be exported into an online database with HTML or parsed for a CI 

system to display the status to a wider audience.  

These autogenerated reports for comprehensive systems can be very long and 

monotonous. The intention is to provide a lot of categorized information for each violation 

while keeping the file readable and accurate. An incremental flow can help a lot when 

assessing the DUT status while reading a report, as the newer changes are separated 

from the ones known from the previous run. A good report is ordered by sections to keep 

the reader aware of the part being handled. This allows the user to focus more on the 

problem itself. 
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4. RESEARCH STRATEGY AND ENVIRONMENT 

 

To get a better grasp of some desired features, a study scope enquiry session was held 

with an expert. To complement this approach, the expert was also asked to fill a 

structured form, in which each pre-determined feature of the suite is given a weight 

integer from 0 to 5 represent the execution importance of each mentioned feature in 

effectively accomplishing a useful verification flow. The sub-sections of the filled chart 

are covered in the results to provide perspective on important features to be covered in 

section 4. 

The new workflow will be established from the ground-up with new lint and CDC tools for 

comparison with the old flow. The default development environment is used in the 

company to offer a comparable view on the server performance. The main testing will be 

based on the measurement data in which runtimes are recorded along with reported 

violations and resource usage. 

4.1 The study inquiry 

In the history of digital design, EDA tools have not been an integral part of it from the 

beginning [38, p. 6]. To figure out the main reasons for what makes them worth using 

today, the reasons behind the change in industry trends causing their widespread use 

today should be understood. As in any evaluation, the benefits should outweigh the 

drawbacks to justify a change. To answer why this specific EDA tool might be useful, the 

requirements need to be mapped and then the benefits of each feature must be 

evaluated in the testing. To help with assessment, an inquiry session was arranged to 

gain some insight. The interviewed expert also agreed to fill a structured chart to help 

estimate weight scalars to clarify the important tool focus areas. This chart offers 

subtopics covered in sections 4.4–4.8.  

To understand why EDA tools are popular nowadays, an employee in the company 

agreed to be asked about the scope of this study and its background. He is regarded as 

an expert in the field with over ten years of working experience with ASIC and FPGA 

(Field-Programmable Gate Array) design. In addition, the expert agreed to fill out a 

structured evaluation chart in Appendix A with weight integers to represent the 

importance of each feature in his experience. The chart contained some categorized 

features: For each category, a rounded average integer was estimated. The expert was 

given four instructions found in the sheet for evaluating the features: 
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1. “Fill in the weights by importance as an integer from 1 to 5. 0 = NA” 

2. ”Cells with thick borders represent the whole (average integer) importance of its 

sub-cells” 

3. “The goal is to observe differences in importance: Avoid giving too high grades 

on average” 

4. “Both lint & CDC are to be evaluated where applicable” 

The first rule enables us to clearly qualify the importance of each feature. The greater 

the filled integer is, the higher the perceived importance is. Filling in a “0” serves an 

option for not understanding or being aware of such a feature, possibly improving data 

integrity, as this eliminates any filled guesswork in the results. 

Moreover, the second rule clarifies that the collective category grade exists only to group 

the sub-results into a more readable and generalizable form. The average was 

underlined so as to not be mistaken for the sub-feature field. It is meant to be a rounded 

integer which can be left unprocessed, but any difference from the actual average of the 

sub-grades can be considered as deviating emphasis from the expert’s part. This 

possibly enables us to get a better understanding of the expert’s point-of-view by 

computing and comparing the averages.  

It is worth mentioning that the point of rule number 3 exists to avoid filling in the maximum 

grade to each row. Giving a set number of maximum points was considered for this 

purpose, but that would have risked the integrity of the test, because in that case, the 

importance of each feature should be in line with each other. However, in this case that 

is impossible, as some valuable features are enabled by more basic ones and moreover, 

there is overlap between some of the rows. Also, the exact number of points given should 

then have been justified by a criterion, which is not representative of the real world: 

Features, just like the aforementioned point count, are not mutually exclusive. For these 

reasons, an unrestricted weight assessment was granted. However, a remainder was 

left to emphasize the differences. The original evaluation chart was provided by the EDA 

tool provider but has been modified slightly to encompass both the tools’ features. 

Finally, the fourth rule allows us to use the data for software evaluation for the applicable 

parts. It is an acknowledged possibility that these grades deviate for each software: 

Maybe the reporting accuracy requirements are different between lint and CDC, for 

example. However, the EDA tool suite has been built to either directly share the features 

between lint and CDC tools where applicable, or to have been appended only to CDC 

due to the redundancy in lint. This addresses the possible tool data coupling issue in the 

results. 
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4.2 Evaluation environment 

In the company, the tested software was configured on a CAD (Computer-Aided Design) 

server containing CentOS (Community Enterprise Operating System) 7 Linux operating 

system distribution, which was a system requirement for the new software suite. Despite 

its age, it is still supported by RedHat, and it provides the required OS (Operating 

System) libraries for the software to be installed successfully. Servers are of the following 

kind: 

• At the time of testing, the most recent tool version was used. 

• The used operating system in CAD server is CentOS 3.10.0-1127.8.2.el7.x86_64 

x86_64 GNU/Linux 

•  

• CAD server contains dual socketed 12-core 64-bit Intel Xeon E5-2680 v3 CPU’s 

running 2.50 GHz with disabled simultaneous multithreading: This has been done 

to improve security against known side-channel attacks as the architecture is 

relatively old and considered vulnerable [39]. The allocated 384 GiB of DDR4 

should not limit any testing during the quiet hours. Evaluation activity on CAD 

servers is limited to flow setup tasks, workflow functionality verification and 

opening the GUI for database analysis, because the Grid Engine does not 

support GUI operations. 

• The recently deployed Altair Grid Engine contains simulation servers with dual-

socketed AMD Epyc 7443 CPUs and 767 GiB of system memory for each 

system. Unlike for the CAD servers, the SMT was enabled for these CPUs. RHEL 

8.5 operating system was used instead of CentOS 7. As these new servers were 

deployed at the time of testing, the load was inherently low, since not many users 

had yet started using the refreshed Grid during the evaluation period because the 

old system was still in place. To create a representable picture of using lint & 

CDC tools for the Grid, the run command was standardized according to the 

company guidelines with the enabled load balancer, which might affect the initial 

job submission latency and cause minor deviations in run times. Because the 

licenses are used in tandem with additional CPU multithreading in both software 

suites, the number of used CPU threads was limited to 4 in the performance 

measurements to standardize CPU allocation and not to be limited by the 

available software license count in either software. Some EDA tools consume 
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more software licenses when the computation process has been parallelized 

enough. 

The project file system is based on a remote server in another country accessed via SSH 

(Secure Shell) from Linux remote virtual desktop using TigerVNC viewer and a VPN 

(Virtual Private Network). It is worth pointing out that this multiple-step infrastructure is 

expected to introduce some systematic and deviating delays in the user experience, and 

it is an acknowledged trade-off to improve security while offering access to the files 

needed by multiple designers from many countries. As the design files are never 

supposed to leave the server, testing methodology complies to these rules while 

simultaneously reflecting the real-world experience as well. The following network 

latency Table 1 was measured with 100 RTT (Round-Trip Time) ping requests with a test 

interval of one second while VPN was connected for the nearest server: 

Table 1: Measured RTT ping latencies of the deployment. 

Latency User 
and VNC 

VNC 
and CAD 

VNC 
and Grid 

CAD 
and Grid 

Min RTT [ms] 22 0.12 0.21 0.13 
AVG RTT [ms] 22 0.18 0.40 0.25 
Max RTT [ms] 37 0.49 8.60 3.40 

 

Two main themes can be concluded from Table 1: The main cause of latency in the 

network is the secure connection from the end machine to the different servers, all of 

which in turn are located relatively close to each other. The latency will also multiply in 

between GUI-interactions, as each command must first reach their destination before a 

corresponding acknowledgement can be displayed, such as a button press animation 

after clicking the symbol itself. This makes assessing GUI responsiveness difficult in this 

testing environment and for that reason measuring GUI action time is out-of-scope for 

this research. 

However, the runtime test methodology will mask the connection latency well, as the 

start and stop times are checked server-side and then the difference is sent back to the 

terminal. The main impact of latency in the research is limited to the responsiveness of 

the GUI: Every action done in the GUI is delayed systematically by the network round-

trip latency. However, the software will likely be considered responsive enough, but the 

deployment type is not ideal for more in-depth user experience testing with action 

clocking, for example. It is worth emphasizing that every other software deployed this 

way will suffer the same usability penalty, which is not the software’s fault. Overall, the 

network conditions are steady most of the time, but some temporary deviations are to be 

expected. This information is used to conduct measurements with average run times and 
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absolute error bars to eliminate the possibility of an outlier result misrepresenting 

software behaviour. 

Verification tasks in the company are run on centralized simulation servers called Altera 

Grid, which dynamically assign the job a priority and resources by default. They contain 

an integrated load balancer, causing some initial latency and thus are more difficult to 

standardize performance metrics on, but are the recommended approach for running 

heavy command line tasks. This behaviour also justifies using 5-run average results with 

runtime deviation displayed to conclude performance. 

Due to these challenges inherent to this type of deployment, the user interface 

responsiveness will not be assessed deeply. The GNU (GNU’s Not Unix) module 

deployment is used due to its benefits in the used server deployment. Software data is 

in this case local for the Grid, enabling low processing overhead and effortless backups 

without user-specific installations, which also saves on storage space.  

For both CDC and lint, the software default methodology was used. This approach is to 

be complemented with TCL scripts and constraints when deemed beneficial: Some 

settings were adjusted according to the reporting verbosity, and the software was also 

instructed on how many DFFs there should be in the synchronizer structure. Also, some 

custom synchronizer IPs were created to reflect real-world functionality. The goal is not 

to waive any violations and focus more on constraining the specifications to reduce noise 

in the results. The software’s built-in feature to utilize different design maturity goals was 

also exploited to reduce result noise. This is analysed in chapters 4.1–4.2. Statistics were 

also taken for runs in which only clocks and ports were defined, while all standard IP 

specific waivers were disabled for a fair comparison. A script was used to transform 

existing design constraints into a TCL constraint form. This was necessary for three 

reasons: To support the required constraint format, to minimize human error in 

translation, and to save some time.  

A frozen snapshot of a development branch release was used to produce controlled and 

repeatable results. This approach also enables the utilization of some of the design 

constraints made for the release and review, if any of the known issues are found by the 

tool. A local internal Git-based version control was created for redundancy and to better 

keep track of changes. 

The project development is very active, and many people are sharing server resources 

with each other simultaneously. This in mind, performance tests were run during quiet 

hours when the resources are plentiful to virtually eliminate the chance of overloading 

the infrastructure with additional load and to keep the performance bottlenecks typical. 
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For ideal results, background server activity should be eliminated, but for the nature of 

this deployment this was unfortunately not possible. This choice was made to show the 

performance in typical development conditions. 

The test was run a on a proprietary functional subsystem, which operates in a SoC and 

is relatively complex: It contains hierarchical elements, such as a CPU subsystem, 

memory, analog macros and a lot of I/O (Input and Output interface). This block’s  RTL 

was kept constant through testing. From a CDC point of view, these blocks contain tens 

of different clock signals with varying clock frequencies and over ten different reset 

signals. The DUT is currently in active development and therefore, it is worth 

emphasizing that any seen violations will not reflect the status of a finished product. With 

these factors in mind, thousands of errors were initially expected to be seen. The errors 

might originate from an unfinished design, incomplete design constraints and human 

design errors. 

4.3 The new workflow setup 

Keeping the testing environment simple is important, as it is best for everyone involved 

that the tests are run correctly. Automating the new workflow will help verify the wanted 

results [17, p. 122–126]. Makefiles and file lists were created for establishing the basic 

workflow. The flow contains 4 main commands with the following functionality which are 

typically run in the following order: 

1. “compile”: Gathers synthesis and simulation definitions and design files into a single 

database to be read later. This could be integrated into the other commands if needed. 

Uniform commands were used across all testing, as no changes will take place before 

compilation in the flow testing done for this study. File system paths were instantiated as 

exported variables and the DUT top level was defined. 

2: “setup”: Reads the compiled database and applies constraints into the RTL. Infers and 

informs about lacking clock and reset constraints and verbosely informs the user about 

the shortcomings of this setup [40]. As any parameters changed for the testing affect the 

results from the main CDC run onwards, this command is also considered uniform 

because all of its inputs are kept constant. 

3: “cdc”: Runs chosen methodology goal containing the verification rules for the DUT and 

generates reports. Creates the database to be loaded into the GUI. 

4: “GUI”: Loads previously generated results into the GUI for more nuanced inspection. 
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In addition, all these Makefile targets were configured to report and save all the 

encountered issues found while executing the target in order to keep track of the issues. 

After a successful compilation, the focus was on specifying and correcting the inferred 

clocks and port domains with the designers of the DUT. Obtaining a relevant set of 

specifications proved to be somewhat troublesome. The most problematic part was the 

unified clock, reset and power management subsystem within the DUT. The available 

specification of its functionality was limited and consisted mostly of the intentions of the 

subsystem’s port interface. Constraining this module required more in-depth analysis of 

the subsystem, as it contained debug backdoors with intentionally missing synchronizers 

to save on design silicon area and very dynamic clock behaviour with multiple active 

power domains. The known false positives found in this phase were listed into the filtered 

results, which are still displayed and not waived. However, these are not interesting, 

because they are caused by known issues within an unfinished subsystem. The clock 

signal is gated to save power whenever the reset is active, which allowed the filtering of 

some of these known false error generating paths away from the results. An IP design 

specification revealed that these issues have been waived previously and a separate 

confirmation about the validity of these waivers was received. In this testing, waivers had 

been disabled to also simplify the comparison between the software.  

The installation was made available to everyone on CAD servers by using a GNU module 

with authorization from IT-department. This approach also enabled the use of the Altair 

Grid Engine. A verification flow was deployed in a hierarchical subsystem of the SoC. 

The most recent version of the DUT was chosen to stabilize the environment, since the 

main development branch may contain unexpected, and in worst case, setup flow 

crippling changes. The constraints had also been standardized for the release, which 

also simplified the setup process. 

The constraints were initially derived from a two-month-old release. However, they were 

not complete and needed some clarifications. Hence, revised constraints were 

requested. In addition, the modularity of the design flow was improved with a block for 

which the constraints were already available and documented. This also allowed the 

verification of the correct functionality of the software, as the correct base for the 

constraints was available. Version control was implemented for the project to track recent 

changes made in the workflow. 

The company’s proprietary synchronizer IP blocks are based on edge-case design rules 

made possible by the process node guidelines. As the EDA tool is not aware of the 

process-specific design technology, all these special synchronizers were initially flagged 
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as dangerous by the tool, which is expected behaviour. However, this caused a problem, 

as thousands of design violations caused unwanted “noise” in the results. This made it 

more difficult to find the real issues. To get more accurate results, this noise needed to 

be fixed, preferably without using waivers. There is always a possibility to gently mislead 

the tool by creating a custom RTL synchronizer and to use a global macro to load the 

customized units instead of the proper synchronizers. After first discussing the issue, a 

suggestion to use customized synchronizer gray-boxes modelled with a TCL-script was 

implemented. This means that the interfaces were defined exhaustively along with their 

mutual relations. This replaced the need of using macros and custom-made RTL to 

replace the verified structure, which would then have needed to be verified separately to 

be used exclusively in CDC runs. The models specified the proven outputs for the given 

inputs of the synchronizer blocks. A model was created for each synchronizer unit to 

cause a pre-specified violation. The modelling required some detective work with the 

designer of power and clock domains, but eventually the script was able to represent the 

synchronizers’ functionality. After that, the CDC tool was run and the GUI was used to 

elaborate the DUT status. 

4.4 GUI 

Because the interface in both tools is based on the shared GUI, many features resemble 

each other, even though the verification tasks of the tools are different. Keeping shared 

features in similar places across the different software suites can help the user adapt to 

new verification environments. This section is for presenting the GUI layout and features 

which are displayed in the following Figures 8–11.  

In Figure 8, the open subcategories on the top half are Flow Navigator (top left), source 

code inspector (top middle), and Lint Summary (top right). The bottom half has the Lint 

Dashboard open, which contains result visualization by error category (bottom left), and 

its data in written format (bottom right). 
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Figure 8: The new lint tool GUI main window. 

In the following Figure 9 the help viewer is displayed. The documentation navigator menu 

is visible on the left side. It should be noted that a search tab is also available. 

Documentation is available in both PDF (Portable Document Format) and HTML data 

formats. This documentation HTML file has been opened in the default web browser of 

the operating system. 

 

 

Figure 9: Lint tool help viewer about an input_port_set error documentation. 

In the following Figure 10, the schematic viewer is demonstrated. The empty looking 

boxes in the schematic represent abstracted hierarchical levels, as viewing their details 
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further is not relevant for this type of error. The user, however, is free to inspect 

unrevealed information by double-clicking each box or line. 

 

Figure 10: Lint schematic viewer about a black-box error with default customization 
preferences menu also visible above. 

In the following Figure 11 the CDC tool main window is displayed. The open 

subcategories are code inspector (top right), CDC Checks (bottom) and Flow navigator 

(top left). Notice that the black space in CDC checks is reserved for detailed violation 

data, such as RX signal etc. Multiple enabled status indicators and the number of filtered 

violations with design specifications should be noted. 

 

Figure 11: The new CDC tool main window.  
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The GUI was perceived to be intuitive, even though this feature is difficult to demonstrate 

with the previous pictures. Now that the tools are working properly, the software’s 

capabilities can be assessed when compared to the old tool flow. 
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5. ASSESSING DIFFERENCES 

 

The features requested by the company are investigated in this section. The measured 

performance and violation numbers will help quantify the software, while the 

categorization of errors helps qualify the violations. These factors help form a 

representable picture of the software’s capabilities in typical verification activities. 

Different methodology goals are tested to observe the noise control strategy within the 

software. Finally, setup experiences are gauged with respect to the structured review 

chart of Appendix A.  

The proprietary synchronization structures were implemented with a TCL script to reduce 

false issue reporting in the results. This reduces overhead in the server environment, as 

then global macros for alternative synchronizer RTL implementation for CDC checks are 

not required. Functionality of hierarchical CDC checks was tested successfully and 

implemented with a method similar to the old workflow. In hierarchical flow, any sub-IPs 

are converted into gray-boxes with specified I/O relations, which can be used as 

simulation models for the next hierarchical block in line. Hierarchical lint is not available 

in the provided version of the software and therefore, it is not explored in this research. 

Incremental runs were configured to work with lint. For this purpose, several sub-IPs 

were masked as hierarchical units to pass the constraints to the highest hierarchical DUT 

component. This was done for the sake of this test, and it masked a small part of the 

violations observed before. The default Makefile command was run to create a reference 

database for incremental inspection. Then, the sub-Ips were unabstracted again, 

revealing all the previously masked violations in the IPs. After that, a modified Makefile 

command was run to create a comparison database with more violations embedded into 

it. A separate report was finally generated to first address the incremented issues, which 

had been previously masked. In addition, the rest of the violations were also listed, but 

as previously known issues, which were separated to a later section of the report. This 

property makes incremental reporting purely complementary, as it is not hiding any 

results by itself. 

A number of tests were run with the new verification tools. The tests are shown in the 

following table 2: 
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Table 2: All practical test cases in their respective order before addressing the items in 
Appendix A. 

Test # CDC Lint 

1 Subflow length - 
2 Total flow length - 
3 Error categorization - 
4 Noise reduction - 
5 - Subflow length 
6 - Total flow length 
7 - Error categorization 
8 - Custom ruleset coverage 
9 Resource consumption Resource consumption 

 

The performance measurements were taken from the new workflow with different check 

methodology goals to better understand the thoroughness of testing compared to the 

achievable run times. Using this feature is beneficial in hiding most of the unwanted false 

violation, as typically the root cause violations are displayed in the “ tart” methodology 

goal, which would likely cause multiple issues when using more exhaustive methodology 

goals. The findings were compared against the known issues found with the original flow. 

It is worth noting that one of the improvements was to separate the compilation from the 

checking targets to reduce the application runtime. 

In preliminary testing it was noted that “Compile” and “ etup” sub-flows were not affected 

by the set methodology goal level outside the testing margin of error. This was true for 

both tools. According to the evaluation provider, this behaviour is to be expected, as the 

mentioned targets receive identical inputs regardless of the goal and processing them is 

identical regardless of the target. This means that the main CDC target runtime was left 

to be inspected with different methodology goals. Tool workflow is introduced in the 

following Figure 12. 
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Figure 12: New and old tools flows. Sub-flows are represented in separate boxes. The sub-
flow part names ending with *-symbol are run with multiple different goals. 

Deviating load on the servers causes small runtime deviations emphasized by the 

dynamic load balancer in the server environment. For this reason, error modelling with 5 

runs was added to improve the statistical value of the results. 

IP methodology was used throughout the testing with a deviating goal. It is important to 

note the increased number of violations caused by an increased number of CDC checks 

in the main verification run to know how influential the used methodology goal is for 

results, noise and run times. The names of the goals represent the proposed phase of 

utilization for them in the IC design flow. 

5.1 CDC performance and violations 

The following Figure 13 was created from the results. In the figure the runtime difference 

of the coarsest and most exhaustive default goals (Start versus Release), which is about 

28.3 %, can be observed. The effect on the total flow length between using these two 

goals is 12.0 %, which contains the measured 5-run averages of Compile, Setup, CDC 

and GUI added together for the total flow time. Even though these steps might not be 

run sequentially one after another in an actual analysis, this still represents the total time 
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required for a complete analysis. The CDC methodology goals are mutually exclusive 

with each other and only one of them must be considered for a total flow duration at the 

time. The displayed error bars thorough this research represent the absolute minimum 

and maximum results for statistical value. 

 

Figure 13: The new CDC sub-flow run times. 

Even though this difference in “ tart” and “Release” goals is not much in absolute time, 

it is worth noting that DUT is merely a subsystem of a whole SoC and therefore, the 

relative result is more interesting, as the design will scale further. It can be concluded 

that the absolute run time is not a major limitation in using the Release goal in either this 

subsystem or in a simpler one with the new CDC tool.  

For comparison, the old flow run times were also recorded. None of the sub-flow results 

are directly comparable with the ones observed in the new workflow but the total results 

are compared to each other to evaluate the differences between them. It should be noted 

that the compilation is done in each run of this flow, which affects the results negatively. 

The old flow contains an integrated compilation in every phase and a corresponding 

“structure” goal does not exist in the new flow. Therefore, these phases could not be 

comparably exported into the previous Figure 13, because of the unidentical partitioning 

of the flow. The old workflow sub-flow parts and their total sum are represented in the 

following Table 3, in which a separate table from the new flow results was formed due to 

the differences in each sub-flow. However, the total runtime is to be compared later in 

Figure 15. 
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 Table 3: The old CDC workflow part length 5-run averages categorized and combined. 

Old workflow Setup Structure Verify GUI Total 

Time [s] 267.323 328.950 1212.660 29.863 1838.796 

 

Here the length differences in the total runtime can be observed, which are mainly 

caused by the comparatively lengthy execution of “Verify” sub-flow. Every checking job 

is slower in the old workflow when compared to the new flow. Opening the GUI, however, 

is consistently faster on the old flow. The results have been compiled into a graph in 

Figure 14 to clarify the differences.  

 

Figure 14: Old flow part run times measured in seconds. 

The sums for both workflows were then computed. For the new flow, the most 

comprehensive default “Release” goal was chosen for this purpose to display a scenario 

with all the recorded violations and the maximum run time. In the following Figure 15 the 

total durations of the workflows with each other are compared. The previously noted 

“ erify” goal for the old flow delays the completion considerably and contributes to the 

new flow being about 389 % faster. The other sub-flows were more closely aligned in 

duration with each other across the software. 
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Figure 15: Total flow duration both CDC workflows. 

Next, the detected violation types by category observed in the new workflow are 

summarized. According to the manual, violations are categorized as problematic CDC 

schemes. Cautions consist of potential problems. Evaluation keeps track of detected and 

accepted schemes which are not considered problems by the tools on their own. Proven 

status counts schemes with proven protocol assertions. The Filtered section 

encompasses all the automatically and manually gathered false positives caused by 

limited use of the signal path in specifications, which the software cannot assume. 

Constant CDC paths are filtered. The filtered list is not exhaustive. However, it is still 

identical between the tests, since its only purpose is to display how well earlier 

methodology goals supress unwanted noise. The new CDC tool reported items are 

presented in the following Table 4: 
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Table 4: Reported violations in the new CDC tool sorted by severity. 

Type Start Implementation Release Old flow 

Violation 267 625 5073 296 
Caution 9 9 514 524 
Evaluation 229 1322 1332 8302 
Proven 4 4 4 - 
Filtered 456 19254 19308 - 

 

From Table 4, it can be concluded that filtering false violations from the results while 

using different methodology goals results in a different proportion of filtered violations. 

Without using waivers, “ tart” contains 47.3 % of false messages, which cumulates 

quickly when unaddressed violations contribute to a more comprehensive methodology, 

resulting in a 90.7 % noise ratio in “Implementation” and a 73.6 % noise ratio in the 

“Release” goal. As the “Release” goal includes more rule checks to increase the violation 

count, the noise ratio drops consequentially. The main objective of using different meth-

odology goals is to clean the DUT from the most typical root causes first, which would 

cause multiple errors later while using a more comprehensive goal. 

The old workflow uses similar violation classification categories, and it yielded the results 

available in the previous Table 4. The old flow classifies most of the issues into the “Eval-

uation” category. The old workflow does not contain corresponding data classification 

types for “Proven” and “Filtered” issues. The results of Table 4 have been compiled into 

a single graph in Figure 16, which displays all previously reported items. The issue type 

numbers vary within multiple orders of magnitude, and for that reason an exponentially 

increasing Count axis was created for the figure. 
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Figure 16: CDC violation results from both workflows. 

From the results it can be concluded that the new CDC tool is able to report more total 

issues when compared to the old flow used in the company. Methodology goals can be 

used to keep the resulting noise in control while the DUT is still in development. The new 

CDC tool is also remarkably faster when compared to the old flow.  

5.2 Lint performance and violations 

In the following Table 5, it can also be seen that choosing the correct methodology goal 

will reduce the run time in lint. Lint compile time is different from the CDC due to an 

additional lint flag required by the compiler. Like with the new CDC tool, the methodology 

levels are mutually exclusive in the flow and according to run duration Table 5, it has 

some effect on run durations. Interestingly, the “Implementation” goal takes consistently 

longer to complete, even though it should have less enabled checks compared to the 

“Release” goal, which in turn had shorter run times. The 5-run average absolute error 

margins imply that this is a reliable result, and this behaviour was re-tested later with 

similar results, which means the original measurement results were kept. The Compile 

and GUI results were shared between the tests. 

Table 5: The new lint tool runtime results 

New flow runtimes Compile Lint GUI Total 

Start 18.930 214.602 33.582 267.114 
Implementation 18.930 276.621 33.582 329.133 
Release 18.930 254.931 33.582 307.443 
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To clarify these results, the following chart was compiled from the results in Figure 17. 

Like in the CDC tool, “ tart”, “Implementation” and “Release” are mutually exclusive 

goals in lint to reduce noise in different phases of design and only one of them shall be 

used at the time. 

 

 

Figure 17: The new lint tool sub-flow durations. 

For total lint flow, the data of “Release” goal was compared, for it has the most 

comprehensive checks within the tool. The data collected for Figure 18 shows that the 

new lint tool is also measurably faster in these checks, and it would be even faster with 

a reduced methodology goal, according to the previous Figure 17. However, the speed 

benefit is less pronounced in lint when compared to the difference in CDC runs. 

Generally, the length of the whole new flow is slightly shorter in lint than in CDC. 
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Figure 18: Lint check pass durations from both flows. 

With differing methodology goals, the lint issue counts represented in the following Table 

6 were observed. The detected violation counts increase when changing the tool, and 

most of the issues are categorized with “Caution” in the old flow. Also, all the issues 

found in the old lint low were found in the new flow with all enabled rules, albeit with 

different severity. However, even the “Release” goal was unable find every specific error 

from the old flow and so rules outside of that specific goal would need to be considered 

if ruleset parity was important. For that purpose, generating a customized ruleset is 

recommended to standardize accuracy and reduce runtimes: Server load, licence 

utilization and resource consumption are all reduced in conjunction. If required, differing 

severities between flows are easy to fix with a simple ruleset adjustment. Implementing 

new rules altogether is a much more laborious ordeal in comparison. 

Table 6: Lint violation counts 

New flow runtimes 
Old flow Start 

Imple-
mentation 

Release 

Violation 9 274 3197 3456 
Caution 6624 1953 10788 10740 
Evaluation 22 3728 7454 13669 

 

The data from Table 6 has been compiled into the following chart to improve readability 

in Figure 19.  
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Figure 19: Lint issues of both lint flows in a bar graph. Note the exponential “Count” axis. 

For reference, all of the goal related messages were summed together to estimate the 

tools’ abilities to find issues in the design, because the severities were not consistent 

between tools. The old flow found a total of 6655 issues, whereas the new lint tool found 

5955 with “ tart”, 21439 issues with “Implementation” and 27865 issues using the 

“Release” goal. According to the testing, the new lint tool “Implementation” goal should 

only be used to reduce noise, as the run times took consistently the longest time to finish 

while using the goal in question. 

Lint was verified to find all the errors listed by the old tool flow with the customized ruleset. 

Therefore, it can be concluded that new lint flow can find every error discovered by the 

company’s current verification flow. More issues can also be found while having lower 

runtimes. This is an excellent basis for custom ruleset creation, which could reduce the 

runtime and resource allocation further due to the reduced number of checks taking place 

during the verification run. 

5.3 Server resource utilization 

In the company, these tools are run in a centralized server environment, which means 

that the computation servers pass any excess resources to another user who might need 

them. System memory and disk space along with computation power are finite 

resources. Using them sparingly allows the deployed infrastructure to last longer without 

further investments into additional hardware. Lower runtimes could potentially also 

reduce licence usage. In the following Table 7, the recorded disk usage from the tool 
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installations can be seen. Also, system memory allocation while running the checks or 

the memory consumption when the database has initially been loaded into GUI can be 

observed. 

Table 7: Server resource consumption measured while the tests are running and while the 
resulting database has been opened in the GUI. 

Resource property [MB] 
New 

workflow 
Old 

workflow 

Installation size 7079 25528 
CDC check RAM usage 2212 7681 
CDC DB in GUI, RAM usage 9033 26587 
lint check RAM usage 2181 5025 
lint DB in GUI, RAM usage 10164 13918 

 

The installation of the new tool consumed 7.08 GB of storage space. Because the old 

tool requires 25.5 GB of storage space, this is considered an improvement of 360.6 %. 

However, due to the module-based nature of the deployment, the impact of this 

difference can be considered small, since these modules are installed only once for the 

software to be available to everyone with development access. Therefore, the difference 

will not cumulate as a function of the user base, and the effective financial impact of 

acquiring the differing amounts of storage is limited even for more costly memory types 

[41]. 

We can also observe that the system memory allocation was greatly reduced for the 

already shorter run time, regardless of the test type. CDC runtime memory allocation 

was reduced by 71.2% and GUI allocation by 66.0 %. In lint, the memory footprint 

reduction during the runtime was 56.6 % and in GUI 27.0 %. The combined effect of 

reduced memory allocation and shorter runtimes means that less memory is reserved 

for the check overall, and more resources can be utilized elsewhere on the computation 

servers, which are collectively used by the users. 

The contents have also been compiled into a chart for improved readability in Figure 20. 

A general observation can now be made: The new workflow with the new CDC tool used 

remarkably less server resources in our tests. For the new tool, the “Release” 

methodology goal was used to model a worst-case scenario, as it uses the most rules 

for the verification pass.  
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Figure 20: A comparing bar chart for visualizing the resource allocation for both the software 
suites based on the previous Table 7. 

According to the previous results, it can concluded that the new tool suite consumes 

27.7–73.0 % of the memory reserved by the old workflow depending on the task, which 

in turn could enable running multiple instances in parallel to reach the memory usage of 

the old workflow. This is a possible scenario in such a server deployment. This could 

also improve the sufficiency of computation resources now and in the future. 

5.4 Methodology & Flow 

In Appendix A, the expert emphasized some software features over the others. Even 

though user experience is not quantified in this research, remarks are made on each 

subtopic to cover the table in Appendix A. The following sub-sections of this chapter are 

directly related to the contents of Appendix A within the scope of this research. Some 

aspects of Appendix A were considered out-of-scope for this research, such as dynamic 

CDC, RDC (Reset-Domain Crossing), UPF (Unified Power Format) analysis and FPGA 

library support, as replacing and evaluating the old workflow with the new one is the main 

assignment. 

The new workflow offers multiple levels of methodology, for example IP and SoC levels 

with a different emphasis on quality checking. The chosen DUT determines the 

recommended methodology. The DUT design maturity, on the other hand, determines 

the recommended methodology goal, which helps find root causes of typical errors that 

can be found in a more comprehensive methodology goal later. Therefore, correcting 
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typical root causes first helps correct numerous violations later. This helps with result 

noise control over the design period. This way the user should be exposed to less noise 

overall, which reduces engineering time, verification gap and design costs according to 

Figure 1. 

The CDC verification methodology “identifies errors using structural analysis to 

recognize clock domains, synchronizers, and low-power structures via the Unified Power 

Format (UPF). It generates assertions for protocol verification along with metastability 

models for re-convergence verification. All properties and design intent are inferred by 

the software. 

The technology checks all potential CDC failures, statically verifying that all signals 

crossing asynchronous clock domain boundaries are guarded by CDC synchronizers. It 

then illustrates DUT issues found with familiar schematic and waveform displays.” [4, p. 

166] 

The software documentation was clearly categorized. All necessary information related 

to design quality checking using new tools was found either by categorization or by using 

the available search function. Error messages are logically labelled in the new software 

suite, and each type of error is given an RTL code example in the documentation where 

applicable. Documentation is available in both PDF and HTML formats. Integration with 

current flow was overall simple with the new suite. Both CDC and lint tools were setup 

quickly, once a modular Makefile based design flow with necessary file lists and 

parameters was formed. The tool integration was presented in depth in chapter 3.3. It is 

worth emphasizing that even though no action blocking issues were encountered in 

integration, symbolic file system links used in the project file system were not supported 

right away, so a workaround was developed for that purpose. This was fixed two weeks 

later in a following software patch. 

5.5 Quality of results 

Static CDC and lint were evaluated in this research. In CDC, the DUT is considered clean 

of CDC violations. Should this be the case, the old flow was found to be less noisy. In 

test runs, no waivers were used to disregard any errors in either flow. However, the 

assumption of the DUT having no CDC errors is based on the old flow not observing any 

violations. Therefore, it is possible to find completely undiscovered violations using the 

new workflow, which would have to be verified with the lead designer of the DUT. 

However, such engineering time is not readily available, but the effectiveness of the flow 

noise reduction capabilities was witnessed in Figure 16. If there indeed are no CDC 
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issues in the DUT, then by choosing the “Start” goal it could be concluded that the new 

CDC tool can have less noise than the current verification flow if the goal is picked 

accordingly. For CDC, the company uses the tool default settings for verifying design 

correctness, whereas in lint the company has compiled a customized rule set for the 

purpose. The CDC rules were structured differently between the new and the old flow, 

as some of the checks had different levels of overlap in the violations. There also was 

not a golden rule set for CDC rules unlike for lint in the old tool. For these reasons, the 

direct error comparison is not deemed beneficial on a DUT which is CDC cleaned with 

the old tool. For these reasons, the default rule sets were inspected by analysing error 

categorization and the noise suppression capability of the new tool.   

In lint, the DUT was not free of violations and the list of known errors was available. All 

the known errors were found when every check was enabled. This included checks 

outside the domain of “Ip Release“ coverage, so it can be concluded that the software is 

competent in finding existing lint violations previously found with the old tool with a 

custom ruleset. Of course, having a customized ruleset is always preferable to reduce 

noise and run times, both of which save on engineering time. Noise suppression 

capability by using methodology goals is demonstrated in Figure 19, but violations from 

the old flow were not completely covered in that specific goal alone. Again, figuring out 

the relevancy of every previously uncovered violation requires extensive support from 

the designers, and thus this goal is out of the scope of this research. This is something 

that could be focused on in software integration phase once a possible acquisition 

decision has been made and custom ruleset configuration is on-going. 

Clarity of results was on-par with the old software when it comes to the error messages 

alone. However, with improved status flow and clearer error tags, the new workdlow is 

overall better in this category. The status flow allows the user to append a “Pending” 

violation status list in the main database instead of waiving it or keeping a separate list 

to follow the violation statuses. This is increasingly more useful once the DUT is scaled 

up and error messages increase in frequency. On top of that, the new lint flow offers 

graphic design metrics for displaying the DUT status briefly. This might be more suitable 

for displaying the DUT status for management personnel, who might not be all that 

interested in the technical details of each error. The offered graphic charts display an 

overall “Quality  core” percentage, which has been broken down to different bar charts, 

such as “Nomenclature  tyle” and “RTL Design style”. This is also an improvement over 

the current lint workflow. The actionable information density can be configured with the 

desired methodology and goal. 
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The default synchronization structures were also flagged by the new tool, so a way 

needed to be found to teach the intended functionality to the software. The old workflow 

uses a custom CDC RTL for these synchronizers, as a more elegant solution was 

needed. As mentioned before, the new CDC flow supports TCL-based custom 

synchronizers which proved to be effective, contained within the tool, and neat.  

5.6 Tool integration 

As in the old workflow, the new one also uses a shared GUI between its quality checking 

tools. This can make finding shared GUI elements faster if the user has already used 

another tool with the same GUI. This, however, is already a commonplace feature and 

is available in the old GUI. The same improved status flow was also shared between the 

tools in both the old and new workflows. Also, the compilation between these tools can 

be shared if the “-lint du” flag was set for the compiler of the new flow to enable some 

error checks. For the new flow, compilation was deliberately separated from the checking 

commands to save some time, whereas in the old flow the compilation is always 

completed in each quality check run. File list based project dependencies were originally 

made to support the old tool, but they worked well for the new tool with the modular 

workflow. Therefore, there were no integration issues the digital design flow the new tool.  

5.7 User experience 

It is problematic to objectively measure the user experience overall. However, 

addressing evaluated features and their extent is still covered with a remark. Workflow 

preference is indicated in each section. Overall, the ease of use is on a similar level in 

both tools and there are some similarities between them.  

Ease of setup was simple in the new flow, and no serious issues were experienced in 

that part. The tool was able to notify whether the constraints were descriptive enough or 

not for it with the “ etup” goal. The tool was also able to provide suggestions to improve 

constraints. A report with suggested missing information was created after the “ etup” 

goal was run. Therefore, even though available constraints were unideal to begin with, 

the workflow to improve them was rather straightforward. Clock and reset grouping 

suggestions were also made, but some of the could not be used as is, after a 

specification review with the designer. However, this same functionality was also 

available in the old tool flow. The list of settings containing all the options affecting the 

current database was considered especially helpful for tracing whether setup changes 

took effect. 
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The status flow was perceived as a comparatively more useful feature in the new 

workflow. The customizable statuses with a “Pending” state were considered very 

helpful. This enables keeping track of the interesting issues right in the tool database 

itself instead of writing waivers or keeping another separate violation list with additional 

notes. This could be even more useful if the user contacts the designer about an issue 

and sends a file system path to the database, where the pending violations are already 

emphasized and ready to be analysed. In addition, the other GUI features are also usable 

for the designer instead of the violation message alone with this approach.  

Setup portability between CDC and lint was effortless once the modular tool flow had 

already been created. At that point, setting up the lint tool took about an hour. According 

to the tool support personnel, RDC would also be straightforward to deploy at this point, 

should it be required. It is difficult to assess how portable the old workflow was to setup 

without participating in it but setting up another tool in an hour sets the standard quite 

high on its own. CDC took quite a bit more time as the modular flow needed to be created 

at that point, and custom synchronizers needed to be done.  

Viewing results is straightforward once the database loading command is given in both 

the tools. Alternatively, reports are also generated in the user specified file system path 

for review. However, the violation handling is better in the new flow due to the improved 

status flow. Violations can be sorted by severity, rules, alphabetical order, or module in 

both the tools and filtering, and waiving of violations can be done effortlessly. The new 

tool differentiates itself the most with the lint status visualizations, in which bar graphs 

are compiled to reflect the DUT maturity and error categorization. The new flow offers 

the opportunity to include different features into the report. This rough but effective 

means of customization will help the user match the data reporting. 

Viewing schematic is otherwise considered to be on par with the old flow, but the ability 

to see the clock domains right away by using the cursor is an improvement. Both the 

tools offer the ability to view source code from the schematic, but the new tool allows the 

users to choose whether to see the module itself or an instance based on it. Constraining 

can be done in both the tools, either by editing the constraint file with a preferred editor 

within the file system or by using a GUI. In both tools, GUI arranges the constraint into 

separate text fields with a specific information type, which may reduce the occurrence 

probability of a typographical error. Both the tools have support for incremental reporting 

and the report layout is logical in both instances. If the scope of changes is known, both 

tools allow viewing violations within a certain module to aid in that. Integration between 

CDC steps can be automated to a high degree on both tools, and they support either 
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running more limited single goals, or all of them by extending the Makefile script. 

Dynamic CDC was out of scope for this research, as it was not in use. 

The new tool suite support all required HDL languages: VHDL (VHSIC (Very High Speed 

Integrated Circuit) Hardware Description Language), Verilog and SystemVerilog. New 

constraints used a different data format from the old flow, so a script was used to 

transform the existing constraints for use with the new tool. Incremental analysis support 

was successfully tested in the new lint tool. However, it did not support hierarchical flow, 

which was available in CDC. By default, the old flow supports a wide variety of different 

formats, whereas the new flow allows the user to customize the reports themselves.  

5.8 Support 

The new tool documentation was sufficient in for the user to be able to diagnose and fix 

the presented issues. Search functionality speeds up finding the correct issue and 

documentation is available in HTML and PDF formats. The current verification flow 

requires users to separately download documentation from the installation folder in the 

CAD server. More details about documentation were introduced in section 3.4. 

Customer support was clearly taken seriously by the tool provider. Their support was 

consistently available to even visit the configuration site if necessary. The support was 

not hesitant to contact the tool development team if systematic issues were found or they 

could not answer the presented questions. Initially, the symbolic links used in the project 

file system were not supported as is. After contacting the provider with a demonstration 

of the issue, they replied in two hours after finding the fix and included support for the 

feature in the following software release, which was about 2 weeks later. Later this fix 

was verified to have taken effect. This case demonstrated both excellent customer 

support and issue responsiveness and contacting the provider with an issue required 

minimal overhead.  
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6. CONCLUSIONS 

 

This research encompassed mapping out the most important criteria when choosing a 

lint or CDC software for the evaluation to replace the old verification flow. The benefits 

and drawbacks of using the new lint & CDC workflow for this purpose were measured. 

Background information was researched from literature sources and an inquiry was 

made to gain insight to the theoretical issues behind using these tools and which features 

are considered important. The history of EDA was investigated to justify using EDA tools 

nowadays. Even though these tools offer an important perspective into verification, there 

exist a lot of other tools and additional features that the tool vendors offer to complement 

the EDA tool belts of design organizations.  

In this research, it was concluded that using EDA tools in ASIC development enables 

cheaper error correction earlier in the design flow, which makes EDA tools important in 

today’s competitive ASIC market. By automatization and simplification of design flow, 

more complex errors are caught, and less time is spent on solving human errors. This 

set the financial motivation for this research. Typical causes behind lint and CDC 

verification were also covered. 

Tool requirements were investigated, and the provided alternative tool suite was 

integrated into the company’s ASIC design flow modularly by using shared file lists, 

parameters and Makefiles. Ensuring that specification is accurate and detailed, while 

having plentiful computing resources and a well-integrated design flow kept the results 

consistent, reliable, and representative of the DUT status.  

The following features were inspected additionally with the alternative verification flow: 

Customizable CDC synchronizers, CDC hierarchical flow and lint incremental flow. Also, 

the tools’ ability to conform to the provided functionality chart containing proposed 

functionality was assessed. This is imperative in gaining optimal benefit from the 

generally pricey EDA tools. By recording the software run-times and resource utilization 

on the servers, a presentable impression about the performance against the old static 

verification flow used by the company was formed. The results show that the new 

workflow can reserve less than a third of the storage space and system memory across 

the tests when compared to the old flow. It also completes the assigned task in a similar 

time, or in the best case remarkably faster. The overall resource sparsity and fast run 

times both contribute to superior resource efficiency in the new verification flow. 
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This research finds that by using the new tool flow, the clock-domain crossing verification 

flow is accelerated by over threefold and the lint verification flow by about a quarter, while 

the inspections detect the same number of issues in the code, possibly even more. The 

new tool flow requires under a third of the disk space and system memory compared to 

the old flow. In addition, it is observed that the new software is overall more pleasant to 

use: The software is perceived to be somewhat more challenging to learn, but in return 

it provides more information with which to solve the underlying issues in the code. 

Qualifying and quantifying the reported items and assessing performance on the 

computation servers helped us form a representable impression of the new software 

suite while addressing the company’s needs. The new software was able to discover 

more schemes in both lint and CDC, making for a great starting point for creating a 

custom ruleset to further improve run times and result readability. To control the reporting 

of false errors in the all-inclusive design results, different methodology goals can be used 

to optimize designer time. For the most part, the new CDC flow demonstrated feature 

parity, but the software differentiates itself with better GUI feature contextuality, superior 

performance and resource efficiency. The company should consider adding the tool to 

complement its verification tool belt due to the performance, verification thoroughness 

and more moderate use of computation server resources. 

More research could be done about this subject by using a different software deployment 

over a local system. Additional compliance tests could be done while using a software 

from a different vendor or by extending to RDC (Reset-Domain Crossing) and formal 

testing, or when deploying CDC test plans and CI infrastructure. Complementing result 

data could be gathered while using a different tool for the same purpose. 

Their effects on design flow could be analysed separately. Additionally, more specific 

constraints could be generated and applied to formal verification features, such as 

dynamic CDC or UPF. The scope of this research, however, was to form and measure 

improvements to the old verification workflow with the deployment of an alternative lint & 

CDC. Therefore, these more advanced tools outside the old flow were out-of-scope for 

this research. 

It would also be interesting to observe software performance and GUI responsiveness in 

a local system with a more controlled environment to remove variables from the 

performance testing, such as file access latency over the Internet and dynamic server 

load. Exploring different hardware configurations with varying performance “bottlenecks” 

would also be interesting to observe. In addition, a more comprehensive software 

comparison for a signoff quality DUT would also be interesting for a tape-off ready chip. 
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This would be especially helpful in in-depth noise analysis and ruleset creation. 

Recreating the standard ruleset as accurately as possible could further improve the 

accuracy and run times of the new software suite, which could be interesting to 

investigate as well. Other quality checking tools could also be investigated to get a better 

idea of the EDA market offerings to complement these results. This would also help form 

a more comprehensive insight about the best EDA tool for the company’s needs.  
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APPENDIX A: STRUCTURED FEATURE CHART 

 

 

 

 weight 

 
Methodology & 
Flow 

Comprehensiveness of methodology 5 

 Methodology & flow documentation 4 

 Integration with current flow 3 
    

    

 

Quality of Re-
sults 

Accuracy of results (minimal false violations) 4 

 Static CDC 4 

 Dynamic CDC 4 

 Static RDC 3 

 RDC Protocol 3 

 Lint 4 

 Clarity of results (actionable information density) 4 

 Static CDC 4 

 Dynamic CDC 4 

 Static RDC 3 

 RDC Protocol 3 

 Lint 4 

 CDC path analysis 5 

 Complex synchronization schemes 4 

 Custom synchronization support 3 

 Detailed scheme reporting 4 

 Found all issues found by competitor 5 

 Found new issues not found by competitor 5 

 Constraint verification 5 

 Protocol verification accuracy 5 

 Hierarchical abstraction accuracy 4 

 Multimodal analysis accuracy 4 

 UPF DVFS analysis quality of results 4 

 Information density generated by default rule sets 4 



57 
 

Performance 

Performance (run time) 3 
Memory footprint 2 
Time to analysis complete 
(including post-run application of status flow) 3 

   

User Experi-
ence 

Ease of use 5 
Ease of setup 3 

Accurate clock recognition 5 
Accurate reset recognition 5 
Constraint review & debug  3 
Reset grouping  3 
Clock grouping 3 

Usability of status flow  4 

Dynamic simulation integration (CDC-FX) 3 

Setup portability between Lint, CDC and RDC 4 

Ease of debug 5 
Viewing and filtering of results 4 
Schematic viewing 4 
Schematic links to RTL source code 5 
Ease of adding constraints 3 
Comparison utility for design changes 4 
Integration between CDC steps (i.e. structural, protocol, 

etc.) 4 
Waveform viewing of dynamic results 5 
Coverage viewing of dynamic results 4 

Language support 5 

Constraint support 4 

Incremental/Differential Analysis 4 

Setup & Maintenance of hierarchical flow 4 

Report format diversity 4 
   

Support 

Documentation  5 

Customer Support 5 

Issue responsiveness 5 
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Tool Integration 

Testplan coverage generation 4 

Built-in FPGA library support 1 

Same UI experience across related tools 3 

Common status flow across related tools 3 

Common compiler across related tools 3 
 

 


