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ABSTRACT

Over the past years, thanks to the availability of new technologies and advanced

hardware, the research on artificial intelligence, more specifically machine and deep

learning, has flourished. This newly found interest has led many researchers to start

applying machine and deep learning techniques also in the field of software engineer-

ing, including in the domain of software quality.

In this thesis, we investigate the performance of machine learning models for

the detection of software faults with a threefold purpose. First of all, we aim at

establishing which are the most suitable models to use, secondly we aim at finding

the common issues which prevent commonly used models from performing well in

the detection of software faults. Finally, we propose possible solutions to these issues.

The analysis of the performance of the machine learning models highlighted two

main issues: the unbalanced data, and the time dependency within the data. To

address these issues, we tested multiple techniques: treating the faults as anomalies

and artificially generating more samples for solving the unbalanced data problem; the

use of deep learning models that take into account the history of each data sample to

solve the time dependency issue.

We found that using oversampling techniques to balance the data, and using deep

learning models specific for time series classification substantially improve the detec-

tion of software faults.

The results shed some light on the issues related to machine learning for the

prediction of software faults. These results indicate a need to consider the time

dependency of the data used in software quality, which needs more attention from

researchers. Also, improving the detection performance of software faults could help

the practitioners to improve the quality of their software.

In the future, more advanced deep learning models can be investigated. This

includes the use of other metrics as predictors and the use of more advanced time

series analysis tools for better taking into account the time dependency of the data.
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TIIVISTELMÄ

Viime vuosina tekoälyn ja etenkin kone- ja syväoppimisen tutkimus on menes-

tynyt osittain uusien teknologioiden ja laitteiston kehityksen vuoksi. Tutkimusalan

uudelleen alkanut nousu on saanut monet tutkijat käyttämään kone- ja syväoppimis-

malleja sekä -tekniikoita ohjelmistotuotannon alalla, johon myös ohjelmiston laatu

sisältyy.

Tässä väitöskirjassa tutkitaan ohjelmistovirheiden tunnistukseen tarkoitettujen

koneoppimismallien suorituskykyä kolmelta kannalta. Ensin pyritään määrittämään

parhaiten ongelmaan soveltuvat mallit. Toiseksi käytetyistä malleista etsitään ohjel-

mistovirheiden tunnistusta heikentäviä yhtäläisyyksiä. Lopuksi ehdotetaan mahdol-

lisia ratkaisuja löydettyihin ongelmiin.

Koneoppimismallien suorituskyvyn analysointi paljasti kaksi pääongelmaa: datan

epäsymmetrisyys ja aikariippuvuus. Näiden ratkaisemiseksi testattiin useita teknii-

koita: ohjelmistovirheiden käsittely anomalioina, keinotekoisesti uusien näytteiden

luominen datan epäsymmetrisyyden korjaamiseksi sekä jokaisen näytteen historian

huomioivien syväoppimismallien kokeilu aikariippuvuusongelman ratkaisemiseksi.

Ohjelmistovirheet havaittiin merkittävästi paremmin käyttämällä dataa tasapai-

nottavia ylinäytteistämistekniikoita sekä aikasarjaluokitteluun tarkoitettuja syväop-

pimismalleja. Tulokset tuovat selvyyttä ohjelmistovirheiden ennustamiseen koneop-

pimismenetelmillä liittyviin ongelmiin. Ne osoittavat, että ohjelmistojen laadun tark-

kailussa käytettävän datan aikariippuvuus tulisi ottaa huomioon, mikä vaatii etenkin

tutkijoiden huomiota. Lisäksi ohjelmistovirheiden tarkempi havaitseminen voisi aut-

taa ammatinharjoittajia parantamaan ohjelmistojen laatua.

Tulevaisuudessa tulisi tutkia kehittyneempien syväoppimismallien soveltamista.

Tämä kattaa uusien metriikoiden sisällyttämisen ennustaviin malleihin, sekä kehitty-

neempien ja paremmin datan aikariippuvuuden huomioon ottavien aikasarjatyöka-

lujen hyödyntämisen.
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1 INTRODUCTION

The software quality domain has been deeply investigated in the past decades,

with new metrics and measures introduced and studied since the 60s. Traditionally,

statistical techniques have been used for fault detection and prevention [1]. Although

a conspicuous number of techniques and methodologies have been used for the de-

tection of faults, it is still not clear which are the most suitable for software fault

detection. Over the past years, partially thanks to the availability of new technolo-

gies and advanced hardware, the research on artificial intelligence, more specifically

machine and deep learning, has flourished. These novel advancements in these tech-

niques have found application in the most variety of fields, spanning from computer

vision and image recognition, to data analysis and time series analysis.

As expected, many researchers started to apply machine learning and deep learn-

ing models and techniques also in the field of software engineering. Following this

trend, we decided to investigate which are the techniques best suited for the software

faults detection problem, in order to shed some light on which are the issues linked

to the use of machine learning techniques for the detection of faults, and how these

issues can be addressed.

More recently, in fact, there has been an increase in research interest on how

to apply machine learning models to different aspects of software quality, for ex-

ample on the detection of code smells [2]–[5], or software vulnerabilities [6]–[10].

Similarly, the interest in how to improve the prediction of faults has increased, for

example, the granularity at which analyzing the software [11] and the type of features

and metrics to calculate and take into account[12]–[14].

Besides the increase of interest in machine learning techniques, there has also been

further interest in the application of more advanced, deep learning models. Multiple

works have in fact started to investigate how deep learning models could benefit the

prediction of software faults, with some initial promising results [15].

Although many works are studying the use of these newer models and techniques
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for the purpose of software quality, there is still no generic answer on what are the

techniques that are proven to correctly predict faults in software. Similarly, there

is no clear answer on what are the issues related to the prediction of faults using

machine and deep learning techniques and how these can be solved. As a matter of

fact, most of the recent research on this topic focuses on trying different approaches

for the analysis of software quality, being these the use of different techniques, or the

use of different metrics.

For this reason, in this thesis, we aim at providing some additional insights on

which models are suitable for the detection of faults, and more specifically what are

the solution to some of the issues related to the use of machine learning models for

software fault detection.

1.1 Goal and Research Questions

The goal of the thesis is to shed some light on the use of machine learning tech-

niques for software fault detection. More specifically we aim at finding what are the

machine learning techniques most suitable for the software faults detection and how

their performance can be improved by solving the issues linked to the detection of

faults. We have in fact seen that although many methodologies have been investi-

gated for detecting software faults, there indeed are some issues that prevent them

from properly detect faults. In this thesis we aim at finding those issues and propose

some viable solutions to improve the software fault detection problem. Following

are the research questions we are trying to answer to.

RQ1 - What machine learning techniques can be adopted for software fault

detection?

The first research question aims at finding a set of machine learning models that

are able to properly predict software faults. Given the multitude of machine learning

models and techniques available today, it becomes increasingly difficult to discrimi-

nate which could bring an added value to the detection of software faults. One way to

solve this is to train and test multiple machine learning models, based on commonly

used underlying techniques (e.g., tree-based, boosting techniques), and verify how

these perform in the fault detection task. By analyzing the performance of multiple

models, we will also be able to discriminate what eventually the issues are and gain

some perspective on how to improve the detection.
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RQ2 - What issues prevent the proper use of machine learning for software

fault detection?

The second research question we are trying to answer to relates to the identifica-

tion of additional issues with fault detection in the case of machine learning models,

related to external causes. By external causes, we mean issues related not to the mod-

els themselves, but mainly to the data available. After answering the first research

question, we are in fact confident as to which machine learning models perform best

for software fault detection. We are also aware though that these results will not be

perfect and that the data plays a huge role in the performance of machine learners.

For this reason, we expected to identify which of these issues are and outline a way

to approach them.

RQ3 - How can the issues linked to fault detection be solved?

The last research question is on finding solutions to the software fault detection

issues found in the previous stages of this research work. For this reason, we will

implement multiple solutions trying to tackle the issues from different angles and

analyze which of the proposed solution better solves the fault detection issues. After

having selected and analyzed suitable solutions, we summarize the finding trying to

answer what is the best combination of techniques to use for software fault detection.

1.2 Thesis Contribution

The research that brought to this thesis involved multiple areas of software qual-

ity, and multiple techniques from the field of machine and deep learning. More

specifically, this thesis contributes to increasing the research body on the use of ma-

chine and deep learning models for the prediction of software faults, with a minor

contribution also to the detection of software vulnerabilities.

In this thesis work, in fact, besides defining what are the issues to take into account

when using machine and deep learning models, we also thoroughly investigate some

of the solutions that could be adopted, finding what are the ones that better improve

the detection of the faults.
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1.3 Thesis Structure

The remainder of this thesis is structured as follows. In Chapter 2, we present

the background of the concept and techniques analyzed throughout the thesis, in-

cluding the review of the state-of-the-art in the field of software fault detection, and

the application of machine learning. In Chapter 3, we illustrate the methodology

and rationale behind the multiple steps that led this work from the first analysis of

the machine learning application to software fault prediction to the study and use

of more complex techniques to tackle the problems linked with the fault detection.

Chapter 4 describes the results obtained in the study of machine learning for soft-

ware fault detection. These results are then thoroughly discussed and linked to the

research questions in Chapter 5. Finally, Chapter 6 concludes the thesis. Besides

these chapters, the peer-reviewed works that form the backbone of this work are

reprinted and attached at the end of this thesis.
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2 BACKGROUND AND RELATED WORKS

In this chapter, we will explore a detailed background of the concepts studied

during this thesis work, alongside relevant literature already available on the topic

and that has served as the basis for this work. More specifically, in Section 2.1 we

will provide a definition of software quality and how it can be measured. We will also

introduce the background of the research in the field of software faults prediction and

software vulnerability prediction, in order to provide insights on what has already

been studied. In Section 2.2, on the other hand, we will describe more in detail the

techniques used throughout this thesis.

2.1 Software Quality

According to the ISO25010 quality model, a system quality is the "degree to which

the system satisfies the stated and implied needs of its various stakeholders, and thus pro-

vides value" [16]. The quality of the software is related to both its static and dynamic

properties, and it is divided according to the categorization in Figure 2.1. During

this thesis, I mainly focused on the subcategories of Software Reliability and Software

Security. More specifically, the focus was put on the detection of software faults.

A fault is defined as an abnormal condition, which causes the software to not

performed as intended. A fault causes the software to perform unreliably. It is

important to distinguish a fault from a defect. The latter is usually intended for

something unexpected found after the software goes into production, deviating from

the requirements. A fault is commonly used interchangeably with the term bug, even

though this usually refers to any error in the software which can result in a failure.

2.1.1 Software Reliability

By reliability, it is indicated the ability of a system to perform specified functions

under specified conditions for a specified amount of time. For a software to be
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Figure 2.1 ISO25010 Software product quality categorization
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reliable, it is essential to minimize the number of faults occurring, and in case it is

not possible, to predict the fault in order to solve potential future problems.

Software fault prediction has been profoundly investigated in the past years, with

many researchers focusing mainly on the improvement of the granularity of the [11],

for instance, method or file [17]–[20], on the inclusion of features, e.g., code re-

view [12], change context [21], as well as on the application of machine and deep

learning techniques [22], [23].

In more recent years, the research shifted towards investigating principally the

analysis of shorter-term defects as this fits, in fact, better the developers’ needs [24].

Also, developers can immediately spot defects in the code by using short-term ap-

proaches [25].

A significant advancement in the research of just-in-time defect prediction is given

by the works of Kamei et al. [26], [27]. In these works, the authors proposed a just-

in-time prediction model that is able to predict if a change would lead to a defect.

The aim of this is to reduce the effort needed from the developers and reviewers.

Notably, they used a logistic regression model, which takes into account multiple

change measures (e.g., diffusion, size, and purpose), and obtained an accuracy of

∼ 68% and a recall of ∼ 64%. Pascarella et al. [11], more recently, complemented the

results filtering only the files which are defect-prone and not the whole commit. This

reduction in granularity could be justified since 42% of defective commits included

both files that are changed without the introduction of defects and files that are

changed introducing defects. Further results showed that almost 43% of the files

that were changed introduced a defect, while the remaining were defect-free.

2.1.1.1 Important features for fault prediction

Regarding the factors used to predict bug-inducing changes, some researchers

adopted change-based metrics [12], which include size [13], history of a change, the

experience of the developer [13], or churn metrics [14]. A further study included

the code review metrics as predictive feature [12]. Among the aspects investigated,

one which is noteworthy is the decreasing effort needed for the diagnoses of a de-

fect [11]. Many other software properties were included by the researcher, as for ex-

ample structural properties [28], [29], historical properties [30], [31], and alternative

metrics [32]–[34]. Among the factors considered to detail the software properties,

the product and process metrics are among the most promising [33].
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Other factors included are static analysis warnings [35], [36]. These were used

to build just-in-time defect prediction models. The results of these works showed

that the warnings could indeed improve the models’ accuracy [35]. Also, among

the results, it was shown that code metrics, as well as static analysis warnings, are

correlated with bugs. Hence they both can improve the prediction accuracy [36].

Regarding the type of models adopted, most of them are supervised [37]–[39]

and unsupervised models [40], [41]. These models take into account features like

product (e.g., CK metrics [29]) or process metrics (e.g., entropy of the development

process [42]).

2.1.1.2 Machine learning for software reliability

Machine learning models have been used to investigate fault prediction. The focus

was on the role of the features (e.g., change size or changes history), which are used

to represent a code change. These were used as predictors [11], [13], [43].

Machine learning models were also extensively applied in the detection of tech-

nical issues in the code, as in the case of code smells [2]–[5]. Although machine

learning techniques have been used for the detection and classification of different

code smell types [44], [45], few studies used machine learning techniques to examine

static analysis tool rules, like SonarQube [23], [46], [47] or PMD [48].

Regarding defect prediction, Yang et al. [49] proposed a novel approach TLEL

based on an ensemble learning technique. A bagging classifier was used in the inner

layer as a basis for a Random Forest in the outer layer.

Other machine learning models were used to detect different type of code smell [2],

evaluate their harmfulness [2], define their intensity [50], and classify them based on

their perceived criticality [4]. Also, machine learning techniques were successfully

used to classify code smells using different software metrics [51].

Among the factors that could influence the accuracy of machine learning models,

we find the selection of training data [3]. The code smells in a dataset represent is,

in fact, the minority class, with very few samples [52].

2.1.1.3 Static analysis tools for software faults detection

Concerning static analysis tool rules detection, SonarQube was the most investi-

gated tool, with multiple works that focused on the link between the presence of its
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rules and the fault-proneness [23], [46] or the change-proneness [47].

In all these cases, machine learning techniques were applied, and the results showed

that 20% of faults would have been avoidable if the SonarQube-related issues had

been solved [46]. Another interesting finding was that the real harmfulness of the

SonarQube rules is low [23]. Other positive results were found on the application

of SonarQube regarding the class change-proneness [47].

Machine learning models were also used to specify whether the SonarQube tech-

nical debt could be predicted using software metrics [53]. The results showed the

impossibility of having valuable predictions. Another point of view that has bene-

fited from the use of machine learning was the evaluation of the remediation effort

calculated by SonarQube [54], [55]. The results of these works highlighted that the

models overestimated the time needed to fix the Technical Debt-related issues.

2.1.1.4 Deep Learning for Software Reliability

One of the techniques that have become increasingly studied in the last years is

Deep Learning. This has become popular in many domains [56] including computer

vision [57] and natural language processing [58]. Also in software engineering, many

works have recently adopted deep learning techniques [59]–[63]. Thanks to the

promising results, Deep Learning models could be an exciting approach in software

faults prediction. It could, in fact, improve the performance of just-in-time defect

prediction.

The author in [15], for example, used deep learning to improve the logistic regres-

sion weaknesses when combining features to generate new ones. They considered

14 traditional change level features in order to predict bugs.

Many works are still investigating whether deep learning models could have bet-

ter performance compared to machine learning models, in the task of just-in-time

fault prediction [15], [64]–[66]. These studies showed promising results in the bug

prediction accuracy compared with other approaches (32.22% increased in the num-

ber of bugs detected) [15]. The benefits could be seen especially for small datasets and

in the feature selection [64]. Also, the prediction of the presence of bugs in classes

from static source code metrics [65] benefitted from the use of deep learning.

Among the deep learning architecture used, some of the most adopted are the

Long Short Term Memory (LSTM) [67], the Convolutional Neural Network (CNN)

[68] and the Deep Belief Network [66].
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2.1.2 Software Security

Besides the application of predictive models for software fault detection, also in

the field of software security there has been a number of research work investigat-

ing the use of models for predicting software vulnerabilities. These works mainly

focused on the identification of the best metrics and features to use for establishing

the presence of vulnerabilities.

Many of the works involved the use of either structural metrics [29], or product

metrics calculated on the source code(e.g., Lines of Code). Notably, metrics indi-

cating complexity(e.g., Cyclomatic Complexity [69]) received particular attention.

Shin et al. [6], [70], [71], regarding MOZILLA FIREFOX, demonstrated a strong posi-

tive correlation between the proneness to the vulnerabilities of a file, and the number

of decisions present. Specifically, the prediction models—built using as predictors

the complexity metrics—achieved greater precision when the predictions were re-

stricted only to the most vulnerable files, suggesting that when the files are subject

to many vulnerabilities, they have high complexity values. This result was also con-

firmed in other studies [10], [72]–[74]. Similarly, other studies demonstrated that

the vulnerabilities are positively correlated with coupling and negatively correlated

with cohesion metrics. This confirmed that code with poor quality, raises the risk

of flaws introduction [72]. Neuhaus et al. [75] found a positive correlation between

the vulnerabilities in C functions and the number of imports. This suggested that

they could be useful in a vulnerability prediction model. To confirm this, they used

a Support Vector Machine (SVM), trained on the number of past vulnerabilities on

the imported C files in the context of MOZILLA FIREFOX. This approach led to a

precision of 70%, reducing the recall to 45%. Nguyen and Tran [76], extracted a

set of metrics from the Component Dependency Graphs (CDG) for the prediction

of vulnerabilities in files written in C++ in JS ENGINE of FIREFOX. This led to im-

proving the recall and overall accuracy when compared to other models built using

only complexity metrics. Scandariato et al. [77] used a bag-of-words method [78],

[79] for the extraction of the most frequent terms (i.e., words), being the first to

investigate textural features. The bag-of-word was extracted from JAVA files and it

was used for predicting vulnerabilities on 20 ANDROID apps. This approach showed

a high prediction performance for within-projects (i.e., the predictions were made

on files belonging to the same projects used for the training of the model), but did
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not succeed for cross-project analysis (i.e., the prediction is made on files belonging

to projects which were excluded from the training). This was further confirmed by

Walden et al. [74]. Zhang et al. [9] further combined product metrics with the bag-

of-words method. This allowed them to achieve a better F-measure compared to the

prediction models used in [74]. Zimmermann et al. [73] considered yet other infor-

mation, namely how vulnerabilities in WINDOWS VISTA are related to code churn

(i.e., the rate of changes applied to binaries) and organizational metrics (e.g., the

number of developers). This resulted in high precision but lower recall, similarly to

the findings of further studies [6], [7], [10], [15]. Smith and Williams [80] tested two

prediction models WORDPRESS and WAKKAWIKI, using as predictors the warnings

of possible SQL Injections. They found a positive correlation existing with many

vulnerability types. Theisen and Williams [81] put together all the findings above in

their study, which allowed them to identify the models using a combination of the

metrics to be the best performing.

Regarding the selection of the models to use for vulnerability detection, a set of

different machine learning models have been used, namely NAïVE BAYES [6], [8],

[9], [76], [77], [81], SUPPORT VECTOR MACHINES (SVM) [7], [8], [73], [75]–[77],

[82], DECISION TREES [6], [9], [10], [77], [81], and RANDOM FORESTS [6], [8]–

[10], [74], [77], [81]. Among these, RANDOM FORESTS reached higher precision

in multiple contexts. On the other hand, NAïVE BAYES achieved the highest recall

values (fewer false negative rate). Similar models have been used in similar tasks, like

exploitability [83] and defect prediction [71], [84].

Many of the studies presented focused on the prediction of vulnerabilities at the

source code file level [6], [9], [10], [70], [72], [74], [76], [77], [80]. The prediction

models, therefore, suggest if a specific file is vulnerable or not. In these cases, the

effort of the developers can be invested in the inspection and testing of the vulnerable

files. A similar concept is applied for prediction models focusing on binary files [8],

[73], [81], [82]. These use machine code produced by a compiler. Sultana et al. [85]

described a predicition model that works on JAVA, while Neuhaus et al. [75] devel-

oped a tool named VULTURE, that predicts the vulnerabilities on C/C++ functions.

Perl et al. [7] showed a method that allows obtaining the commit that contributed to

the vulnerability using 66 C/C++ open-source projects. For this task, they relied on

the git blame command to find the commits that last modified the lines deleted in a

commit that fixed a known vulnerability. The most blamed commits were therefore
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labeled as a vulnerability-contributing commits. Finally, a Support Vector Machine

model was used on the dataset, achieving greater accuracy than equivalent static anal-

ysis tools.

2.1.3 Static Analysis

Static analysis indicates the analysis of software performed without executing the

code. The static analysis of software is usually performed using automatic tools,

which allow us to detect potential source code quality issues. Among the most

adopted static analysis tools, we find Sonarqube, Checkstyle, Findbugs, and PMD.

In this thesis and the related cases studied, we focused our attention on SonarQube,

which is among the most commonly adopted open-source static code analysis tools

both in academia [1], [86] and in industry [87]. SonarQube can be used either via

the online sonarcloud.io platform or as a local execution on a private server.

Among the capabilities of SonarQube, we found the ability to calculate multiple

metrics, like the code complexity and the number of lines of code. It also verifies

the compliance of the code with respect to a specific set of “coding rules”, which are

defined for most of the common development languages. When a coding rule is vio-

lated by the source code, or when a rule exceeds a predefined threshold, SonarQube

records an “issue”. Among the rules included in Sonarqube, we find Reliability,

Maintainability, and Security rules.

Reliability rules called “bugs” in SonarQube, generate issues (code violations) that

“represent something wrong in the code” which will likely be reflected in a bug. We

also find “Code smells”, defined as “maintainability-related issues” which decrease

the readability of the code and its modifiability. It is important to note that the

“code smells” defined in SonarQube do not represent the more commonly known

code smells defined by Fowler et al. [88]. They represent in fact a separate set of

rules. More specifically, Fowler et al. [88] consider code smells as “surface indication

that usually corresponds to a deeper problem in the system” as they can indicate

different problems (e.g., bugs, maintenance effort, and code readability). The code

smells defined by SonarQube, on the other hand, only refer to maintenance issues.

Also, only 4 out of the 22 smells proposed by Fowler et al. are considered in the

“Code Smells” rules by SonarQube (Duplicated Code, Long Method, Large Class,

and Long Parameter List). It is also important to notice that SonarQube classifies

the rules into five severity levels: Blocker, Critical, Major, Minor, and Info.
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2.1.4 Software Metrics

In order to analyze a software and assess its reliability and security, it is necessary

to record some measurements. These measures can be used to evaluate the overall

quality of software and how new tools and methods affect it. In general, the metrics

that can be collected for the assessment of the quality of the software can be either

related to the process of the software or related to the product itself. More specifically,

process metrics are the ones that allow us to evaluate the development process. On the

other hand, product metrics are the metrics used to quantify the internal attributes

of a software. According to the book Software Engineering [89], product metrics

can be either dynamic or static. The first can be used to measure the efficiency and

reliability of the system. The second ones can be used to measure the "complexity,

understandability, and maintainability" of the software. In this thesis, we have used a

different set of metrics as variables used to predict software faults. More specifically,

we used the metrics calculated by SonarQube shown in Table 2.1, the product and

process metrics showed in Table 2.3, and the metrics proposed by Rahman et al. [90]

and Kamei et al. [26] showed in Table 2.2.
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Table 2.1 SonarQube Software Metrics (PUBLICATION VI)

Metric Description

Size

NC Number of classes (including nested classes, interfaces, enums and annotations).

NF Number of files.

LL Number of physical lines (number of carriage returns).

NCLOC Also known as Effective Lines of Code (eLOC). Number of physical lines that

contain at least one character which is neither a whitespace nor a tabulation nor

part of a comment.

NCI Number of Java classes and Java interfaces

MPI Missing package-info.java file (used to generate package-level documentation)

P Number of packages

STT Number of statements.

NOF Number of functions. Depending on the language, a function is either a function

or a method or a paragraph.

NOC Number of lines containing either comment or commented-out code. Non-

significant comment lines (empty comment lines, comment lines containing only

special characters, etc.) do not increase the number of comment lines.”

NOCD Density of comment lines = Comment lines / (Lines of code + Comment lines)

* 100

Complexity

COM It is the Cyclomatic Complexity calculated based on the number of paths through

the code. Whenever the control flow of a function splits, the complexity counter

gets incremented by one. Each function has a minimum complexity of 1. This

calculation varies slightly by language because keywords and functionalities do.

CCOM Complexity average by class

FC Complexity average by method

COGC How hard it is to understand the code’s control flow.

PDC Number of package dependency cycles

Test coverage

COV It is a mix of Line coverage and Condition coverage. Its goal is to provide an

even more accurate answer to the following question: How much of the source

code has been covered by the unit tests?

LTC Number of lines of code which could be covered by unit tests (for example, blank

lines or full comments lines are not considered as lines to cover).

LC On a given line of code, Line coverage simply answers the following question:

Has this line of code been executed during the execution of the unit tests?

UL Number of lines of code which are not covered by unit tests.

Duplication

DL Number of lines involved in duplications

DB Number of duplicated blocks of lines.

DF Number of files involved in duplications.

DLD = (duplicated lines ÷ lines) * 100
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Table 2.2 Rahman [90] and Kamei [26] Software Metrics (PUBLICATION VI)

Metric Description

R
ah

m
an

et
al

.
[9

0
]

COMM The cumulative number of changes.

ADEV The cumulative number of active developers.

DDEV The cumulative number of distinct developers .

ADD The normalized number of lines of code added.

DEL The normalized number of lines of code removed.

OWN The value indicating whether the owner of the file does the commit.

MINOR The number of contributors who contributed less than 5% .

SCTR The number of packages modified by the committer.

NADEV The number of active developers who changed any of the files in-

volved in the commits where the given file has been modified.

NDDEV The number of distinct developers who changed any of the files in-

volved in the commits where the given file has been modified.

NCOMM The number of commits where the given file has been involved.

NSCTR The number of different packages touched by the developer.

OEXP The percentage of code lines authored by a given developer in the

whole project.

EXP The mean of the experience of all developers across the whole

project.

K
am

ei
et

al
.

[2
6
]

ND The number of directories involved.

ENTROPY The distribution of the modified code across each given file.

LA Ten number of lines of code added to the given file (absolute number

of the ADD metric).

LD The number of lines of code removed from the given file (absolute

number of the DEL metric).

LT The number of lines of code in the given file in the considered com-

mit before the change.

AGE The average time span between the last and the current change.

NUC The number of times the file has been modified alone up to consid-

ered commit.

CEXP The number of commits performed on the given file by the commit-

ter up to the considered commit.

REXP The number of commits performed on the given file by the commit-

ter in the last month.

SEXP The number of commits performed by a given developer in the con-

sidered package that contains the given file.
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Table 2.3 Product and Process Software Metrics (PUBLICATION II)

Metric Description

Added Lines Number of lines added

Deleted Lines Number of lines removed

Added Methods Number of added functions/methods

Deleted Methods Number of deleted functions/methods

Modified Methods Number of modified functions/methods

Added Conditions Number of added conditional expressions

Removed Conditions Number of removed conditional expressions

Added Method Calls The number of added function or method call in the commit.

Removed Method Calls Number of removed function or method call

Added Assignments Number of added assignments

Removed Assignments Number of removed assignments

Mean Days Since Creation Mean number of days from the creation of each modified file

Mean of Past Changes Mean number of previous changes

Past Different Authors Number of distinct authors that modified the files.

Author Past Contributions Number of commits done by the author

Author Past Contributions Ratio Author Past Contributions divided by the total number of com-

mits made

Author 30-days Past Contributions Number of commits done by the author in past 30 days

Author 30-days Past Contributions Ratio Author 30-days Past Contributions divided by the total number

of commits made 30 days before the commit date

Author Workload Amount of work that an author has invested in a 30-days time

window

Days After Creation Number of days from the project’s repository creation

Fix If the goal of the commit was fix an issue or a defect

Touched Files Number of files modified in the commit

Entropy of Changes Distribution of changes across each modified file

Number of Hunks Number of continuous blocks of changes

LOC Lines of Code, including comment lines

SLOC Source Lines of Cod (LOC excluding comment)

WMC Weighted Methods per Class

CBO Coupling Between Object

RFC Response For a Class, i.e., the number of methods that can

potentially be called by other classes

DIT Depth of Inheritance

NOC Number of Children

LCOM1 Lack of Cohesion of Methods version 1

LCOM2 Lack of Cohesion of Methods version 2

Files Term(s) Frequency The count of each word appearing in the modified JAVA files

Patches Term(s) Frequency Number of times in which the words appearing in the patches

were changed (added or removed)
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2.2 Techniques

In this section we introduce the techniques used for this thesis work, introducing

the background of the machine and deep learning models used, alongside the other

statistical analysis tools.

2.2.1 Machine Learning

In this section, we will describe the Machine Learning techniques adopted in this

work and the motivations for adopting them. Since in this thesis work we are trying

to detect faults in software, all the models used are specifically made for classification.

For this purpose, we compared multiple machine learning models throughout this

work. Among these, we used a generalized linear model: Logistic Regression [91],

tree based classifier: Decision Tree [92], ensemble classifiers: Bagging [93], Random

Forest [94], Extremely Randomized Trees [95], AdaBoost [96], Gradient Boosting

[97] and XGBoost [98], an optimized implementation of Gradient Boosting. We

also include classical models like SUPPORT VECTOR MACHINE (SVM) [99], and KN-

EARESTNEIGHBORS (KNN) [100].

The use of multiple machine learning models is justified by the fact that each

of these models has different performances despite the data is identical. Besides the

difference in underlying techniques, this is also due to their bias and variance. The

bias represents the attention given by the model to the training data - the higher

the bias, the less the attention. The variance, on the other hand, does the opposite

- a higher variance corresponds to greater attention to the training data, which in

turn results in the model overfitting the data. This leads to poor generalization

capabilities. For this reason, to find what is a suitable model for the detection of

software faults, we need to analyze the performance of multiple models to find the

best trade-off between bias and variance [101].

Following is an in-depth description of the machine learning models used.

Logistic Regression This is one of the simplest models in Machine Learning.

Compared to linear regression, which gives as output a numerical value, the Lo-

gistic Regression is used to predict the category in which a sample belongs. More

specifically, a binary Logistic Regression model calculates what is the probability of

a data sample belonging to either of the two classes (0 or 1). This is done by using
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independent variables. Once the probabilities are known, these are used to specify

which is the class to which the data sample is more likely to belong. Simlarly to

the other linear classifiers, Logistic Regression projects the P-dimensional input x

into a scalar using the dot product of the learned weight vector w and the input

sample: w · x + w0, where w0 ∈ R is the intercept. To have a result interpretable as

a class membership probability—a number between 0 and 1— the projected scalar

is passed by the Logistic Regression through the logistic function (sigmoid). The

sigmoid function returns an output value between 0 and 1, for any given input x .

The logistic function is defined as

σ (x) = 1

1 + e−x
.

Finally, the class probability of a sample x ∈ RP is modeled as

Pr(c = 1 | x) = 1

1 + e−(w·x+w0) .

The Logistic Regression is trained using the maximum likelihood: the model’s pa-

rameters are estimated in a way that maximizes the likelihood of observing the inputs

with respect to the parameters w and w0. We chose to use this model as a baseline

due to its simplicity and its easy implementation: by requiring few computational

resources, it is easy to implement and fast to train. Moreover, it doesn’t need the

inputs to be scaled nor it needs to be tuned.

SUPPORT VECTOR MACHINE (SVM). This is a statistical model that constructs

the best hyper-plane out of the infinite possibilities in a N -dimensional space—with

N being the number of features. The best hyper-plane is capable of distinctly sep-

arating the data points, having the maximum margin (namely, the largest distance

found to the nearest training data points of any class).

KNEARESTNEIGHBORS(KNN). This is a non-parametric technique that classifies

the samples using the dataset alone (i.e., without building a model). The classification

is made as a majority vote, i.e., based on the class of the majority of its k nearest

neighbors data points.

Decision Tree. One of the most frequently used models in Machine Learning is a

Decision Tree classifier. The tree structure is characterized by multiple nodes: the root

node and the internal nodes, which represent the inputs, and a series of leaves, which

correspond to the outputs. All these nodes are connected via branches. A specific
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path through the branches leads to an output. More specifically, given the input in

the root node, this is elaborated and passed to the following nodes via the branches

following an if-then-else diagram. The process is iterated for all the inputs until the

leaves of the tree, representing the output. To create the best structure, we used

the GINI impurity. It calculates how many inputs would be misclassified if assigned

to a random class. This algorithm has a higher computational efficiency than, for

example, information gain. This, together with the simplicity of the decision tree

model, allowed us to have an easy-to-use classifier.

Random Forest. One of the problems that affect Decision trees models, is their

tendency to overfit. This is due to the fact that they cannot properly generalize the

data. For this reason, among the models tested we included the Random Forest. This

is an ensemble model, which uses a set of weak classifiers to solve the assigned task.

The week classifiers used in this case are decision trees. Each of the decision trees

is trained on a separate subset of the data and, in order to reduce the correlation

between the trees, a subset of the features of each sample is used. A sample can be

used in multiple decision trees. Using a subset of the features is particularly useful in

cases where many features are available, as the risk of them being correlated increases.

The classification result given by the decision trees is then averaged to obtain a single

output.

Bagging. Similar to the Random Forest, the Bagging classifier relies on an arbi-

trary number of decision trees. These are built using samples belonging to a subset

of the original dataset. Compared to the Random Forest classifier, the split point is

decided differently. While for the Random Forest the decision trees are split based

on a random subset of the variables, in the Bagging algorithm the full set of vari-

ables is considered, and a split is made in a way to minimize the error. This leads to

structural similarities between the trees, which in turn does not solve the overfitting

issues of the individual decision trees. The inclusion of this model was due to a allow

better comparison with newer and more performing models.

Extremely Randomized Trees. This model adds another layer of randomization

to the Random Forest. The Extremely Randomized Trees (ExtraTrees) model, in fact,

randomizes the optimal split in each node, besides randomly splitting the data for

each of the individual trees. For this reason, the splitting rule is decided based on

the best split obtained. While the generalization capabilities are higher, this model

allow also for faster computation compared to the Random Forest.-
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AdaBoost. Among the ensemble algorithms used, we also included the ones on

boosting. Among models we found AdaBoost. This generates individual decision

trees sequentially. Moreover, each sample of the training data gets assigned a weight,

which is updated during the training. After creating the first tree, the algorithm

assigns a higher weight to the misclassified samples and creates another decision tree.

The generation of the decision trees, as well as the adjusting of the weights, continues

until the model can no longer improve its accuracy.

Gradient Boosting. Similarly to AdaBoost, we also included theGradient Boost-

ing algorithm. Compared to AdaBoost, the trees are grown one at a time in a way

that minimizes the loss. This process continues until the loss function can no longer

be improved.

XGBoost. The downside of the Gradient Boost model is its computational inef-

ficiency. To address this we also considered XGBoost, which is a better-performing

implementation of the Gradient Boosting algorithm. It allows in fact for faster com-

putation and easier parallelization. Therefore, the algorithm performs better and can

be easily scaled to bigger datasets.

2.2.2 Deep Learning

Although machine learning models seem to become progressively better at solving

the multiple tasks for which they are employed, they still suffer from the structural

limitation that can’t be easily overcome. More specifically, machine learning models

see a degradation in their performances when dealing with very large datasets (high

number of samples) and with high dimensional data (high number of features). These

problems can be overcome by employing deep learning models. These, thanks to

their deep structure, can learn finer details from a large amount of data that allows

to better deal with the multitude of information available.

For the purpose of this thesis work, we focused our attention on deep learn-

ing models for time series classification. Our data depends, in fact, on the time

(i.e., a commit likely depends on the previous commits). For this reason we used

two deep neural networks, based on 1-dimensional convolutional neural networks

(1D-CNN), the FULLY CONVOLUTIONAL NETWORK (FCN) [102] and RESIDUAL

NETWORK (ResNet) [102]. These two specific models have proven to be among the

best performing models in the tasks of time series classification[103]. They have also
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proven to be the best performing our previous work on the classification of time

series data for autonomous surface recognition [104].

Following is a more specific description of the models adopted:

Residual Network. The first deep learning model used is a residual network

(ResNet) [102]. Among the many different types of ResNet developed, the one

we used is composed of 11 layers, of which nine are convolutional. Between the

convolutional layers, it has some shortcut connection which allows the network to

learn the residual [105]. In this way, the network can be trained more efficiently, as

there is a direct flow of the gradient through the connections. Also, the connections

help in reducing the vanishing gradient effect, which prevents deeper neural networks

from training correctly. In this work, we employed the ResNet shown in [103]. It

consists of three residual blocks, each composed of three 1-dimensional convolutional

layers alternated to pooling layers, and their output is added to the input of the

residual block. The last residual block is followed by a global average pooling (GAP)

layer [106] in place of the fully connected layer. The GAP layer recognizes the

features maps of the convolutional layers as a category confidence map. Also, the

GAP reduces the number of parameters to be trained in the network, making it

more lightweight and reducing the risk of overfitting, when compared to the fully

connected layer.

Fully Convolutional Neural Network. The second method used is a fully con-

volutional neural network (FCN) [102]. Compared to the ResNet, this network

does not present any pooling layer, which keeps the dimension of the time series

unchanged throughout the convolutions. As for the ResNet, after the convolutions,

the features are passed to a global average pooling (GAP) layer. The FCN architec-

ture was originally proposed for semantic segmentation [107]. Its name derives from

the fact that the last layer of this network is another convolutional layer instead of

a classical fully connected layer. In this work, we used the architecture proposed

by Wang et al. [102], which uses the original FCN as a feature extractor, and a

softmax layer to predict the labels. More specifically, the FCN used in this work

is adopted from [103]. This implementation consists of three convolutional blocks,

each composed of a 1-dimensional convolutional layer and by a batch normalization

layer [108]. It uses a rectified linear unit (ReLU) [109] activation function. The

output of the last convolutional block is fed to the GAP layer, fully connected to

a traditional softmax for the time series classification. This model has proven to be
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on par with the state-of-the-art models in time series classification in previous works

on time series classification [102]. Moreover, it is smaller than the ResNet, which

would make the FCN model more computationally efficient.

2.2.3 Time Series

While working on this thesis, we realized that many of the problems we were

facing with the data could be partially due to the time dependency of the data

(PUBLICATION V). If we consider for example commit data, each commit will de-

pend on the commits before. If this is not taken into account, we could lose precious

information. For this reason, the commit data could actually be considered as time

series data. More generally speaking, a time series assumes that the current state of a

system depends on the states of the last n time points (this n is often called the lag),

and tries to understand this dependency [110]. This is also true in SE; specifically, if

we talk about data from version control systems (e.g., commit information). Each

commit, in fact, depends at least on the previous status of the system, and there-

fore on the previous commits. It might also be the case in which a commit depends

on other external factors, which therefore need to be analyzed further (multivariate

analysis).

The analysis of this dependency from timed data has important applications in

different domains; most notably in finance [111], [112] and weather analysis [113],

where the goal is to forecast [114] the future behavior of a variable based on its previ-

ous performance (and that of other relevant variables). The fundamental technique

used in these domains is statistical time series analysis: robust statistical methods de-

signed for describing time dependencies accurately, considering also the presence of

noise and natural variations.

One of the most important concepts in time series analysis methods is the sta-

tionarity of the data. Stationarity indicates that the statistical properties of the time

series, like its mean and variance, are the same regardless of the time of observation.

This makes the series more predictable. For example, series which constantly grow

or have a seasonal behavior are not stationary. When the data is non-stationary, it is

often possible to remove trends (and regain stationarity) by differencing [115]. Data

stationarity can usually be verified using statistical tests likeAugmented Dickey-Fuller

(ADF) [116], [117], or Phillips-Perron test [118].

Another useful concept is the one of autocorrelation, which presents the correla-
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tion between a variable at time t, i.e. Y (t), and its previous (lagged) value Y (t − k).
As with normal correlation, the value of autocorrelation varies from -1 to 1. In an

autocorrelation plot, the values are visualized for several lag values. Similarly, the

partial autocorrelation also measures the correlation between Y (t) and Y (t − k) but

the effect of the values between Y (t) and Y (t − k) are removed.

2.2.4 Anomaly Detection

Among the other problems found during the work that brought to this thesis,

we could find the unbalanced data problem. This is due to the fact that faults are (or

should be) a rarity. The issue of unbalanced data often leads to the misclassification

of faulty instances.

As it is described in the book Identification of Outliers ([119]), an anomaly is an

observation that deviates from others in such a significant way that arises suspicion

that it was generated by a different mechanism. Anomaly detection, in short, consists

in finding patterns in data that don’t follow the expected behavior ([120]). Due to the

anomalous data being strictly linked to a specific domain, it is very hard to define in a

unique way what is an anomaly and what it is not: a small deviation from normal can

be something dangerous (body temperature in the medical field) or something totally

normal (fluctuation of the value of a currency in the forex market). For this reason,

the detection of anomalies has been studied in different research areas, and many

techniques have been developed specifically for certain applications. One of the most

classical examples that come to mind is the application of anomaly detection in credit

card fraud: a strange, anomalous, transaction given a history of the transaction, could

indicate that the credit card has been stolen ([121]). Moreover, we could think about

anomalous patterns in data traffic in a computer network, which could mean that

there is a hacking event in progress ([122]). Also, an anomaly in an MRI image could

indicate the presence of a tumor ([123]), or a strange evolution of sensor data from a

spacecraft could indicate a faulty component ([124]). Anomalies can be divided into

three categories:

• point anomalies, where a single instance can be considered anomalous com-

pared to the rest of the data;

• contextual anomalies, when an instance is anomalous in a specific instance

but not otherwise ([125]). These have been specifically studied in time-series
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data ([126], [127]), and in spacial data ([128]);

• collective anomalies, when a collection of data instances is anomalous with re-

spect to the rest of the dataset. This type of anomalies have been particu-

larly studied for sequence data ([129], [130]), graph data ([131]), and spatial

data ([132]).

In order to detect anomalies, we can use models that operate in the following three

modes, based on the availability and type of labels:

• supervised, which assumes that the data has been labeled fully (both normal and

anomalous data). In this case, the model used is a normal classifier. Unfortu-

nately, the anomalous instances are much fewer than the normal data, hence

the dataset is extremely unbalanced. This can cause issues in the training of the

models ([133]). Moreover, it is very difficult to be able to label all the possible

anomaly scenarios for a given problem;

• semisupervised, which assumes that only the normal data has been labeled.

Compared to supervised models, this avoids the problem related to unbal-

anced data, as the model needs to only learn to recognize what is normal. In

the case of spacecraft fault detection ([124]), it would have been quite difficult

to model all the anomaly scenarios. Therefore the typical approach is to build

a model for the normal class, and test it to find anomalies in the test set;

• unsupervised, which does not require any sort of labeled data, therefore making

the models more widely usable. The main assumption for unsupervised models

is that the normal instances are far more frequent than the anomalous ones.

Following is a description of the anomaly detectors that have been used through-

out the works for this thesis.

OneClassSVM (OCSVM) [134]. This method is based on a Support Vector

Machine. Similarly, it learns a frontier that delimits the initial observations. Any

future observation will either lay in the frontier, therefore belonging to the same

class as the original data (normal) or it will fall outside the frontier, being there-

fore classified as new, anomalous data. Unfortunately, OneClassSVM is prone to

overfitting and, perhaps more importantly, the tuning of its hyperparameters can be

challenging [120].

IsolationForest (IF) [135]. This is an ensemble technique based on the Extremely

Randomized Tree model. In particular, it randomly selects a feature and randomly
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selects a split value between the maximum and minimum of the selected feature.

The number of splitting required to isolate a sample equals the path length from

the root to the final node of a tree. Since random partitioning produces noticeably

shorter paths for anomalies, when a forest of random trees produces shorter paths for

particular samples, these are highly likely to be anomalies. By design, this method

can handle high-dimensional data [120].

LocalOutlierFactor (LOF) [136]. This computes the local density of a given

sample compared to its neighbors. The LOF density of observation is given by

the ratio of the average local density of its k-nearest neighbors, and its own local

density. If the density is different than that of their neighbors, it means that the

sample analyzed is an anomaly, else it is considered to be normal.
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3 RESEARCH METHODOLOGY

In this chapter, we present the structure of the thesis work, the rationale behind

the analysis done alongside the data and the techniques used in the work. More

specifically, Section 3.1 shows the structure and the logic of the whole thesis work,

from the initial idea to the development of the research questions and goal achieved.

Section 3.2 describes the data used in the work, more specifically focusing on the

datasets used and the metrics investigated during the studies. Section 3.3 describes the

techniques used in the different steps of the study, including the machine learning and

deep learning models already described in Chapter 2, alongside other data analysis

and preprocessing techniques.

3.1 Research Structure

The purpose of this thesis is that of discussing and provide useful approaches for

detecting software faults utilizing advanced machine learning techniques. To achieve

this goal, we followed the steps presented in Figure 3.1.

MACHINE LEARNING FOR FAULT DETECTION: We first analyzed a set of Machine

Learning models for the detection of faults. In particular, this approach has been used

for the detection of faults at the commit level (PUBLICATION I). Then, we evaluated

the performance of the set of Machine Learning models to select the best performing

ones and to use them for identifying the most informative set of metrics.

While performing the machine learning analysis, we noticed two main issues:

1. UNBALANCED DATA: Software faults are (or should be) a rarity. For this

reason, the data available for software faults are heavily unbalanced. The issue

of unbalanced data often leads to the misclassification of faulty instances as the

Machine Learning classifiers do not have enough data of both types of samples

to properly generalize.
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Figure 3.1 Methodology followed in the thesis

2. TIME DEPENDENCY: The nature of the data is sequential and time dependent,

and therefore it could be appropriate to take into account this dependency in

the analysis, as it can provide additional information. We further investigated

the time dependency of the commits using time series analysis methodologies,

since it should be taken into account (PUBLICATION V).

To address the two aforementioned issues, we took the following steps:

1. Regarding the unbalanced data issue, we tackled the task in two way:

• OVERSAMPLING: We applied oversampling techniques (i.e. SMOTE)

to artificially generate additional samples of the minority class. This ap-

proach was used for vulnerability detection (PUBLICATION II).

• ANOMALYDETECTION: We firstly generated a dataset containing anoma-

lies in a cloud-native system (PUBLICATION III) and tested a basic classi-

fier to gain experience with anomalies and their detection in a traditional

domain. We then brought what we learned on anomalies to the soft-

ware quality domain, and applied some anomaly detection models for

comparing their performances with classical Machine Learning classifiers

(PUBLICATION IV).
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2. On the subject of the time dependency of commit data, we included this in-

formation in our analysis by using Deep Learning classifiers capable of con-

sidering the time dependency and comparing their performances with that of

traditional Machine Learning classifiers (PUBLICATION VI).

3.2 Adopted Data Sources

In this thesis, we mainly focused on the analysis of commit data, and the use

of the information retrieved via static analysis tools regarding the single commits

and the files within it. More specifically, for the majority of the works that sup-

port this thesis, we used the Technical Debt Dataset [137]. This dataset contains

the data from 33 open-source projects sourced from the Apache Software Founda-

tion. All the projects’ commits were analyzed using SonarQube (better described in

Section 2.1.3, which allowed us to have the indication of a set of rules and metrics

which characterize each commit. More specifically, it provides more than 500 rules

for Java based software, and it gives the indication of whether these rules have been

violated or not in the code. Regarding the metrics, the ones provided are linked to

the characteristics of the software. A full list of the metrics provided can be found

in Table 2.1.

Besides the metrics provided by SonarQube, we also calculated additional metrics

based on the implementation by Pascarella et al. [138] for the metrics proposed by

Rahman et al. [90] and Kamei et al. [26]. The details on these metrics can be found

in Table 2.2.

Since we also used data from the National Vulnerability Database (NVD). This

data comprises 9 Java projects. For these projects, we used the commit data alongside

multiple metrics. More specifically we used 24 process metrics, 9 product metrics,

and textual features collected as the frequency of appearance of each word of the

commit message (bag-of-word). A total of 1,446 individual words token were used.

The information on the process and product metrics can be found in Table 2.3.

3.3 Research Techniques

In this section, we discuss the multiple analysis techniques used throughout the

work. Given the multitude of analyses performed for this thesis, and given the differ-
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ent types of data used, we used different analysis techniques for the different steps of

the research work. The common denominator is the use of data analysis techniques

and models from the spectrum of machine learning.

3.3.1 Machine Learning Models

More specifically, we explored particularly machine learning classifiers for the

purpose of categorizing commits data as faulty or vulnerable. Among the specific

techniques used, we focused our attention on classical models like SUPPORT VEC-

TOR MACHINE (SVM), KNEAREST NEIGHBORS (KNN), and tree based classifiers

like DECISION TREE, RANDOM FOREST, EXTREMELY RANDOMIZED TREES. We

also explored more advance models built using boosting techniques like ADABOOST,

GRADIENT BOOST and XGBOOST. All these techniques are thoroughly described in

Section 2.2.1.

3.3.2 Deep Learning Models

Most of these models and techniques were used throughout the whole study and

kept as reference and baseline for comparing other more advanced models. For ex-

ample, we compared the performances of the machine learning classifiers based on

boosting techniques with more advanced deep learning models aimed at classifying

commits considering also the historical data and the time dependency. Among the

variety of deep learning classifiers, we selected the RESIDUAL NETWORK (ResNet)

and a FULLY CONVOLUTIONAL NEURAL NETWORK (FCN). These are based on 1-

dimentional convolutional neural networks (1D-CNN), an architecture that proved

to be among the best performing in time series classification tasks also in our previous

study [104]. These models have been described in Section 2.2.2.

3.3.3 Anomaly Detection Models

Besides normal classifiers, we also explored the use of techniques builds specifi-

cally for detecting rarity in data, or in other words for the detection of anomalies.

The specific techniques used are based on classical machine learning models like the

SVM, the KNN, and the RANDOM FOREST, but focus their scope is to isolate and

detect abnormalities. The models used for this purposed are the ONECLASSSVM
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(OCSVM), LOCAL OUTLIER FACTOR (LOF), and ISOLATION FOREST (IF). More

details on these can be found in Section 2.2.4.

3.3.4 Data Analysis Techniques

In order to use the models and techniques described, we also had to preprocess

the data and make it suitable for the analysis performed. For this purpose, we used

mainly two techniques. The first is meant to remove variables that don’t add addi-

tional information via checking the multicollinearity of the variables. For this we

exploited the VARIABLE INflATION FACTOR (VIF) [139]: it measures how much the

variance of the model increases for each variable. Each variable that has the value of

VIF coefficient > 5 is removed. The second preprocessing technique was used for

solving the problem of unbalanced data. Throughout the thesis work, we noticed

that most of the data used had some serious unbalancing problems, with the minor-

ity class accounting for a very small percentage of the total number of samples (i.e.,

in ?? < 5% of faulty commits). One approach used to solve this issue was the use of

oversampling techniques, which work by generating artificial data belonging to the

minority class, based on the characteristics of the existing samples of the minority

class. Among the multiple oversampling techniques available, we used the Synthetic

Minority Oversampling Technique (SMOTE), as it was shown to produce the best

results in similar contexts [140].

Apart from these techniques, which have been used to preprocess the data, in this

thesis work we also approached other statistical techniques that allowed us to further

inspect the time dependency of the data. For this purpose, we used autocorrelation

and partial autocorrelations. The autocorrelation, calculates the correlation between

a variable at time t, i.e. Y (t), and its previous (lagged) value Y (t−k). As with normal

correlation, the value of autocorrelation varies from -1 to 1. Similarly, the partial

autocorrelation also measures the correlation between Y (t) and Y (t−k) but the effect

of the values between Y (t) and Y (t − k) are removed.
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4 RESULTS

This chapter presents the results obtained throughout the thesis. More specifi-

cally, Section 4.1 shows the results obtained in PUBLICATION I when classifying the

commits as fault-inducing using machine learning, including the issues that arose.

Section 4.2 presents the implementation of the oversampling technique (in PUBLI-

CATION II) and how this helped in overcoming some of the issues found working

with unbalanced data. Section 4.3 provides insight on the use of anomaly detec-

tion problem and how it can be applied for solving the problem linked to the rarity

of faults in the commit data (PUBLICATIONS III and IV). Section 4.4 demonstrates

how the time dependency issue can be solved by treating commit data as time series

(PUBLICATIONS V). Finally, Section 4.5 shows the results obtained by applying vari-

ous of the techniques tested throughout the work, including the use of oversampling

techniques, taking into account the time dependency of the data, and using deep

learning models (PUBLICATIONS VI).

4.1 Machine Learning for Fault Detection
RQ1 - PUBLICATION I

Given the popularity of tools for assessing the quality of software, and in particu-

lar, Static Analysis Tools (SAT), we started approaching our problem by investigat-

ing the accuracy and fault-proneness of SonarQube. SonarQube works by analyzing

the code compliance against a set of predefined rules. When one of the rules is vio-

lated, this gets reported. Among the multiple rules provided by the SAT, a specific

set is identified as "bugs", meaning that they represent something that is not working

as it should in the code and that will soon trigger a fault. From practitioners’ point of

view, in contrast, there are opinions that led us to believe that what SonarQube clas-

sifies as a bug doesn’t always result in an actual fault. This causes their interpretation

to be subjective. For this reason, we performed an analysis using machine learning
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classifiers in order to understand whether the information on the SonarQube rule

violated (SQ-violations) can be used to successfully indicate the faultiness of a piece

of software. More in detail, what we aimed at accomplishing during this first study

was to understand:

• Whether the SQ-violations classified as bugs are more fault-prone compared

to other types of rules;

• Which are the most fault-prone SQ-violations;

• What is the prediction accuracy of the SonarQube quality model based on the

violation classified as bugs.

To understand whether SQ-violations can indicate the faultiness of a piece of code,

we decided to perform a historical analysis of the commits of 21 open source projects

from the Apache software foundation from the Technical Debt Dataset [137].

Figure 4.1 Data analysis pipeline (PUBLICATION I)

Firstly we extracted the commit data of the projects from the Github repositories

and the corresponding information on issues from Jira. These were then classified

using the SZZ algorithm [141] as either fault-inducing or not fault-inducing.

As it can be seen in Figure 4.1, we simultaneously run the machine learning anal-

ysis using the SQ-violation as predictors and the variable "fault-inducing/not fault-

inducing" as target for the classification. The machine learning models (classifiers)

used are described in Section 2.2.1.

The results of the machine learning analysis were in line with our expectations. It

was in fact clear that it was possible to use machine learning models to classify com-

mits as fault-inducing or not, using the SQ-violations as predictor. The accuracy

metric used for understanding how the model worked and which was the best per-
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forming machine learning model was the ROC-AUC. According to the ROC-AUC,

the best performing model was the XGBoost, with and ROC-AUC of 83.2%.

4.1.1 Issues with Detection of Faults with Machine Learning
RQ2

Although the apparently positive results, we noticed that the models actually per-

formed quite poorly when considering their ability to discriminate between the pos-

itive (fault-inducing) and negative (not fault-inducing) samples in the dataset. While

the ROC-AUC was generally high, metrics like precision, recall, and as a conse-

quence f-measure were very poor. The XGBoost, for example, despite the ROC-

AUC of 83.2%, only had a precision of 60.8%, recall of 18.2%, and f-measure of

31.8%. Further analysis of the results showed that the problem was a quite heavy

misclassification of the positive samples. This means that the machine learning mod-

els were able to correctly identify the not fault-inducing commits (true negative rate

of 99.7%), while wrongly classifying the fault-inducing as not fault-inducing (false

negative rate of 81.8%).

These results lead us to investigate further the motivation for this heavy misclas-

sification. Analyzing the dataset used, we noticed that roughly 95% of the commits

were actually not fault-inducing, while only 5% of the total actually induced a fault.

This made our data extremely unbalanced. This unbalancing was actually confusing

the machine learning models as they didn’t get enough samples of both classes (the

falt-inducing and the not fault-inducing commits). For this reason, all the classifiers

learned to always predict the commit as not fault-inducing.

Unfortunately, this heavy unbalancing problem is quite common in software

fault/vulnerability datasets, since faults are (or should be) a rarity. It is therefore

clear that classical approaches will not work when analyzing and classifying this kind

of data, but other approaches must be taken.

Investigating further on how to solve this issue, we decided to continue following

two approaches:

• Artificially generate more samples of the minority class (non fault-inducing

commits) via oversampling techniques.

• Treat the faults as anomalies, and therefore use anomaly detection techniques

to find fault-inducing instances of the code
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Besides the unbalanced data, another problem that came out while performing

this study was that the commit data is, of course, sequential, and therefore there exists

a time dependency between commits that must be taken into account. In this first

work, we did not consider it since we were simply interested in understanding if we

could classify the single commit as fault-inducing or not, based on its SQ-violations,

without caring for the commits that came before that. Of course, the results obtained

led us to believe that another possible way to improve the classification performance

of the machine learning models could be that of including the commit history in the

data used by the classifiers to perform the analysis.

4.2 Oversampling as a Way to Solve the Unbalanced Data Problem
RQ3 - PUBLICATION II

The first way that could be used to deal with the unbalanced data is to use over-

sampling techniques to artificially generate data belonging to the minority class. To

test this we used another dataset that included information on vulnerability issues

rather than faults. Besides faults, vulnerabilities also present problems to the quality

of the code as they might represent threats to the security of the software which

could lead to undesired effects. Moreover, similar to faults, also vulnerabilities are

(or should be) a rarity in a software. It seems therefore fitting to test our findings

in the context of software faults, also in the case of vulnerabilities, and to include

oversampling techniques to try to solve the misclassification of vulnerable commits

due to highly unbalanced data.

Table 4.1 Description of the 9 Java projects (PUBLICATION II)

.

Project #Commit LOC #Sample Commits #VCCs

CONVERSATION 5,810 16,035 1,000 10

CANDLEPIN 8,646 30,875 300 3

HAWTIO 8,354 3,705 1,200 12

JBOSS-NEGOTIATION 299 505 191 2

JENKINS 25,867 29,080 4,400 44

JOLOKIA 1,573 3,685 1,100 11

JUNRAR 221 1,325 100 1

LITEMALL 990 3,500 100 1

STRUTS1-FOREVER 4,526 4,025 600 6

56,286 92,735 8,991 90
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In this case, we used 9 Java projects which have the data on public software vul-

nerability recorded on the National Vulnerability Database (NVD): this is a database

that aims at collecting known software vulnerabilities. The details of these projects

can be seen in Table 4.1. In total, the projects considered account for 56,286 com-

mits, but for the purpose of our study and computational reasons, we had to cap the

number of total commits to 8,991. A total of 90 commits presented vulnerabilities.

Also for this study, the data analysis pipeline included machine learning classifiers,

more specifically we used classical machine learning models like SUPPORT VECTOR

MACHINE (SVM), KNEAREST NEIGHBORS (KNN), and BAGGING, tree based clas-

sifiers like DECISION TREE, RANDOM FOREST, EXTREMELY RANDOMIZED TREES,

and boosting techniques ADABOOST, and GRADIENT BOOST. A description of how

these models work can be found in Section 2.2.1.

Regarding the predictor variable used, we used three sets of metrics: process,

product, and textual features. More specifically, regarding the process metrics, we

considered metrics that allow us to quantify the changes in the projects, the con-

tribution of committing authors, the number of files involved, etc. Regarding the

product metrics, we considered metrics that allowed us to quantify the properties of

the source code. The last set of metrics used are textual features: these have been

extracted by collecting a bag-of-word (frequency of appearance of each individual

word) of the commits data. In total, we used 24 process metrics, 9 product metrics,

and the textual features had a total of 1,446 individual tokens (specific words). The

full list of metrics used can be found in Table 2.3 (Section 3.2)

Before running the machine learning classifiers, we performed an oversampling of

the data in order to balance the two classes: the commits presenting vulnerabilities

versus the ones without vulnerability, since there was a proportion of 1:100. For

this purpose, we used the Synthetic Minority Oversampling Technique (SMOTE)

which generates samples of the minority class based on its preexisting samples.

After performing the classification, we found out that in general the results were

much better than the ones obtained with the fault prediction. Of course, both the

samples to classify are different and the metrics used as well, but we notice that in

general that most of the machine learning models could correctly classify a good

majority of the samples The boosting techniques particularly obtained fairly high

results, with the highest F-measure obtained by the AdaBoost.

It can still be clearly seen the benefit of using oversampling in Figure 4.2. On
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(a) F-measure without oversampling (b) F-measure with oversampling

Figure 4.2 F-measure comparison using all machine learning classifiers on the dataset without over-
sampling (left) and using oversampling (right)

the left, it is possible to see the F-measure obtained by all the models when using

the normal dataset with no oversampling. We can see that it resembles the results

obtained in our analysis performed for the faults. On the other hand, with the use

of the SMOTE oversampling technique, it is clear from the Figure 4.2b on the right

that most of the models improve their classification performance. This is particularly

true for the AdaBoost and the Gradient Boost classifiers.

4.3 Software Faults as Anomalies
RQ3 - PUBLICATION III and IV

As it can be seen from the results shown in the previous section, it is clear that de-

spite the classification improvement for some of the machine learning classifiers, the

results obtained after balancing the dataset with oversampling techniques are still not

satisfying. It is therefore hard to say if a system for detecting software vulnerabilities

or faults based solely on these techniques could be used in real life situations. For

this reason, we tried to investigate further the use of anomaly detection techniques

for the detection (not anymore classification) of faulty commits.
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4.3.1 A Preliminary Analysis

In order for us to gain more experience in the field of anomaly detection, we first

investigated the anomaly detection problem in a traditional domain, focusing on the

anomalies and their detection in cloud-native systems.

Figure 4.3 Cloud-native system set-up for anomaly generation (PUBLICATION III)

For this purpose, we set up a system based on Kubernetes to simulate a cloud-

native system. The full structure of the system simulated can be seen in Figure 4.3.

More specifically, the system was used to simulate a real cloud-native system consist-

ing of 3 nodes, on top of which we deployed an anomaly generator that randomly

injected memory anomalies. This was done by overloading the system memory until

the request for memory exceeded the maximum allowed memory causing the restart

of the system. By randomizing the injection of anomalies, we ensured that the data

collected was similar to real data.

After the data collection, for the sake of understanding, if the dataset was actually

viable, we analyzed the performance of a basic machine learning classifier, a RANDOM

FOREST, when used for the prediction of a fault in a cloud-native system. Surprisingly

enough, the RANDOM FOREST was able to correctly predict an anomaly with an F-

measure of 92.4%. Of course, in this case, we trained and tested the model using

single instances of the data, without really considering the history, but limiting the

analysis to classifying each data point as either normal or anomalous.

The collected data was useful for us to be able to study and test approaches for

the detection of anomalies. Since the data was collected at run time and simulated a
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real life system, we could further study and understand how to approach this type

of anomalies.

More specifically, as it can be seen from Figure 4.4, the fault most commonly

happens after the injection of the anomaly has already stopped. This of course means

that there is a brief time period between the injection (or occurrence) of the anomaly,

and the actual fault that can be used to eventually correct possible mistakes, or at least

limit the damages.

Figure 4.4 An example of anomaly: the dotted line represent the injection of the anomaly, while the
full line indicates the available memory (in GB) (PUBLICATION III)

This might be very useful also when considering the analysis of software commits:

if we manage to recognize an anomalous commit, where for example a fault or a

vulnerability is injected, we have time to limit its possible damages and solve the

issue that might arise.

4.3.2 Anomaly Detection for Software Fault Detection

To put in practice the lessons learned from building an anomaly dataset in the

domain of cloud-native system to the software quality issue, we tried partially repli-

cating our previous works on software fault detection using a newer version of the

dataset Technical Debt Dataset [137]. This improved version allowed us to analyze

32 projects. In total, these account for 61,081 commits, and 193,800 files.

For this specific work, we focused our analysis at the file level rather than the

commit level, using the same metrics and predictors used by Pascarella et al. in [138].
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In order to verify if faults in software can be treated as anomalies, we com-

pared the performances of normal machine learning classifiers with machine learn-

ing based anomaly detectors. More specifically, for this study, the data analysis

pipeline included 3 machine learning classifiers, namely SUPPORT VECTOR MACHINE

(SVM), EXTREMELY RANDOMIZED TREES (EXTRATREES), and KNEAREST NEIGH-

BORS (KNN), and 3 machine learning based anomaly detectors: ONECLASSSVM

(OCSVM), ISOLATION FOREST (IF), and LOCAL OUTLIER FACTOR (LOF). More

detail on these can be found in Section 2.2.1.

As for the metrics used as predictors, these were extracted using the implementa-

tion in [138] of the metrics proposed by Rahman [90] and Kamei [26]. The full list

of metrics used can be found in Table 2.2 (Section 3.2)

Analyzing the data, we noticed that the percentage of faulty files was 34%. This

indeed is much higher than the one found in our previous studies on fault prediction

and vulnerability prediction. For this reason, we compared the machine learning

models on a different portion of the dataset:

• Full dataset (∼ 34% of defects)

• Three projects with the highest number of defective files (∼ 50%)

• Three projects with the smallest number of defective files (< 20%)

As it can be seen in Figure 4.5, we noticed that while the anomaly detection

models perform better than their classifiers counterparts in the case with the least

defective files, their performance in terms of F-measure cannot be considered good

enough. As a matter of fact, the anomaly detectors, reach an F-measure of ∼ 30%,

while their classifier counterparts have an F-measure that goes from ∼ 5% to ∼ 30%.

In the cases in which we considered the whole dataset or only the projects with the

most defective files, we can see that the performances of the anomaly detectors are

similar to those of the machine learning classifiers.

From these results it is clear that there is no real advantage of using anomaly

detectors, as even when the percentage of faulty instances is low, they don’t bring

many benefits to the detection.
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Figure 4.5 F-measure of the multiple models on the different portions of the dataset (Adapted from
PUBLICATION IV)

4.4 Is the Time Dependency Important?
RQ3 - PUBLICATION V

Given the results obtained so far in solving the issues found with the software fault

prediction, we tested additional methodologies trying to see if it is worth exploring

the time dependency of the commit data (Section 2.2.3. We expect in fact that by

taking into consideration the history of the commits, we can get more information

that can help in understanding when a fault is happening.

For this reason, we considered the projects available in the Technical Debt Dataset

[137] and calculated the autocorrelation and the partial autocorrelations of the com-

mits over a span of 30 sequential commits.

These two measures allow us to understand what is the relation between consec-

utive data points. More specifically, the autocorrelation calculates the correlation

between a variable Y (t) with its previous values Y (t − k). k is the lag, meaning the
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Figure 4.6 Autocorrelation and partial autocorrelation considering 30 consecutive commits
(PUBLICATION V)

number of previous values considered. In other words, this measure gives us the

value of the dependency of a variable on its historical values. Similarly, the partial

autocorrelation measures the correlation between the same two values as before but

excluding the effect of all the values in between.

In Figure 4.6 we can see for example a very strong autocorrelation for a commit

with its history (almost alwasy 1). Similarly, the partial autocorrelation suggests

a significant amount of information is lost if information between commits is not

considered.

These results suggest that it might be worth investigating the time dependency

of the commit data further, and possibly include it as additional information for the

detection of faults.

4.5 Oversampling, Time Dependency and Deep Learning for
Software Fault Detection

RQ3 - PUBLICATION VI

Given the results obtained so far, we decided to perform again an analysis of

the software faults, using the lessons learned from the previous experiments. More

specifically we used the same dataset used for the anomaly detection, the Technical

Debt Dataset, from which we analyzed 28 projects.

For this analysis, we used multiple predictors. In fact, besides the SonarQube

rules violation used in our previous study, we also used the SonarQube metrics (SQ-

metrics). Besides these, we also used the same metrics used for the comparison be-

tween anomaly detectors and machine learning classifiers. Also in this case we used
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the implementation given in [138] of the metrics proposed by Rahman [90] and

Kamei [26]. The full list of metrics used can be found in Table 2.2 (Section 3.2)

Regarding the models used for the prediction of the fault inducing commits, we

split the analysis into two parts, the first using classical techniques, and classifiers,

while the second takes into account the time dependency of the data. More precisely,

for the "classical" analysis we used the best performing machine learning classifiers

from previous analyses for the classification of the single commits as fault inducing

or not, namely RANDOM FOREST, GRADIENT BOOST and XGBOOST. Regarding the

time dependency of the commits, in order to take it into account, we used deep learn-

ing models used for the classification of time series, which were already successfully

used in other works [104]. The advantage of this approach is that it allows taking

into account not only the information related to the single commit but that of the

previous commits. The model used for this case are a RESIDUAL NETWORK (ResNet)

and a FULLY CONVOLUTIONAL NEURAL NETWORK (FCN). More information on

these can be found in Section 2.2.2.

Figure 4.7 F-measure comparison among Machine Learning and Deep Learning models for SQ rules
compared to software metrics (PUBLICATION VI)

As an additional step before performing the actual analysis, we also rebalanced
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the data as it was shown previously, by using the SMOTE oversampling technique.

It is also important to highlight that besides the classification task, we performed

the analysis using multiple combinations of metrics: we were therefore able also to

discriminate which type of metrics are better suited for the detection of fault-inducing

commits.

Table 4.2 Accuracy metrics comparison for Deep Learning models

Deep Learning

FCN ResNet

All Type All Type

AUC 94,8 % 96,0 % 99,8 % 99,8 %

F-Measure 91,6 % 91,4 % 98,9 % 95,3 %

Precision 92,1 % 92,0 % 99,5 % 96,0 %

Recall 91,2 % 91,0 % 98,5 % 94,9 %

MCC 90,2 % 89,9 % 98,2 % 94,4 %

FNR 8,8 % 9,0 % 1,5 % 5,1 %

TNR 99,0 % 98,9 % 99,6 % 99,4 %

FPR 1,0 % 1,1 % 0,4 % 0,6 %

After these steps, we trained and validate the models and obtained the results

shown in Figure 4.7 It is clear from the figure that the deep learning models are

substantially better suited for the fault-detection problem compared to the machine

learning classifiers. More specifically it can be seen that both the ResNet and the

FCN perform consistently regardless of the combination of metrics used, except for

the case in which only SonarQube rule violations were used. From the boxplots, it

appears evidently also that the machine learning classifiers have inconsistent results

throughout the validation process, with the F-measure varying in some cases from

almost 0% to > 90%. Looking at the metric combination, we can see that in general

the ResNet and the FCN perform best when all the metrics are used, that means

when SonarQube rule violations, SQ-metrics, Kamei, and Rahman metrics all are

used as predictors. In Table 4.2 it can be seen the value of the other accuracy metrics

calculated for both the ResNet and the FCN when all the metric sets are used.
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5 DISCUSSION

In this Chapter, we discuss the results obtained in this thesis, providing therefore

an answer to the research questions outlined in Section 1.1.

RQ1 - What machine learning techniques can be adopted for software fault

detection?

In order to answer the RQ1, we trained and test multiple machine learning models

from different underlying techniques, on data containing the information of commits

from multiple projects of the Apache Software Foundation, and analyze with Sonar-

Qube. For this analysis, the machine learning models had to classify the individual

commit as either fault-inducing or non fault-inducing. The results were that some

of the machine learning models were accurate enough to be used for detecting soft-

ware faults. Particularly, the models based on boosting techniques, ADABOOST,

GRADIENT BOOSTING, and XGBOOST, were undoubtedly the most accurate (in

terms of ROC-AUC). Among these, the best performing technique was the XG-

Boost (PUBLICATION I). The reason for these techniques to be more accurate than

the others used (like the tree based models), is probably due to the way they are

built. As explained in Section 2.2.1, these models build many "shallow" classifiers

that allow the model to be less prone to overfitting. This allows them to generalize

better. Moreover, these multiple "shallow" classifiers are created iteratively during

the training process in order to maximize the weights for the commits that were

wrongly classified, pushing the model to give more importance to the mistakes.

Therefore, to summarize, the machine learning models best suited for software

fault detection are in general the ones based on boosting techniques. More specifically

we noticed that XGBOOST is the best performing model in classifying the commits as

fault-inducing or non fault-inducing. It is important to notice that this result is true

in the case no other methods are used to solve the issues described in RQ2. Once

those issues are addressed, it can be seen that while boosting methodology remains

useful and accurate, they no longer represent the most accurate models.
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RQ2 - What issues prevent the proper use of machine learning for software

fault detection?

From the analysis of the performance of the machine learning classifiers in the

task of software fault prediction, it was interesting to see that while the boosting

techniques seen before were quite performing in terms of ROC-AUC (with the

XGBoost having the best ROC-AUC of 83.2%), the other performance metrics

were quite poor. More specifically, taking into consideration the XGBoost, this had

an F-measure of only 31.8%, indicating difficulties in properly discriminating the

fault-inducing commits from the non fault-inducing commits. This was even more

evident when looking at the rate of commits wrongly classified as non fault-inducing

(False Negative Rate (FNR)), and the rate of correctly identified non-fault-inducing

commits (True Negative Rate (TNR)).

From these results, it is clear that there is a problem in the classification, and

while the results in terms of ROC-AUC might seem high, the other measure shed

some light on the real issue which is the difficulty of properly recognizing the data in

the two distinct categories: fault-inducing and non fault-inducing commits. This is

even more clear since, after analyzing the dataset, we noticed that the fault-inducing

commits accounted for 95% of the total number of commits in the dataset, meaning

that the non fault-inducing commits represented only the remaining 5% of the data.

In other words, the data with what we have been dealing with was highly unbalanced.

This is true not only for our specific dataset but for the software faults in general

since these are usually an anomaly and therefore are rare.

Besides the issue linked to the unbalanced data, we also noticed that while the

commits have been considered individually in this analysis, classifying each of them

without taking into account the previous development of the software, it might be

more useful to also consider the history of each commit. This could in fact bring

more information that might be useful for the machine learning models to better

detect the faults.

To summarize, two main issues were found when dealing with the detection of

software faults. From one side we have in fact a highly unbalanced data, and from

another side, we should deal with the data coming from commits considering its time

dependency.
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RQ3 - How can the issues linked to fault detection be solved?

After the definition of the issues found with the detection of faults, we approached

them investigating different techniques. In light of the findings of RQ2, the answer

to this question can be split into the following two parts.

• Unbalanced data. In order to tackle the issue of the unbalanced data, we

proposed and tested two different approaches. The first was based on artifi-

cially generating multiple samples of the minority class, in order to re-balanced

the two classes. This approach was tested on vulnerability data rather than

software fault data since these share many of the same characteristics when

it comes to the proportion between normal data and faulty/vulnerable data

(PUBLICATION II). To re-balance the data we used the Synthetic Minority

Oversampling Technique (SMOTE), which generates artificial samples of the

minority class based on its preexisting samples. This allowed to partially ame-

liorate the results obtained in the detection of vulnerable commits. This was

particularly true for the boosting techniques, namely ADABOOST and GRADI-

ENT BOOSTING, which significantly improved their performances compared

to the classification based on the raw dataset. The second approach for dealing

with the unbalanced data was to consider the samples of the minority class

as anomalies, and therefore to apply anomaly detection techniques for detect-

ing the fault-inducing commits (PUBLICATION III AND IV). We noticed that,

while the anomaly detection models do work better when dealing with highly

unbalanced data (as they should), they still don’t have positive enough perfor-

mance to be considered a good substitute to the machine learning classifiers.

Finally, while oversampling techniques indeed improved the classification per-

formance of unbalanced data, treating them as anomalies did not lead to the

expected results. In any case, we did not feel like discarding completely the

anomaly detection approach, since we noticed that the data used for software

fault detection share indeed many similarities with anomaly detection specific

datasets. It is also worth noting that not all software systems are characterized

by a small percentage of faults, and therefore the use of anomaly detection

needs to be evaluated on a case-by-case basis.

• Taking into account the time dependency. Regarding the time dependency

of the data, we analyzed the commit data using statistical techniques from the

domain of time series analysis, namely autocorrelation and partial autocorre-
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lation (PUBLICATION V). From this preliminary, it was clear that the commits

are highly correlated with the previous commits, and therefore considering a

commit’s own history we could indeed include much more information that

could be of use to the machine learning classifiers. Also, from the results ob-

tained from the partial autocorrelation, we found that much of the information

is lost if information between commits is not included.

To give a definitive answer to the RQ3, we included the best performing techniques

found and inspected throughout the thesis work to analyze the same dataset used for

answering the RQ1. More specifically, we compared the performance of the machine

learning techniques based on boosting which best performed in the previous works,

with additional models based on deep learning. These models were chosen in order

to include the time dependency of the commit data in the analysis. Also, the whole

dataset had been preprocessed using the SMOTE oversampling technique. From

this work we found that using the oversampling, together with the inclusion of the

information on the time dependency of the data, actually improved significantly the

detection of software faults, substantially outperforming every other analysis done

previously (PUBLICATION VI).

To summarize, the results obtained in this thesis and in the publications from

which it derives have shown a set of methodologies that allow for a more accurate

detection of software faults. These results can be also particularly useful for the

practitioners, since they could know which combination of tools and techniques to

use, alongside which type of metrics, to more accurately detect software faults. This

would allow them to more easily find and react to faults, resulting in an overall

improvement. Similarly, researchers could benefit from these results as they show

how a combination of different techniques can improve the detection of software

faults; more specifically this show how adapting methodology coming from a differ-

ent domain (see anomaly detection or time series analysis) can indeed improve the

detection of software faults.
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6 CONCLUSION

The application of machine learning and deep learning techniques for the de-

tection of faults in software, is a topic towards which the research community has

increased its interests. While many works have been done on the use of multiple

techniques, there is no real answer yet on which are the technique that are proven

to correctly and confidently predict faults in software. Neither there is a real answer

on why some of the techniques don’t work or have sub-optimal performance when

compared to other fields.

In this thesis we aimed to shed some lights on the use of machine learning models

for software faults detection and how to improve it by proposing some solution to

the issues linked to the use of machine learning. More specifically we investigated

multiple machine learning classifiers and noted which of these were the ones to per-

form best in the fault detection problems. After finding the best performing model,

we investigate some of the pitfalls that it had. This were mainly due to the type of

data used, since it had two main problems: the data related to faults in software is

heavily unbalanced, and each sample depends on the previous. For this reason we

formalized the two issues of unbalancing and time dependency of the data. We there-

fore proposed multiple approach to address both the issues, and find some solution

that help in improving the performance of machine learning techniques in the de-

tection of software faults. More specifically, we found that both balancing the data

and taking into account its time dependency could considerably improve the fault

detection capabilities of the machine and deep learning models used.

By addressing these issues, we have contributed to the body of research on the

machine learning tools for software quality and solved some of the issues that are

associated with the detection of software quality issues, being them faults or vulner-

abilities. We are also confident that the results presented in this thesis, and in the

associated published work, will be useful to further improve the detection of software

quality issues, and also improve the models and techniques used.
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6.1 Future Works

In light of the findings of this thesis, it is clear that much work is still needed

before coming up with a unifying solution for the detection of faults in software.

More specifically, we can clearly see that there are still many approaches that can be

further improved and investigated.

Throughout the thesis, we have used machine and deep learning models and tech-

niques for the detection of faults. These models were selected since they were the

ones most used and already investigate in other fields of software quality. With the

extremely fast improvements that characterize the research around machine and deep

learning, it would be interesting to study and analyze the performances of more ad-

vanced and updated machine learning models. For example, in the last part of this

work we used deep learning models adapted from the generic task of time series clas-

sification to classify commits taking into account their history and therefore account-

ing for the time dependency. The models selected were two of the best-performing

models already analyzed in other research works. Nevertheless, there exist many

more models that could be more accurate and could bring interesting insights when

considering the time dependency. LONG SHORT TERM MEMORY (LSTM) networks,

for example, have been known for a few years now to be particularly suited for

dealing with time series, since they can take into account a whole series of data by

automatically defining what it is important to take into account and what’s not. Sim-

ilarly, newer TRANSFORMERS deep learning models could bring an added value, by

using attention mechanisms to discriminate on what to consider important.

Regarding considering software faults as anomalies, since our findings clearly indi-

cate that the faults in a software resemble anomalies found in other similar problems,

it could be interesting to further investigate the use of anomaly detection techniques

for software faults detection. It could be interesting, for example, to apply more

advanced techniques commonly used for the detection of anomalies, such as the AU-

TOENCODERS. These are a type of deep neural network that learns to replicate the

input, and can therefore be trained to recognize the NORMAL samples. In this way,

when the input is an ANOMALOUS sample it raises an error since the network has

never seen it before.

In terms of metrics used as features to detect the faults, these could be investigated

further as well. We have seen in our multiple works that the metric-set used as input
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features affect the result of the detection. For example, one of the side results of our

work was that using the so-called product and process metrics could bring additional

information overall ameliorating the performance of the machine learning classifiers.

It would therefore be interesting to see which other metrics could be calculated and

how these affect the results. We have already seen in our other studies that some

newer metrics can be of help in the daily development process of services, according

to the practitioners [142]. Such metrics could be useful also for the detection of

software faults.

Finally, but equally important, it would be interesting to see how the methods

and techniques investigated in this thesis work could be of use in other fields of soft-

ware engineering and software quality specifically. They share many similarities with

software faults, including their rarity and the fact that should be found and addressed

as quickly as possible. Moreover, most of the research done on software vulnerabil-

ities has focused on the metrics to use for the detection. Since we have seen already

that oversampling techniques can help in the detection of software vulnerabilities,

it could be interesting to see how the other methodologies used in this work can

improve their detection and be further generalized.
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APPENDIX A PUBLICATION SUMMARY

PUBLICATION I - In this work we analysed the performance of multiple machine

learning models for the purpose of classifying commit data as either fault-inducing

or not. For this work we used a dataset containing the commits from 21 open

source projects. For the classification of each commit we used the information on

the SonarQube rules violated. As a result we selected the best performed model as

the XGBoost classifier. Once the best performing model was known, we used it as

a proxy to find which of the SonarQube rules violation is more informative for the

classification. This allowed us to select a very small number of SonarQube rules that

can be considered as highly informative for the purpose of the detection of faulty

commits. We also raised some issue linked to the detection of faulty commits using

machine learning.

PUBLICATION II - This second work we used the machine learning models al-

ready seen in the previous work to detect commits with vulnerability issues. While

performing this analysis we analyzed multiple aspects of the detection. Firstly, we

used oversampling techniques to overcome the problem linked to the unbalanced

data. For this reason we used the SMOTE oversampling technique to artificially

balance the two classes (vulnerable commits and not). Thanks to this we noticed an

overall increase in classification performances of the machine learning classifiers. We

also used this analysis to find out which of the metrics used as predictors was more

informative. More specifically, for this work we used three type of metrics: prod-

uct, process and textual metrics. We trained and tested the model using all possible

combinations of the three metric-sets and we selected which combination of metrics

yield the best classification performance.

PUBLICATION III - This work proposes RARE, a dataset containing data with

anomalies. More specifically, we created a replica system of a cloud-native system,

and designed an anomaly generator service that would randomly inject a byte stream

in the system in order to overload the memory. We therefore collected the data
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including a set of metrics monitoring the system, which would describe both the

normal and the anomalous status. We also collected information on the injection of

the anomalies. In this publication we also proposed a simple machine learning based

method to classify the data collected from the system.

PUBLICATION IV - In this work we used what we learned in PUBLICATOIN III

on anomalies to try another approach to solve the issue related to unbalanced data.

In fact, we performed an analysis on commit data with a file level granularity, to see

if using anomaly detection techniques could improve the classification performance

of the machine learners. For this purpose we compared three machine learning clas-

sifiers and three machine learning based anomaly detector to detect faulty files. The

results of this analysis showed that there is indeed an improvements of the perfor-

mance of the anomaly detectors when the data is heavily unbalanced, but it doesn’t

justify their use over the classical machine learning models. These in fact, perform

overall better in detecting faulty files in commits.

PUBLICATION V - Given the nature of the commit data, in this publication we

focused on demonstrating using statistical tools that commit data is indeed time de-

pendent. To do so, we analyzed the commit data with the value of the Squale Index,

a metric that indicates the "effort to fix all Code Smells in minutes". We analyzed the

commit data using statistical tools use to evaluate time series data. For this reason

we firstly calculated the autocorrelation and partial autocorrelation of the commits,

finding that each commit is indeed dependent on its history. After this confirmation,

we used an autoregressive integrated moving average (ARIMA), a model typically

used for forecasting time series data, to forecast the future value of the Squale Index.

With this we demonstrated that we could actually consider commit data as a time

series, and therefore use time series specific analysis tools to analyze the commit data.

PUBLICATION VI - The last publication aimed at summarizing and putting into

practice the lesson learnt in the precedent publications. In this we tackled the soft-

ware fault prediction using the techniques that were found to work best in our previ-

ous works. More precisely, we compared the performance of the best machine learn-

ing models found in PUBLICATION I and II, and compared them with two deep learn-

ing classifiers specifically designed for time series classification. In this way we could

incorporate in the analysis the time dependency of the commit data. Beside this,

we also used the SMOTE oversampling technique in order to balance the dataset,

and have roughly the same number of fault-inducing commits and non fault-inducing
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commits. In order to be as generic as possible, we run this classification analysis using

multiple set of metrics as predictor. More precisely we used the SonarQube rules,

SonarQube metrics, and the metrics proposed by Rahman et al. [90] and Kamei et

al. [26]. This analysis allowed us to confirm that the time dependency of the data

does give valuable information, since the two models using the history of the commits

performed best. We were also able to define the best combination of metrics, since

using both the metrics defined in SonarQube and by Rahman and Kamei sensibly

increased the classification performance of all the classifiers in general.
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Abstract—The popularity of tools for analyzing Technical Debt,
and particularly the popularity of SonarQube, is increasing
rapidly. SonarQube proposes a set of coding rules, which repre-
sent something wrong in the code that will soon be reflected
in a fault or will increase maintenance effort. However, our
local companies were not confident in the usefulness of the rules
proposed by SonarQube and contracted us to investigate the
fault-proneness of these rules.
In this work we aim at understanding which SonarQube rules are
actually fault-prone and to understand which machine learning
models can be adopted to accurately identify fault-prone rules.
We designed and conducted an empirical study on 21 well-known
mature open-source projects. We applied the SZZ algorithm to
label the fault-inducing commits. We analyzed the fault-proneness
by comparing the classification power of seven machine learning
models.
Among the 202 rules defined for Java by SonarQube, only 25 can
be considered to have relatively low fault-proneness. Moreover,
violations considered as ”bugs” by SonarQube were generally
not fault-prone and, consequently, the fault-prediction power of
the model proposed by SonarQube is extremely low.
The rules applied by SonarQube for calculating technical debt
should be thoroughly investigated and their harmfulness needs
to be further confirmed. Therefore, companies should carefully
consider which rules they really need to apply, especially if their
goal is to reduce fault-proneness.

Index Terms—Technical Debt, SonarQube, coding style, code
smells, architectural smells, static analysis, machine learning

I. INTRODUCTION

The popularity of tools for analyzing technical debt, such
as SonarQube, is increasing rapidly. In particular, SonarQube
has been adopted by more than 85K organizations 1 including
nearly 15K public open-source projects 2. SonarQube analyzes
code compliance against a set of rules. If the code violates a
rule, SonarQube adds the time needed to refactor the violated
rule as part of the technical debt. SonarQube also identifies a
set of rules as ”bugs”, claiming that they ”represent something
wrong in the code and will soon be reflected in a fault”;
moreover, they also claim that zero false positives are expected
from ”bugs” 3.

Four local companies have been using SonarQube for more
than five years to detect possible issue in their code, reported
that their developers do not believe that the rules classified as
bugs can actually result in faults. Moreover, they also reported

1https://www.sonarqube.org
2https://sonarcloud.io/explore/projects
3SonarQube Rules: https://tinyurl.com/v7r8rqo

that the manual customization of the SonarQube out-of-the-
box set of rules (named ”the Sonar way”4) is very subjective
and their developers did not manage to agree on a common
set of rules that should be enforced. Therefore, the companies
asked us to understand if it is possible to use machine
learning to reduce the subjectivity of the customization of
the SonarQube model, considering only rules that are actually
fault-prone in their specific context.

SonarQube is not the most used static analysis tool on the
market. Other tools such as Checkstyle, PMD and FindBugs
are more used, especially in Open Source Projects [1] and
in research [2]. However, the adoption of another tool in
the DevOps pipeline requires extra effort for the companies,
including the training and the maintenance of the tool itself. If
the SonarQube rules actually resulted fault-prone, our compa-
nies would not need to invest extra effort to adopt and maintain
other tools.

At the best of our knowledge, not studies have investigated
the fault-proneness of SonarQube rules, and therefore, we
accepted the challenge and we designed and conducted this
study. At best, only a limited number of studies have con-
sidered SonarQube rule violations [3], [4], but they did not
investigate the impact of the SonarQube violations considered
as ”bugs” on faults.

The goal of this work is twofold:
• Analyze the fault-proneness of SonarQube rule violations,

and in particular, understand if rules classified as ”bugs”
are more fault-prone than security and maintainability
rules.

• Analyze the accuracy of the quality model provided by
SonarQube in order to understand the fault-prediction
accuracy of the rules classified as ”bugs”.

SonarQube and issue tracking systems adopt similar terms
for different concepts. Therefore, in order to clarify the
terminology adopted in this work, we define SQ-Violation
as a violated SonarQube rule that generated a SonarQube
”issue” and fault as an incorrect step, process, data definition,
or any unexpected behavior in a computer program inserted
by a developer, and reported by Jira issue-tracker. We also
use the term ”fault-fixing” commit for commits where the
developers have clearly reported bug fixing activity and ”fault-
inducing” commits for those commits that are responsible for
the introduction of a fault.

4SonarQube Quality Profiles: https://tinyurl.com/wkejmgr



The remainder of this paper is structured as follows. In
Section II-A we introduce SonarQube and the SQ-Violations
adopted in this work. In Section II we present the background
of this work, introducing the SonarQube violations and the
different machine learning algorithms applied in this work.
In Section III, we describe the case study design. Section IV
presents respectively the obtained results. Section V identifies
threats to validity while Section VI describes related works.
Finally, conclusions are drawn in Section VII.

II. BACKGROUND

A. SonarQube

SonarQube is one of the most common Open Source static
code analysis tools adopted both in academia [5],[2] and in
industry [1]. SonarQube is provided as a service from the
sonarcloud.io platform or it can be downloaded and executed
on a private server.

SonarQube calculates several metrics such as the number
of lines of code and the code complexity, and verifies the
code’s compliance against a specific set of ”coding rules”
defined for most common development languages. In case the
analyzed source code violates a coding rule or if a metric
is outside a predefined threshold, SonarQube generates an
”issue”. SonarQube includes Reliability, Maintainability and
Security rules.

Reliability rules, also named ”bugs” create issues (code
violations) that ”represents something wrong in the code”
and that will soon be reflected in a bug. ”Cod5e smells”
are considered ”maintainability-related issues” in the code
that decreases code readability and code modifiability. It is
important to note that the term ”code smells” adopted in
SonarQube does not refer to the commonly known code
smells defined by Fowler et al. [6] but to a different set
of rules. Fowler et al. [6] consider code smells as ”surface
indication that usually corresponds to a deeper problem in
the system” but they can be indicators of different problems
(e.g., bugs, maintenance effort, and code readability) while
rules classified by SonarQube as ”Code Smells” are only
referred to maintenance issues. Moreover, only four of the
22 smells proposed my Fowler et al. are included in the rules
classified as ”Code Smells” by SonarQube (Duplicated Code,
Long Method, Large Class, and Long Parameter List).

SonarQube also classifies the rules into five severity levels5:
Blocker, Critical, Major, Minor, and Info.

In this work, we focus on the sq-violations, which are
reliability rules classified as ”bugs” by SonarQube, as we are
interested in understanding whether they are related to faults.

SonarQube includes more than 200 rules for Java (Version
6.4). In the replication package (Section III-D) we report
all the violations present in our dataset. In the remainder
of this paper, column ”squid” represents the original rule-id
(SonarQube ID) defined by SonarQube. We did not rename it,
to ease the replicability of this work. In the remainder of this

5SonarQube Issues and Rules Severity:’
https://docs.sonarqube.org/display/SONAR/Issues Last Access:May 2018

work, we will refer to the different sq-violations with their id
(squid). The complete list of violations can be found in the
file ”SonarQube-rules.xsls” in the online raw data.

B. Machine Learning Techniques

In this Section, we describe the machine learning techniques
adopted in this work to predict the fault-proneness of sq-
violations. Due to the nature of the task, all the models used
for this work were used for classification. We compared eight
machine learning models. Among these, we used a generalized
linear model: Logistic Regression [7]; one tree based classi-
fier: Decision Tree [8]; and 6 ensemble classifiers: Bagging
[9], Random Forest [10], Extremely Randomized Trees [11],
AdaBoost [12], Gradient Boosting [13], and XGBoost [14]
which is an optimized implementation of Gradient Boosting.
All the models, except the XGBoost, were implemented using
the library Scikit-Learn6, applying the default parameters for
building the models. For the ensamble classifiers we alwasys
used 100 estimators. The XGBoost classifier was implemented
using the XGBoost library7 also trained with 100 estimators.

1) Logistic Regression [7]: Contrary to the linear regres-
sion, which is used to predict a numerical value, Logistic
Regression is used for predicting the category of a sample.
Particularly, a binary Logistic Regression model is used to
estimate the probability of a binary result (0 or 1) given a set
of independent variables. Once the probabilities are known,
these can be used to classify the inputs in one of the two
classes, based on their probability to belong to either of the
two.

Like all linear classifiers, Logistic Regression projects the
P -dimensional input x into a scalar by a dot product of the
learned weight vector w and the input sample: w · x + w0,
where w0 ∈ R the constant intercept. To have a result which
can be interpreted as a class membership probability—a num-
ber between 0 and 1—Logistic Regression passes the projected
scalar through the logistic function (sigmoid). This function,
for any given input x, returns an output value between 0 and
1. The logistic function is defined as

σ(x) =
1

1 + e−x
.

Where the class probability of a sample x ∈ R
P is modeled

as

Pr(c = 1 | x) = 1

1 + e−(w·x+w0)
.

Logistic Regression is trained through maximum likelihood:
the model’s parameters are estimated in a way to maximize
the likelihood of observing the inputs with respect to the
parameters w and w0. We chose to use this model as baseline
as it requires limited computational resources and it is easy to
implement and fast to train.

6https://scikit-learn.org
7https://xgboost.readthedocs.io



2) Decision Tree Classifier [8]: Utilizes a decision tree
to return an output given a series of input variables. Its tree
structure is characterized by a root node and multiple internal
nodes, which are represented by the input variable, and leaf,
corresponding to the output. The nodes are linked between one
another through branches, representing a test. The output is
given by the decision path taken. A decision tree is structured
as a if-then-else diagram: in this structure, given the value of
the variable in the root node, it can lead to subsequent nodes
through branches following the result of a test. This process
is iterated for all the input variables (one for each node) until
it reaches the output, represented by the leaves of the tree.

In order to create the best structure, assigning each input
variable to a different node, a series of metrics can be
used. Amongst these we can find the GINI impurity and the
information gain:

• Gini impurity measures how many times randomly cho-
sen inputs would be wrongly classified if assigned to a
randomly chosen class;

• Information gain measures how important is the infor-
mation obtained at each node related to its outcome: the
more important is the information obtained in one node,
the purer will be the split.

In our models we used the Gini impurity measure to
generate the tree as it is more computationally efficient. The
reasons behind the choice of decision tree models and Logistic
Regression, are their simplicity and easy implementation.
Moreover, the data does not need to be normalized, and
the structure of the tree can be easily visualized. However,
this model is prone to overfitting, and therefore it cannot
generalize the data. Furthermore, it does not perform well with
imbalanced data, as it generates a biased structure.

3) Random Forest [10]: is an ensemble technique that helps
to overcome overfitting issues of the decision tree. The term
ensemble indicates that these models use a set of simpler
models to solve the assigned task. In this case, Random Forest
uses an ensemble of decision trees.

An arbitrary number of decision trees is generated consid-
ering a randomly chosen subset of the samples of the original
dataset [9]. This subset is created with replacement, hence
a sample can appear multiple times. Moreover, in order to
reduce the correlation between the individual decision trees a
random subset of the features of the original dataset. In this
case, the subset is created without replacement. Each tree is
therefore trained on its subset of the data, and it is able to
give a prediction on new unseen data. The Random Forest
classifier uses the results of all these trees and averages them
to assign a label to the input. By randomly generating multiple
decision trees, and averaging their results, the Random Forest
classifier is able to better generalize the data. Moreover, using
the random subspace method, the individual trees are not
correlated between one another. This is particularly important
when dealing with a dataset with many features, as the prob-
ability of them being correlated between each other increases.

4) Bagging [9]: Exactly like the Random Forest model,
the Bagging classifier is applied to an arbitrary number of

decision trees which are constructed choosing a subset of
the samples of the original dataset. The difference with the
Random Forest classifier is in the way in which the split point
is decided: while in the Random Forest algorithm the splitting
point is decided base on a random subset of the variables,
the Bagging algorithm is allowed to look at the full set of
variable to find the point minimizing the error. This translates
in structural similarities between the trees which do not resolve
the overfitting problem related to the single decision tree. This
model was included as a mean of comparison with newer and
better performing models.

5) Extremely Randomized Trees [11]: (ExtraTrees) [11],
provides a further randomization degree to the Random Forest.
For the Random Forest model, the individual trees are created
by randomly choosing subsets of the dataset features. In
the ExtraTrees model the way each node in the individual
decision trees are split is also randomized. Instead of using
the metrics seen before to find the optimal split for each
node (Gini impurity and Information gain), the cut-off choice
for each node is completely randomized, and the resulting
splitting rule is decided based on the best random split. Due
to its characteristics, especially related to the way the splits
are made at the node level, the ExtraTrees model is less
computationally expensive than the Random Forest model,
while retaining a higher generalization capability compared
to the single decision trees.

6) AdaBoost [12]: is another ensemble algorithm based on
boosting [15] where the individual decision trees are grown
sequentially. Moreover, a weight is assigned to each sample of
the training set. Initially, all the samples are assigned the same
weight. The model trains the first tree in order to minimize the
classification error, and after the training is over, it increases
the weights to those samples in the training set which were
misclassified. Moreover, it grows another tree and the whole
model is trained again with the new weights. This whole
process continues until a predefined number of trees has been
generated or the accuracy of the model cannot be improved
anymore. Due to the many decision trees, as for the other
ensemble algorithms, AdaBoost is less prone to overfitting
and can, therefore, generalize better the data. Moreover, it
automatically selects the most important features for the task
it is trying to solve. However, it can be more susceptible to
the presence of noise and outliers in the data.

7) Gradient Boosting [13]: also uses an ensemble of indi-
vidual decision trees which are generated sequentially, like for
the AdaBoost. The Gradient Boosting trains at first only one
decision tree and, after each iteration, grows a new tree in order
to minimize the loss function. Similarly to the AdaBoost, the
process stops when the predefined number of trees has been
created or when the loss function no longer improves.

8) XGBoost [14]: can be viewed as a better performing im-
plementation of the Gradient Boosting algorithm, as it allows
for faster computation and parallelization. For this reason it
can yield better performance compared to the latter, and can
be more easily scaled for the use with high dimensional data.



III. CASE STUDY DESIGN

We designed our empirical study as a case study based on
the guidelines defined by Runeson and H’́ost [16]. In this
Section, we describe the empirical study including the goal and
the research questions, the study context, the data collection
and the data analysis.

A. Goal and Research Questions

As reported in Section 1, our goals are to analyze the fault-
proneness of SonarQube rule violations (SQ-Violations) and
the accuracy of the quality model provided by SonarQube.
Based on the aforementioned goals, we derived the following
three research questions (RQs).

RQ1 Which are the most fault-prone SQ-Violations?

In this RQ, we aim to understand whether the intro-
duction of a set of SQ-Violations is correlated with
the introduction of faults in the same commit and
to prioritize the SQ-Violations based on their fault-
proneness.
Our hypothesis is that a set of SQ-Violations should
be responsible for the introduction of bugs.

RQ2 Are SQ-Violations classified as ”bugs” by Sonar-

Qube more fault-prone than other rules?

Our hypothesis is that reliability rules (”bugs”)
should be more fault-prone that maintainability rules
(”code smells”) and security rules.

RQ3 What is the fault prediction accuracy of the

SonarQube quality model based on violations

classified as ”bugs”?

SonarQube claims that whenever a violation is clas-
sified as a ”bug”, a fault will develop in the software.
Therefore, we aim at analyzing the fault prediction
accuracy of the rules that are classified as ”bugs” by
measuring their precision and recall.

B. Study Context

In agreement with the four companies, we considered open
source projects available in the Technical Debt Dataset [17].
The reason for considering open source projects instead of
their private projects is that not all the companies would
have allowed us to perform an historical analysis of all their
commits. Moreover, with closed source projects the whole
process cannot be replicated and verified transparently.

For this purpose, the four companies selected together 21
out of 31 projects available, based on the ones that were more
similar to their internal projects considering similar project
age, size, usage of patterns used and other criteria that we
cannot report for reason of NDA.

The dataset includes the analysis of each commit of the
projects from their first commit until the end of 2015 with
SonarQube, information on all the Jira issues, and a classifi-
cation of the fault-inducing commits performed with the SZZ
algorithm [18].

In Table I, we report the list of projects we considered
together with the number of analyzed commits, the project
size (LOC) of the last analyzed commits, the number of faults

TABLE I
THE SELECTED PROJECTS

Project

Name

Analyzed

commits

Last

commit

LOC

Faults SonarQube

Violations

Ambari 9727 396775 3005 42348
Bcel 1255 75155 41 8420
Beanutils 1155 72137 64 5156
Cli 861 12045 59 37336
Codec 1644 34716 57 2002
Collections 2847 119208 103 11120
Configuration 2822 124892 153 5598
Dbcp 1564 32649 100 3600
Dbutils 620 15114 21 642
Deamon 886 3302 4 393
Digester 2132 43177 23 4945
FileUpload 898 10577 30 767
Io 1978 56010 110 4097
Jelly 1914 63840 45 5057
Jexl 1499 36652 58 34802
Jxpath 596 40360 43 4951
Net 2078 60049 160 41340
Ognl 608 35085 15 4945
Sshd 1175 139502 222 8282
Validator 1325 33127 63 2048
Vfs 1939 59948 129 3604
Sum 39.518 1,464,320 4,505 231,453
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Fig. 1. The Data Analysis Process

identified in the selected commits, and the total number of
SQ-Violations.

C. Data Analysis

Before answering our RQs, we first executed the eight
machine learning (ML) models, we compared their accuracy,
and finally performed the residual analysis.

The next subsections describe the analysis process in details
as depicted in Figure 1.

1) Machine Learning Execution: In this step we aim at
comparing fault-proneness prediction power of SQ-Violations
by applying the eight machine learning models described in
Section II-B.

Therefore we aim at predicting the fault-proneness of a
commit (labeled with the SZZ algorithm) by means of the SQ-
Violations introduced in the same commit. We used the SQ-
Violations introduced in each commits as independent vari-
ables (predictors) to determine if a commit is fault-inducing
(dependent variable).



After training the eight models described in Section II-B,
we performed a second analysis retraining the models using a
drop-column mechanism [19]. This mechanism is a simplified
variant of the exhaustive search [20], which iteratively tests
every subset of features for their classification performance.
The full exhaustive search is very time-consuming requiring
2P train-evaluation steps for a P -dimensional feature space.
Instead, we look only at dropping individual features one at a
time, instead of all possible groups of features.

More specifically, a model is trained P times, where P is
the number of features, iteratively removing one feature at a
time, from the first to the last of the dataset. The difference in
cross-validated test accuracy between the newly trained model
and the baseline model (the one trained with the full set of
features) defines the importance of that specific feature. The
more the accuracy of the model drops, the more important for
the classification is the specific feature.

The feature importance of the SQ-Violation has been cal-
culated for all the machine learning models described, but we
considered only the importance calculated by the most accu-
rate model (cross-validated with all P features, as described in
the next section), as the feature importances of a poor classifier
are likely to be less reliable.

2) Accuracy Comparison: Apart from ranking the SQ-
Violations by their importance, we first need to confirm the
validity of the prediction model. If the predictions obtained
from the ML techniques are not accurate, the feature ranking
would also become questionable. To assess the prediction
accuracy, we performed a 10-fold cross-validation, dividing the
data in 10 parts, i.e., we trained the models ten times always
using 1/10 of the data as a testing fold. For each fold, we
evaluated the classifiers by calculating a number of accuracy
metrics (see below). The data related to each project have been
split in 10 sequential parts, thus respecting the temporal order,
and the proportion of data for each project. The models have
been trained iteratively on group of data preceding the test set.
The temporal order was also respected for the groups included
in the training set: as an example, in fold 1 we used group 1
for training and group 2 for testing, in fold 2 groups 1 and 2
were used for training and group 3 for testing, and so on for
the remaining folds.

As accuracy metrics, we first calculated precision and recall.
However, as suggested by [21], these two measures present
some biases as they are mainly focused on positive examples
and predictions and they do not capture any information about
the rates and kind of errors made.

The contingency matrix (also named confusion matrix), and
the related f-measure help to overcome this issue. Moreover, as
recommended by [21], the Matthews Correlation Coefficient
(MCC) should be also considered to understand possible dis-
agreement between actual values and predictions as it involves
all the four quadrants of the contingency matrix.

From the contingency matrix, we retrieved the measure
of true negative rate (TNR), which measures the percentage
of negative sample correctly categorized as negative, false
positive rate (FPR) which measures the percentage of negative

sample misclassified as positive, and false negative rate (FNR),
measuring the percentage of positive samples misclassified
as negative. The measure of true positive rate is left out
as equivalent to the recall. The way these measures were
calculated can be found in Table II.

TABLE II
ACCURACY METRICS FORMULAE

Accuracy Measure Formula

Precision TP
FP+TP

Recall TP
FN+TP

MCC TP∗TN−FP∗FN√
(FP+TP )(FN+TP )(FP+TN)(FN+TN)

f-measure 2 ∗ precision∗recall
precision+recall

TNR TN
FP+TNe

FPR FP
TN+FP

FNR FN
FN+TP

TP: True Positive; TN: True Negative; FP: False Positive; FN: False
Negative

Finally, to graphically compare the true positive and the
false positive rates, we calculated the Receiver Operating Char-
acteristics (ROC), and the related Area Under the Receiver
Operating Characteristic Curve (AUC): the probability that a
classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative one.

In our dataset, the proportion of the two types of commits is
not even: a large majority (approx. 90 %) of the commits were
non-fault-inducing, and a plain accuracy score would reach
high values simply by always predicting the majority class.
On the other hand, the ROC curve (as well as the precision
and recall scores) are informative even in seriously unbalanced
situations.

3) SQ-Violations Residual Analysis: The results from the
previous ML techniques show a set of SQ-Violations related
with fault-inducing commits. However, the relations obtained
in the previous analysis do not imply causation between faults
and SQ-Violations.

In this step, we analyze which violations were introduced
in the fault-inducing commits and then removed in the fault-
fixing commits. We performed this comparison at the file level.
Moreover, we did not consider cases where the same violation
was introduced in the fault-inducing commit, removed, re-
introduced in commits not related to the same fault, and finally
removed again during the fault-fixing commit.

In order to understand which SQ-Violations were introduced
in the fault-inducing commits (IND) and then removed in the
fault-fixing commit (FIX), we analyzed the residuals of each
SQ-Violation by calculating:

Residual = ΔIND +ΔFIX

where ΔIND and ΔFIX are calculated as:

ΔIND = #SQ-Violations introduced in the fault-inducing
commit

ΔFIX =#SQ-Violations removed in the fault-fixing commit

Figure 2 schematizes the residual analysis.
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Fig. 2. Residuals Analysis

We calculated the residuals for each commit/fix pair, ver-
ifying the introduction of the SQ-Violation Vi in the fault-
inducing commit (IND) and the removal of the violation in the
fault-fixing commit (FIX). If ΔIND was lower than zero, no
SQ-Violations were introduced in the fault-inducing commit.
Therefore, we tagged such a commit as not related to faults.

For each violation, the analysis of the residuals led us to
two groups of commits:

• Residual > 0: The SQ-Violations introduced in the fault-
inducing commits were not removed during the fault-
fixing.

• Residual ≤ 0: All the SQ-Violations introduced in the
fault-inducing commits were removed during the fault-
fixing. If Residual < 0, other SQ-Violations of the same
type already present in the code before the bug-inducing
commit were also removed.

For each SQ-Violations, we calculated descriptive statistics
so as to understand the distribution of residuals.

Then, we calculated the residual sum of squares (RSS) as:

RSS =
∑

(Residual)2

We calculated the percentage of residuals equal to zero as:

#zero residuals

#residuals
∗ 100%

Based on the residual analysis, we can consider violations
where the percentage of zero residuals was higher than 95%
as a valid result.

4) RQ1: Which are the most fault-prone SQ-Violations?: In
order to analyze RQ1, we combined the results obtained from
the best ML technique and from the residual analysis. There-
fore, if a violation has a high correlation with faults but the
percentage of the residual is very low, we can discard it from
our model, since it will be valuable only in a limited number of
cases. As we cannot claim a cause-effect relationship without
a controlled experiment, the results of the residual analysis
are a step towards the identification of this relationship and
the reduction of spurious correlations.

5) RQ2: Are SQ-Violations classified as ”bugs” by Sonar-
Qube more fault-prone than other rules?: The comparison of
rules classified as ”bugs” with other rules has been performed
considering the results of the best ML techniques and the resid-
ual analysis, comparing the number of violations classified as
”bug” that resulted to be fault-prone from RQ1. We expect
bugs to be in the most faults-prone rules.

6) RQ3: What is the fault prediction accuracy of the Sonar-
Qube quality model based on violations classified as ”bugs”:
Since SonarQube considers every SQ-Violation tagged as a
”bug” as ”something wrong in the code that will soon be
reflected in a bug”, we also analyzed the accuracy of the model
provided by SonarQube.

In order to answer our RQ3, we calculated the percentage of
SQ-Violations classified as ”bugs” that resulted in being highly
fault-prone according to the previous analysis. Moreover, we
also analyzed the accuracy of the model calculating all the
accuracy measures reported in Section III-C2.

D. Replicability

In order to allow the replication of our study, we published
the raw data in the replication package 8.

IV. RESULTS

In this work, we considered more than 37 billion effective
lines of code and retrieved a total of 1,464,320 violations from
39,518 commits scanned with SonarQube. Table 1 reports the
list of projects together with the number of analyzed commits
and the size (in Lines of Code) of the latest analyzed commit.
We retrieved a total of 4,505 faults reported in the issue
trackers.

All the 202 rules available in SonarQube for Java were
found in the analyzed projects. For reasons of space limi-
tations, we will refer to the SQ-Violations only with their
SonarQube id number (SQUID). The complete list of rules,
together with their description is reported in the online
replication package (file SonarQube-rules.xlsx). Note that in
column ”Type” MA means Major, Mi means Minor, CR means
Critical, and BL means Blocker.

A. RQ1: Which are the most fault-prone SQ-Violations?

In order to answer this RQ, we first analyzed the importance
of the SQ-Violations by means of the most accurate ML
technique and then we performed the residual analysis.

1) SQ-Violations Importance Analysis: As shown in Fig-
ure 3, XGBoost resulted in the most accurate model among
the eight machine learning techniques applied to the dataset.
The 10-fold cross-validation reported an average AUC of 0.83.
Table III (column RQ1) reports average reliability measures
for the eight models.

Despite the different measures have different strengths and
weaknesses (see Section III-C2), all the measures are consis-
tently showing that XGBoost is the most accurate technique.

The ROC curves of all models are depicted in Table III
while the reliability results of all the 10-folds models are
available in the online replication package.

Therefore, we selected XGBoost as classification model for
the next steps, and utilized the feature importance calculated
applying the drop-column method to this classifier. The XG-
Boost classifier was retrained removing one feature at a time
sequentially.

8Replication Package: https://figshare.com/s/fe5d04e39cb74d6f20dd



TABLE III
MODEL RELIABILITY

RQ1 (Average between 10-fold validation models) RQ2 RQ3

Measure
Logistic

Regr.

Decision

Tree

Bagging Random

Forest

Extra

Trees

AdaBoost Gradient

Boosting

XGBoost SQ ”bugs”

Precision 0.417 0.311 0.404 0.532 0.427 0.481 0.516 0.608 0.086
Recall 0.076 0.245 0.220 0.156 0.113 0.232 0.192 0.182 0.028
MCC 0.162 0.253 0.279 0.266 0.203 0.319 0.300 0.318 0.032
f-measure 0.123 0.266 0.277 0.228 0.172 0.301 0.275 0.275 0.042
TNR 0.996 0.983 0.990 0.995 0.995 0.993 0.995 0.997 0.991
FPR 0.004 0.002 0.010 0.004 0.005 0.007 0.005 0.003 0.009
FNR 0.924 0.755 0.779 0.844 0.887 0.768 0.808 0.818 0.972
AUC 0.670 0.501 0.779 0.802 0.775 0.791 0.825 0.832 0.509

Fig. 3. ROC Curve (Average between 10-fold validation models)

23 SQ-Violations have been ranked with an importance
higher than zero by the XGBoost. In Table V, we report the
SQ-Violations with an importance higher or equal than 0.01 %
(coloumn ”Intr. & Rem. (%)” reports the number of violations
introduced in the fault-inducing commits AND removed in
the fault-fixing commits). The remaining SQ-Violations are
reported in the raw data for reasons of space. coloumn ”Intr.
& Rem. (%)” means

The combination of the 23 violations guarantees a good
classification power, as reported by the AUC of 0.83. However,
the drop column algorithm demonstrates that SQ-Violations
have a very low individual importance. The most important
SQ-Violation has an importance of 0.62%. This means that
the removal of this variable from the model would decrease
the accuracy (AUC) only by 0.62%. Other three violations
have a similar importance (higher than 0.5%) while others are
slightly lower.

2) Model Accuracy Validation: The analysis of residuals
shows that several SQ-Violations are introduced in fault-
inducing commits in more than 50% of cases. 32 SQ-
Violations out of 202 had been introduced in the fault-inducing
commits and then removed in the fault-fixing commit in more
than 95% of the faults. The application of the XGBoost, also
confirmed an importance higher than zero in 26 of these SQ-
Violations. This confirms that developers, even if not using
SonarQube, pay attention to these 32 rules, especially in case
of refactoring or bug-fixing.

Fig. 4. Comparison of Violations introduced in fault-inducing commits and
removed in fault-fixing commits

Table V reports the descriptive statistics of residuals, to-
gether with the percentage residuals = 0 (number of SQ-
Violations introduced during fault-inducing commits and
removed during fault-fixing commits).

Column ”Res >95%”, shows a checkmark (�) when the
percentage of residuals=0 was higher than 95%.

Figure 4 compares the number of violations introduced in
fault-inducing commits, and the number of violations removed
in the fault-fixing commits.

B. Manual Validation of the Results

In order to understand the possible causes and to validate the
results, we manually analyzed 10 randomly selected instances
for the first 20 SQ-Violations ranked as more important by the
XGBoost algorithm.

The first immediate result is that, in 167 of the 200 manually
inspected violations, the bug induced in the fault-inducing
commit was not fixed by the same developer that induced it.

We also noticed that violations related to duplicated code
and empty statements (eg. ”method should not be empty”)
always generated a fault (in the randomly selected cases).
When committing an empty method (often containing only
a ”TODO” note), developers often forgot to implement it and
then used it without realizing that the method did not return
the expected value. An extensive application of unit testing
could definitely reduce this issue. However, we are aware that
is is a very common practice in several projects. Moreover,
SQ-Violations such as 1481 (unused private variable should



TABLE IV
SONARQUBE CONTINGENCY MATRIX (PREDICTION MODEL BASED ON

SQ-VIOLATIONS CONSIDERED AS ”BUG” BY SONARQUBE)

Predicted Actual

IND NOT IND
IND 32 342

NOT IND 1,124 38,020

be removed) and 1144 (unused private methods should be
removed) unexpectedly resulted to be an issue. In several
cases, we discovered methods not used, but expected to be
used in other methods, resulted in a fault. As example, if a
method A calls another method B to compose a result message,
not calling the method B results in the loss of the information
provided by B.

C. RQ2: Are SQ-Violations classified as ”bugs” by Sonar-
Qube more fault-prone than other rules?

Out of the 57 violations classified as ”bugs” by SonarQube,
only three (squid 1143, 1147, 1764) were considered fault-
prone with a very low importance from the XGBoost and with
residuals higher than 95%. However, rules classified as ”code
smells” were frequently violated in fault-inducing commits.
However, considering all the SQ-Violations, out of 40 the SQ-
Violations that we identified as fault-prone, 37 are classified
as ”code smells” and one as security ”vulnerability”.

When comparing severity with fault proneness of the SQ-
Violations, only three SQ-Violations (squid 1147, 2068, 2178)
were associated with the highest severity level (blocker).
However, the fault-proneness of this rule is extremely low
(importance <= 0.14%). Looking at the remaining violations,
we can see that the severity level is not related to the
importance reported by the XGBoost algorithm since the rules
of different level of severity are distributed homogeneously
across all importance levels.

D. RQ3: Fault prediction accuracy of the SonarQube model

”Bug” violations were introduced in 374 commits out of
39,518 analyzed commits. Therefore, we analyzed which of
these commits were actually fault-inducing commits. Based
on SonarQube’s statement, all these commits should have
generated a fault.

All the accuracy measures (Table III, column ”RQ2”) con-
firm the very low prediction power of ”bug” violations. The
vast majority of ”bug” violations never become a fault. Results
are also confirmed by the extremely low AUC (50.95%) and
by the contingency matrix (Table IV). The results of the
SonarQube model also confirm the results obtained in RQ2.
Violations classified as ”bugs” should be classified differently
since they are hardly ever injected in fault-inducing commits.

V. THREATS TO VALIDITY

In this Section, we discuss the threats to validity, including
internal, external, construct validity, and reliability. We also
explain the different adopted tactics [22].

Construct Validity. As for construct validity, the results
might be biased regarding the mapping between faults and
commits. We relied on the ASF practice of tagging commits
with the issue ID. However, in some cases, developers could
have tagged a commit differently. Moreover, the results could
also be biased due to detection errors of SonarQube. We are
aware that static analysis tools suffer from false positives. In
this work we aimed at understanding the fault proneness of
the rules adopted by the tools without modifying them, so as
to reflect the real impact that developers would have while
using the tools. In future works, we are planning to replicate
this work manually validating a statistically significant sample
of violations, to assess the impact of false positives on the
achieved findings. As for the analysis timeframe, we analyzed
commits until the end of 2015, considering all the faults raised
until the end of March 2018. We expect that the vast majority
of the faults should have been fixed. However, it could be
possible that some of these faults were still not identified and
fixed.

Internal Validity. Threats can be related to the causation
between SQ-Violations and fault-fixing activities. As for the
identification of the fault-inducing commits, we relied on the
SZZ algorithm [18]. We are aware that in some cases, the SZZ
algorithm might not have identified fault-inducing commits
correctly because of the limitations of the line-based diff
provided by git, and also because in some cases bugs can be
fixed modifying code in other location than in the lines that
induced them. Moreover, we are aware that the imbalanced
data could have influenced the results (approximately 90% of
the commits were non-fault-inducing). However, the applica-
tion of solid machine learning techniques, commonly applied
with imbalanced data could help to reduce this threat.

External Validity. We selected 21 projects from the ASF,
which incubates only certain systems that follow specific and
strict quality rules. Our case study was not based only on one
application domain. This was avoided since we aimed to find
general mathematical models for the prediction of the number
of bugs in a system. Choosing only one or a very small number
of application domains could have been an indication of the
non-generality of our study, as only prediction models from
the selected application domain would have been chosen. The
selected projects stem from a very large set of application
domains, ranging from external libraries, frameworks, and web
utilities to large computational infrastructures. The dataset
only included Java projects. We are aware that different
programming languages, and projects different maturity levels
could provide different results.

Reliability Validity. We do not exclude the possibility that
other statistical or machine learning approaches such as Deep
Learning, or others might have yielded similar or even better
accuracy than our modeling approach.

VI. RELATED WORK

In this Section, we introduced the related works analyzing
literature on SQ-Violations and faults predictions.



TABLE V
SUMMARY OF THE MOST IMPORTANT SONARQUBE VIOLATIONS RELATED TO FAULTS (XGBOOST IMPORTANCE > 0.2%)

SonarQube SZZ Residuals XG

Boost

Res.

>95%

SQUID Severity Type # Occ. Intr. &
Rem.(%)

Intr. in
fault-ind

Mean Max Min Stdev RSS Imp.

S1192 CRITICAL CS 1815 50,87 95,10 245,60 -861 2139 344,42 1726 0,66 �
S1444 MINOR CS 96 2,69 97,92 4,59 -7 73 10,34 94 0,62 �
Useless Import Check MAJOR CS 1026 28,76 97,27 33,37 -170 351 61,58 998 0,41 �
S00105 MINOR CS 263 7,37 97,72 1,96 -13 32 10,22 257 0,41 �
S1481 MINOR CS 568 15,92 95,25 10,41 -6 83 14,60 541 0,39 �
S1181 MAJOR CS 200 5,61 97,00 8,87 0 88 13,43 194 0,31 �
S00112 MAJOR CS 1644 46,08 94,77 188,26 -279 1529 270,34 1558 0,29
S1132 MINOR CS 704 19,73 93,75 121,75 -170 694 134,91 660 0,24
Hidden Field MAJOR CS 584 16,37 92,98 26,96 -12 143 29,42 543 0,23
S134 CRITICAL CS 1272 35,65 94,65 70,66 -66 567 88,07 1204 0,20

Falessi et al. [3] studied the distribution of 16 metrics and
106 SQ-Violations in an industrial project. They applied a
What-if approach with the goal of investigating what could
happen if a specific SQ-Violation would not have been intro-
duced in the code and if the number of faulty classes decrease
in case the violation is not introduced. They compared four ML
techniques applying the same techniques on a modified version
of the code where they manually removed SQ-Violations.
Results showed that 20% of faults were avoidable if the code
smells would have been removed.

Tollin et al. [4] investigated if SQ-Violations introduced
would led to an increase in the number of changes (code
churns) in the next commits. The study was applied on two
different industrial projects, written in C# and JavaScript. They
reported that classes affected by more SQ-Violations have a
higher change proneness. However they did not prioritize or
classified the most change prone SQ-Violations.

Digkas et al. [23] studied weekly snapshots of 57 Java
projects of the ASF investigating the amount of technical debt
paid back over the course of the projects and what kind of
issues were fixed. They considered SQ-Violations with severity
marked as Blocker, Critical, and Major. The results showed
that only a small subset of all issue types was responsible
for the largest percentage of technical debt repayment. Their
results thus confirm our initial assumption that there is no
need to fix all issues. Rather, by targeting particular violations,
the development team can achieve higher benefits. However,
their work does not consider how the issues actually related
to faults.

Falessi and Reichel [24] developed an open-source tool to
analyze the technical debt interest occurring due to violations
of quality rules. Interest is measured by means of various
metrics related to fault-proneness. They use SonarQube rules
and uses linear regression to estimate the defect-proneness of
classes. The aim of MIND is to answer developers’ questions
like: is it worth to re-factor this piece of code? Differently
than in our work, the actual type of issue causing the defect
was not considered.

Codabux and Williams [25] propose a predictive model to
prioritize technical debt. They extracted class-level metrics for
defect- and change-prone classes using Scitool Understanding

and Jira Extracting Tool from Apache Hive and determined
significant independent variables for defect- and change-prone
classes, respectively. Then they used a Bayesian approach to
build a prediction model to determine the ”technical debt
proneness” of each class. Their model requires the identifi-
cation of ”technical debt items”, which requires manual input.
These items are ultimately ranked and given a risk probability
by the predictive framework.

Saarimäki investigated the diffuseness of SQ-violations in
the same dataset we adopted [26] and the accuracy of the
SonarQube remediation time [27].

Regarding other code quality rules detection, 7 different
machine learning approaches (Random Forest, Naive Bayes,
Logistic regression, IBl, IBk, VFI, and J48) [28] were suc-
cessfully applied on 6 code smells (Lazy Class, Feature Envy,
Middle Man Message Chains, Long Method, Long Param-
eter Lists, and Switch Statement) and 27 software metrics
(including Basic, Class Employment, Complexity, Diagrams,
Inheritance, and MOOD) as independent variables.

Code smells detection was also investigated from the point
of view of how the severity of code smells can be classified
through machined learning models [29] such as J48, JRip,
Random Forest, Naive Bayes, SMO, and LibSVM with best
agreement to detection 3 code smells (God Class, Large Class,
and Long Parameter List).

VII. DISCUSSION AND CONCLUSION

SonarQube classifies 57 rules as ”bugs”, claiming that they
will sooner or later they generate faults. Four local companies
contacted us to investigate the fault prediction power of the
SonarQube rules, possibly using machine learning, so as to
understand if they can rely on the SonarQube default rule-set
or if they can use machine learning to customize the model
more accurately.

We conducted this work analyzing a set of 21 well-known
open source project selected by the companies, analyzing
the presence of all 202 SonarQube detected violations in
the complete project history. The study considered 39,518
commits, including more than 38 billion lines of code, 1.4
million violations, and 4,505 faults mapped to the commits.

To understand which sq-violations have the highest fault-
proneness, we first applied eight machine learning approaches



to identify the sq-violations that are common in commits
labeled as fault-inducing. As for the application of the different
machine learning approaches, we can see an important differ-
ence in their accuracy, with a difference of more than 53%
from the worst model (Decision Trees AUC=47.3%±3%) and
the best model (XGBoost AUC=83.32%±10%). This confirms
also what we reported in Section II-B: ensemble models,
like the XGBoost, can generalize better the data compared to
Decision Trees, hence it results to be more scalable. The use of
many weak classifiers, yields an overall better accuracy, as it
can be seen by the fact that the boosting algorithms (AdaBoost,
GradientBoost, and XGBoost) are the best performers for this
classification task, followed shortly by the Random Forest
classifier and the ExtraTrees.

As next step, we checked the percentage of commits where a
specific violation was introduced in the fault-inducing commit
and then removed in the fault-fixing commit, accepting only
those violations where the percentage of cases where the
same violations were added in the fault-inducing commit and
removed in the fault-fixing commit was higher than 95%.

Our results show that 26 violations can be considered fault-
prone from the XGBoost model. However, the analysis of
the residuals showed that 32 sq-violations were commonly
introduced in a fault-inducing commit and then removed in the
fault-fixing commit but only two of them are considered fault-
prone from the machine learning algorithms. It is important to
notice that all the sq-violations that are removed in more than
95% of cases during fault-fixing commits are also selected by
the XGBoost, also confirming the importance of them.

When we looked at which of the sq-violations were con-
sidered as fault-prone in the previous step, only four of them
are also classified as (”bugs”) by SonarQube. The remaining
fault-prone sq-violations are mainly classified as ”code smells”
(SonarQube claims that ”code smells” increase maintenance
effort but do not create faults). The analysis of the accuracy
of the fault prediction power of the SonarQube model based
on ”bugs” showed an extremely low fitness, with an AUC of
50.94%, confirming that violations classified as ”bugs” almost
never resulted in a fault.

An important outcome is related to the application of the
machine learning techniques. Not all the techniques performed
equally and XGBoost was the most more accurate and fastest
technique in all the projects. Therefore, the application XG-
Boost to historical data is a good alternative to the manual
tuning of the model, where developers should select which
rules they believe are important based on their experience.

The result confirmed the impression of the developers of
our companies. Their developers still consider it very useful to
help to develop clean code that adhere to company standards,
and that help new developers to write code that can be easily
understood by other developers. Before the execution of this
study the companies were trying to avoid to violate the rules
classifies as bugs, hoping to reduce fault proneness. However,
after the execution of this study, the companies individually
customized the set of rules considering only coding standards
aspects and rules classified as ”security vulnerabilities”. The

main result for the companies is that they will need to invest
in the adoption of other tools to reduce the fault proneness
and therefore, we will need to replicate this work considering
other tools such as FindBugs, PMD but also commercial tools
such as Coverity Scan, Cast Software and others.

Based on the overall results, we can summarize the follow-
ing lessons learned:

Lesson 1: SonarQube violations are not good predictors
of fault-proneness if considered individually, but can be good
predictors if considered together. Machine learning techniques,
such as XGBoost can be used to effectively train a customized
model for each company.

Lesson 2: SonarQube violations classified as ”bugs” do not
seem to be the cause of faults.

Lesson 3: SonarQube violation severity is not related to
the fault-proneness and therefore, developers should carefully
consider the severity as decision factor for refactoring a
violation.

Lesson 4: Technical debt should be calculated differently,
and the non-fault prone rules should not be accounted as
”fault-prone” (or ”buggy”) components of the technical debt
while several ”code smells” rules should be carefully consid-
ered as potentially fault-prone.

The lessons learned confirm our initial hypothesis about the
fault-proneness of the SonarQube violations. However, we are
not claiming that SonarQube violations are not harmful in
general. We are aware that some violations could be more
prone to changes [3], decrease code readability, or increase
the maintenance effort.

Our recommendation to companies using SonarQube is to
customize the rule-set, taking into account which violations to
consider, since the refactoring of several sq-violations might
not lead to a reduction in the number of faults. Furthermore,
since the rules in SonarQube constantly evolve, companies
should continuously re-consider the adopted rules.

Research on technical debt should focus more on validating
which rules are actually harmful from different points of view
and which will account for a higher technical debt if not
refactored immediately.

Future works include the replication of this work consid-
ering the severity levels of SonarQube rules and their impor-
tance. We are working on the definition of a more accurate
model for predicting TD [30] Moreover, we are planning
to investigate whether classes that SonarQube identify as
problematic are more fault-prone than those not affected by
any problem. Since this work did not confirmed the fault
proneness of SonarQube rules, the companies are interested in
finding other static analysis tool for this purpose. Therefore,
we are planning to replicate this study using other tools such
as FindBugs, Checkstyle, PMD and others. Moreover, we will
focus on the definition of recommender systems integrated
in the IDEs [31][32], to alert developers about the presence
of potential problematic classes based on their (evolution of)
change- and fault-proneness and rank them based on the
potential benefits provided by their removal.



REFERENCES

[1] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian
Proksch, Harald C. Gall, and Andy Zaidman. How Developers Engage
with Static Analysis Tools in Different Contexts. In Empirical Software
Engineering, 2019.

[2] Valentina Lenarduzzi, Alberto Sillitti, and Davide Taibi. A survey on
code analysis tools for software maintenance prediction. In 6th Inter-
national Conference in Software Engineering for Defence Applications,
pages 165–175. Springer International Publishing, 2020.

[3] D. Falessi, B. Russo, and K. Mullen. What if i had no smells? 2017
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), pages 78–84, Nov 2017.

[4] F. Arcelli Fontana I. Tollin, M. Zanoni, and R. Roveda. Change
prediction through coding rules violations. Proceedings of the 21st
International Conference on Evaluation and Assessment in Software
Engineering, pages 61–64, 2017.

[5] Valentina Lenarduzzi, Alberto Sillitti, and Davide Taibi. Analyzing
forty years of software maintenance models. In 39th International
Conference on Software Engineering Companion, ICSE-C ’17, pages
146–148, Piscataway, NJ, USA, 2017. IEEE Press.

[6] M. Fowler and K. Beck. Refactoring: Improving the design of existing
code. Addison-Wesley Longman Publishing Co., Inc., 1999.

[7] D. R. Cox. The regression analysis of binary sequences. Journal of
the Royal Statistical Society. Series B (Methodological), 20(2):215–242,
1958.

[8] Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen.
Classification and regression trees Regression trees. Chapman and Hall,
1984.

[9] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140,
8 1996.

[10] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[11] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely random-

ized trees. Machine Learning, 63(1):3–42, 4 2006.
[12] Yoav Freund and Robert E Schapire. A Decision-Theoretic Generaliza-

tion of On-Line Learning and an Application to Boosting. Journal of
Computer and System Sciences, 55(1):119–139, 8 1997.

[13] Jerome H. Friedman. Greedy Function Approximation: A Gradient
Boosting Machine.

[14] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting
System. In 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining - KDD ’16, pages 785–794, New York, New
York, USA, 2016. ACM Press.

[15] Robert E. Schapire. The Strength of Weak Learnability. Machine
Learning, 5(2):197–227, 1990.
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a b s t r a c t

Background: Software vulnerabilities are weaknesses in source code that might be exploited to cause
harm or loss. Previous work has proposed a number of automated machine learning approaches to
detect them. Most of these techniques work at release-level, meaning that they aim at predicting
the files that will potentially be vulnerable in a future release. Yet, researchers have shown that a
commit-level identification of source code issues might better fit the developer’s needs, speeding up
their resolution.
Objective: To investigate how currently available machine learning-based vulnerability detection
mechanisms can support developers in the detection of vulnerabilities at commit-level.
Method: We perform an empirical study where we consider nine projects accounting for 8991
commits and experiment with eight machine learners built using process, product, and textual metrics.
Results: We point out three main findings: (1) basic machine learners rarely perform well; (2)
the use of ensemble machine learning algorithms based on boosting can substantially improve the
performance; and (3) the combination of more metrics does not necessarily improve the classification
capabilities.
Conclusion: Further research should focus on just-in-time vulnerability detection, especially with
respect to the introduction of smart approaches for feature selection and training strategies.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Software security plays a crucial role in modern software
development (Dowd et al., 2006). In software engineering terms,
this has to do with the implementation of programs that can con-
tinue working under malicious circumstances (McGraw, 2004).
Specifically, the source code should be designed to be resilient to
external attacks: unfortunately, software vulnerabilities represent
threats to security that may potentially be exploited by externals
to cause loss of data, privilege escalation, race conditions, and
other undesired effects that may affect the source code (Decan
et al., 2018; Plate et al., 2015).

The research community has been addressing the problem of
vulnerabilities under different perspectives, by proposing empir-
ical studies aiming at characterizing them and their impact on
source code (Finifter et al., 2013; Kim and Lee, 2018; Gonzalez

� Editor: Earl Barr.∗ Corresponding author.
E-mail addresses: francesco.lomio@tuni.fi (F. Lomio), eiannone@unisa.it

(E. Iannone), adelucia@unisa.it (A. De Lucia), fpalomba@unisa.it (F. Palomba),
valentina.lenarduzzi@oulu.fi (V. Lenarduzzi).

et al., 2019), but more importantly by devising automated tech-
niques that could support their identification (Hydara et al., 2015;
McKinnel et al., 2019; Svacina et al., 2020).

Most of the approaches defined so far are based on source code
and/or dynamic analysis (Li et al., 2016; Junjin, 2009; Sotirov,
2005; Trinh et al., 2014), symbolic execution (Li et al., 2013; Wang
et al., 2009; Saxena et al., 2009), and fuzz-testing (Jiang et al.,
2018; Wang et al., 2010). Some of them are also implemented
within automated tools, e.g., SonarQube1 and Eclipse Steady

2

that are widely adopted in practice (Vassallo et al., 2019).
Despite the research and industrial effort spent so far for

building techniques and tools able to identify software vulner-
abilities, the current solutions are still rarely effective in practice
as they suffer from high false positive rates and/or scalability
issues (Antunes and Vieira, 2010; Do et al., 2020; Johnson et al.,
2013).

For these reasons, the research around vulnerability detection
is still highly active. The last years have seen a growing interest
in the application of artificial intelligence algorithms to software

1
SonarQube: https://www.sonarqube.org.

2
Eclipse Steady: https://projects.eclipse.org/proposals/eclipse-steady.
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0164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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security (Chernis and Verma, 2018; Harer et al., 2018). Techniques
based on machine learning, in particular, have reached promising
results: starting from a set of vulnerability data collected through
the change history analysis of files over previous releases of an
application, these techniques train machine learning algorithms
(e.g., Decision Tree) in order to predict the likelihood of new,
unseen source code files to be affected by vulnerabilities in future
releases (Ghaffarian and Shahriari, 2017).

While the performance reported in previous studies (Scan-
dariato et al., 2014; Shin et al., 2011; Zimmermann et al., 2010;
Theisen et al., 2015; Theisen and Williams, 2020) highlighted the
suitability of machine learning approaches to predict vulnerabil-
ities on future releases, it is still unclear how these approaches
support developers in finding the exact location of the vulner-
able code. As a matter of fact, traditional vulnerability predic-
tions (Zimmermann et al., 2010; Theisen et al., 2015; Scandariato
et al., 2014; Jimenez et al., 2019) would produce a large set of
potentially vulnerable files or binaries, that should be manually
inspected to establish the actual presence of the flaw, requiring
a non-negligible amount of extra work. Moreover, such a task
requires the selection of the most appropriate group of develop-
ers that can comprehend the rationale behind the last changes
applied to the files. These limitations calls for novel solutions
that better suits real case scenarios. Specifically, contemporary
pull-based development practices (Gousios et al., 2014) make
long-term recommendations, like those given by release-based
predictions, not really suitable (Singer et al., 2010). Shorter-term
recommendations, also known as just-in-time or commit-level pre-
dictions, should be preferred instead as they allow developers to
receive an immediate feedback on the newly committed work
and improve code quality while having the context of the modifi-
cation still fresh in mind (Kamei et al., 2012; Kang et al., 2021). In
addition, techniques able to work at this granularity become not
only suitable at commit-time, but also while developers perform
code review (Pascarella et al., 2018). As a consequence of these
recent advances, vulnerability detection mechanisms should be
re-assessed at a lower granularity.

Hence, this paper proposes an empirical investigation into
the performance of just-in-time software vulnerability detection
techniques. We mine nine Java projects available in the Na-
tional Vulnerability Database (NVD)3 in order to collect known
vulnerabilities that affected them during their change history.
Afterwards, we experiment with eight machine learning algo-
rithms that we train using three different sets of features based
on code, change, and textual metrics—both algorithms and fea-
tures were previously employed in the context of vulnerability
detection research. In addition, we employ a set of machine
learning engineering steps (Tantithamthavorn and Hassan, 2018)
aiming at improving the performance of the experimented mod-
els, such as dropping correlated features (O’brien, 2007), bal-
ancing the dataset (Pecorelli et al., 2020), and tuning hyper-
parameters (Bergstra and Bengio, 2012).

The results of our study reveal a number of findings. In the
first place, we observe that basic machine learning algorithms,
e.g., Support Vector Machine, have low performance when ap-
plied for the task of detecting vulnerabilities at commit-level, in
contrast with previous work on vulnerability prediction. More-
over, the use of ensemble techniques do not necessarily pro-
vide benefits, even tough approaches based on boosting, like
AdaBoost, seems promising and might be further investigated.
Finally, we point out the limitations of existing metrics: for in-
stance, we observe that previously devised textual metrics based
on a raw bag-of-words source code representation lead the ma-
chine learners to have high variability and low prediction accu-
racy.

To sum up, we provide the following contributions:

3 The National Vulnerability Database: https://nvd.nist.gov/.

1. Empirical evidence on the limited capabilities of commit-
level vulnerability prediction models built using traditional
techniques without proper setup;

2. A set of insights into the likely causes of failure of the cur-
rent solutions, which forms the future research direction
on the matter;

3. An online appendix.4 providing all data and scripts used
to conduct our study and that can be used by the re-
search community to replicate and build upon our empiri-
cal study.

Structure of the paper. Section 2 discusses the related literature
and motivates our work. In Section 3 we report the methodology
employed to address our goals, while Section 4 analyzes the
achieved results. The key implications of the study are presented
in Section 5. The discussion of the threats to validity and how
we mitigated them is reported in Section 6. Finally, Section 7
concludes the paper and outlines our future research agenda on
the matter.

2. Related work

Research on software vulnerability prediction models (VPMs)
mainly focused on identifying the best set of predictors corre-
lated with the presence of vulnerabilities. Almost all works in-
volved software product metrics directly computed on the source
or binary files, such as size (e.g., Lines of Code) or structural
metrics (Chidamber and Kemerer, 1994). Among these, com-
plexity metrics (e.g., McCabe’s Cyclomatic Complexity (McCabe,
1976)) are the ones that have received more attention. Shin
and Williams (2008), Shin et al. (2011) and Shin and Williams
(2011), in the context of Mozilla Firefox, found a strong positive
correlation between the number of decisions in the code and the
vulnerability-proneness of a file. Specifically, the VPMs – built
using complexity metrics as predictors – achieve higher precision
scores if the predictions are restricted to the top vulnerable files
only, hinting that the files that were subject to many vulnera-
bilities in the past have high complexity values. This finding is
further confirmed in other studies (Chowdhury and Zulkernine,
2011; Zimmermann et al., 2010; Walden et al., 2014; Jimenez
et al., 2019). Similarly, coupling and cohesion metrics have been
shown to be, respectively, positively and negatively correlated
with vulnerabilities, corroborating the common wisdom that poor
quality code raised the risk of introducing flaws (Chowdhury and
Zulkernine, 2011). Moreover, Nguyen and Tran (2010) exploited a
set of metrics extracted from the Component Dependency Graphs
(CDG) to predict vulnerable C++ files in JS Engine of Firefox, ob-
serving an improvement in both accuracy and recall with respect
to models built considering complexity metrics only. Neuhaus
et al. (2007) found a correlation between the number of imports
and functions with vulnerabilities in C functions, hinting their
usefulness in a VPM. In particular, they devised a Support Vector
Machine (SVM) relying on the number of past vulnerabilities on
the imported C files in the context of Mozilla Firefox achieving
a high precision of 70%, at the cost of a lower recall of 45%. Fur-
thermore, Scandariato et al. (2014) were the first to investigate
on the predictive power of text mining techniques. Namely, they
used the bag-of-words method (Zhang et al., 2010; Harris, 1954)
to extract the most frequent terms (i.e., words) from source code
Java files to predict the presence of vulnerabilities on 20 Android

apps. They managed to score a high performance in within-
project predictions (i.e., making prediction on files belonging to
the same project in which the model was trained), but failing in

4 Our online appendix: https://figshare.com/s/0ef0f484a058e2297df4.
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Table 1
Comparison with previous works concerning vulnerability prediction models. The focus is on the granularity level (i.e., the components that is subject to the
predictions), the set of metrics used as predictors, the involved systems and the mined vulnerability data sources.
Study Granularity Predictors/Features Context Data sources

Neuhaus et al. (2007) Function Past vulnerable imports Firefox MFSA
Sultana et al. (2020) Class/Method Product metrics 4 Java systems Vendor Advisories
Zimmermann et al. (2010) Binary Process and product metrics Windows Vista NVD
Theisen et al. (2015) Binary/File Past crashes, Process and product metrics Windows 8 Microsoft Error Reporting

Theisen and Williams (2020) Binary/File Past crashes, Process and product metrics,
Bag-of-words

Firefox MFSA

Morrison et al. (2015) Binary/File Product metrics Windows 7 and 8 NVD
Nguyen and Tran (2010) File Product metrics Firefox JS Engine MFSA, Bugzilla, NVD
Chowdhury and Zulkernine
(2011)

File Product metrics Firefox MFSA, Bugzilla

Smith and Williams (2011) File SQL Hotspots, LOC WordPress, WakkaWiki Bugzilla

Shin et al. (2011) File Process and product metrics Firefox, RHEL MFSA, RHSR, Bugzilla
Shin and Williams (2011) File Past faults, Process and Product metrics Firefox Bugzilla

Scandariato et al. (2014) File Bag-of-words 20 Android apps Fortify SCA

Walden et al. (2014) File Product metrics, Bag-of-words 3 PHP systems Vendor Security Advisories, NVD
Zhang et al. (2015) File Product metrics, Bag-of-words 3 PHP systems Dataset from Walden et al. (2014).
Jimenez et al. (2019) File Bag-of-words, Process and product metrics Linux, OpenSSL and

Wireshark

NVD

Perl et al. (2015) Commit Process and product metrics 66 C/C++ systems CVE DB
Yang et al. (2017) Commit Process and product metrics Firefox MFSA

Our study Commit Process and product metrics, bag-of-words 9 Java systems NVD

cross-project scenario (i.e., making prediction on files not belong-
ing to the projects in which the model was trained), as further
confirmed by Walden et al. (2014). Later, Zhang et al. (2015) com-
bined the above bag-of-words method with traditional product
metrics, achieving higher F-measure value with respect to the
VPM in Walden et al. (2014). On the other hand, Zimmermann
et al. (2010) analyzed the impact of organizational (e.g., the
number of developers) and code churn (i.e., the rate of changes
applied to binaries) metrics to vulnerabilities in Windows Vista,
achieving high precision but low recall, in line with the findings
of later studies (Shin et al., 2011; Jimenez et al., 2019; Perl et al.,
2015; Yang et al., 2015). Smith and Williams (2011) tested the
usage of warnings of possible SQL Injections as predictors in two
VPMs for WordPress and WakkaWiki, finding a positive correla-
tion with many vulnerability types—other than SQL Injection. All
the above findings are mixed together in the study of Theisen
and Williams (2020), in which the authors claimed that the best
prediction models are the one encompassing many different set
of metrics (namely, product, process, text metrics and past faults).

Regarding the model selection, vulnerability prediction have
been based on different supervised machine learning models,
such as Decision Trees (Shin et al., 2011; Scandariato et al., 2014;
Zhang et al., 2015; Jimenez et al., 2019; Theisen and Williams,
2020), Support Vector Machines (SVM) (Neuhaus et al., 2007;
Nguyen and Tran, 2010; Zimmermann et al., 2010; Scandariato
et al., 2014; Theisen et al., 2015; Perl et al., 2015; Morrison et al.,
2015), Naïve Bayes (Nguyen and Tran, 2010; Shin et al., 2011;
Scandariato et al., 2014; Morrison et al., 2015; Zhang et al., 2015;
Theisen and Williams, 2020) and Random Forests (Shin et al.,
2011; Scandariato et al., 2014; Walden et al., 2014; Morrison
et al., 2015; Zhang et al., 2015; Jimenez et al., 2019; Theisen and
Williams, 2020). Among these, Naïve Bayes resulted in higher
recall values (which means lower false negative rate), while Ran-

dom Forests regularly score high precision (meaning low false
positive rate) in different contexts. Such models are also popular
in similar tasks, e.g., defect (Shin and Williams, 2011; D’Ambros
et al., 2012) and exploitability prediction (Bhatt et al., 2020).

Most studies have been conducted on predicting vulnerabil-
ities at source code file level (Nguyen and Tran, 2010; Chowd-
hury and Zulkernine, 2011; Smith and Williams, 2011; Shin and
Williams, 2008; Shin et al., 2011; Scandariato et al., 2014; Walden
et al., 2014; Zhang et al., 2015; Jimenez et al., 2019), which means
that the VPM tells whether a given file is or is not affected by a

vulnerability. In such a scenario, the developers can invest their
effort on inspecting and testing the problematic files with dedi-
cated attention. The same concept is applied for VPMs working
on binary files (Zimmermann et al., 2010; Theisen et al., 2015;
Theisen and Williams, 2020; Morrison et al., 2015), which contain
machine code produced by a compiler. Neuhaus et al. (2007)
designed a tool, Vulture, that predicts the vulnerabilities in C/C++
functions, whereas Sultana et al. (2020) do this on Java methods,
instead. To the best of our knowledge, only few works have con-
sidered the predictions at commit-level. Perl et al. (2015) devised
a method for obtaining the vulnerability-contributing commit on
66 C/C++ open-source projects. They essentially relied on the git
blame command that reaches the commits that changed last the
deleted lines of a public fixing commit of known vulnerabilities
reported in NVD. Then, they labeled the most blamed commit as
a vulnerability-contributing commit. Finally, they trained a Sup-
port Vector Machine on this dataset, outperforming the detection
capabilities of equivalent static analysis tools. The entire pipeline
was replicated some years later by Riom et al. (2021), in which
the authors, among other things, delve into the possibility to im-
prove VPM provided by Perl et al. (2015) by experimenting on a
different feature set containing metrics capturing more security-
related aspects—e.g., the number of sizeof operators, which are
known to be closely linked to improper sizing of dynamically-
allocated buffers (CWE, 2006). However, they could not fully
replicate the experiment (Perl et al., 2015) as the datasets and
scripts were not available anymore, and the original paper did
not provide sufficient detail on how to re-implement the features
extraction step. For these reasons, Riom et al. could not provide
a faithful comparison. Yang et al. (2017) considered the case of
web vulnerabilities arising in Mozilla Firefox, and, using a large
set of process and product metrics drawn by Kamei et al. (2012),
they provided a VPM that achieved high precision (over 90%), at
the cost of having a very low recall score (below 15%) at the best
possible configuration.

Our work and contribution. Table 1 summarizes and com-
pares the works in the vulnerability prediction field, other than
highlighting the main differences of our contribution. Our re-
search aims at shedding lights on the capabilities of a large
variety of machine learning models for just-in-time vulnerability
detection. Hence, with respect to most of the papers discussed,
our study has a different level of granularity and aims at assessing
whether and how the promising research on machine learning for
vulnerability detection can be applied at commit-level.
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In particular, our study can be considered complementary
with respect to previous works by Perl et al. (2015) and Yang
et al. (2017) that targeted a commit-level granularity. First, we
exploited multiple machine learning algorithms with the aim
of providing a broader overview of how effective these tech-
niques are for the just-in-time vulnerability detection, instead
of employing only a single learner (e.g., SVM or Random For-

est). Then, we employed a set of techniques to improve the
model performance, such as removing features exhibiting multi-
collinearity (O’brien, 2007), balancing the dataset (Pecorelli et al.,
2020), and fine-tuning the model hyper-parameters (Bergstra and
Bengio, 2012). Such techniques were not always considered in the
past when building VPMs, as also pointed by Jimenez et al. (2019).
We also considered the role of textual metrics, which have been
shown as highly relevant by Scandariato et al. (2014). In partic-
ular, we wanted to assess whether the raw use of the textual
metrics actually provides an improvement in terms of predic-
tive performance when considered with other features, as show
by Theisen and Williams (2020). Finally, we targeted a different
programming language, like Java, which has its own peculiarities
and, more importantly, vulnerabilities. Indeed, a large part of the
current body of knowledge covered types of weaknesses strictly
tied to the programming language, e.g., the Buffer Overflow (CWE,
2006) vulnerability predominantly affecting C/C++ code.

On the basis of these considerations, the main contributions
of our study pose an additional ground for software engineering
researchers working on the identification of vulnerabilities, who
can exploit our results to understand and build upon the cur-
rent limitations and challenges connected to the application of
machine learning-based vulnerability detectors at commit-level.

3. Research methodology

In this section we provide a formulation of the design of our
study according to the Goal-Question-Metric (GQM) paradigm
(Basili et al., 1994). In Section 3.1 we define the goal of our
study and the consequent research question. Then, we describe
the context of our empirical study, i.e., the projects we selected
(Section 3.2), the procedures behind the automated extraction of
vulnerability-contributing commits (Section 3.3), and the com-
putation of software metrics (Section 3.4). All these data are
required to build the dataset exploited by our machine learn-
ing pipeline, for which we provide a detailed description (Sec-
tion 3.5). We conclude the section by presenting the evalua-
tion methods we employed to answer our research question
(Section 3.6).

3.1. Goal and research question

The goal of this empirical study was to investigate the perfor-
mance of machine learning methods when employed for the task
of just-in-time vulnerability detection, with the purpose of assess-
ing their suitability in a pull-based development scenario. The
perspective is both of practitioners and researchers: the former are
interested in understanding whether and to what extent machine
learning-based vulnerability detectors can be used during their
daily activities; the latter are interested in evaluating strengths,
weaknesses, and challenges for the use of machine learning for
just-in-time vulnerability detection and that can be investigated
further in future research.

We analyzed how well different machine learners can identify
commits contributing to vulnerabilities. In this respect, we were
inspired by previous research on vulnerability prediction (Theisen
and Williams, 2020) and assessed the impact of three families
of software metrics on the performance of different machine
learning algorithms. We asked:

Table 2
Summary of projects considered in this study. These statistics are related to the
period before 8th Match 2021.
Project #Commit LOC #Sample commits #VCCs

Conversation 5,810 16,035 1000 10
Candlepin 8,646 30,875 300 3
Hawtio 8,354 3,705 1200 12
Jboss-Negotiation 299 505 191 2
Jenkins 25,867 29,080 4400 44
Jolokia 1 573 3,685 1100 11
Junrar 221 1,325 100 1
Litemall 990 3,500 100 1
Struts1-Forever 4,526 4,025 600 6

56,286 92,735 8991 90

RQ. How well do machine learning algorithms perform when
employed in the context of just-in-time vulnerability detection?

We set up a machine learning pipeline that implements well-
established guidelines for to the creation of unbiased supervised
learning techniques (Song et al., 2010; Tantithamthavorn and
Hassan, 2018). As further explained in the next sections, we
considered and mitigated common pitfalls related to feature se-
lection, hyper-parameter configuration, data balancing, selection
of performance metrics, and statistical tests. When designing and
reporting our study, we adopted the guidelines by Wohlin et al.
(2000) and followed the ACM/SIGSOFT Empirical Standards (Ralph
et al., 2021).5

3.2. Context of the study

The context of the empirical study was composed of nine
Java projects, whose main characteristics are reported in Table 2.
These projects account for a total of 56,286 commits but, due to
computational reasons, we randomly sampled 8991 of them (16%
of the total commits). When selecting the commits to analyze,
we made sure not to discard commits containing vulnerabilities,
whose collection is explained later in Section 3.3.

More in general, we considered all the Java projects hav-
ing public software vulnerability data stored on the National
Vulnerability Database (NVD). This database was originally cre-
ated by the U.S. NIST Computer Security Division (NIST, 2021)
with the aim of collecting and disclosing known vulnerabili-
ties affecting software systems and their causes. It includes a
comprehensive set of publicly known vulnerabilities: each of
them is described through CVE (Common Vulnerabilities and
Exposure (MITRE, 2021)) records and is enriched with additional
pieces of information such as external references, severity (com-
puted using the Common Vulnerability Scoring System — CVSS),
the related weakness type (Common Weakness Enumeration —
CWE), and the known affected software configurations (Com-
mon Platform Enumerations — CPEs). NVD aggregates informa-
tion from multiple data sources and is widely considered a reli-
able data source (Alhazmi et al., 2007; Huang et al., 2010; Zhang
et al., 2011). As a matter of fact, vulnerability reports must fulfill
a well-defined set of requirements 6 before being added into
NVD. As an example, vendors requesting for the creation of a CVE
record have to provide a prose description of the issue, containing
enough information for readers to understand which are the

5 Given the nature of our study and the currently available empirical
standards, we followed the ‘‘General Standard’’ and ‘‘Data Science’’ definitions
and guidelines.
6 https://www.cve.org/ResourcesSupport/AllResources/CNARules#section_8-

1_cve_record_information_requirements.
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known products affected (e.g., application, operating system, or
hardware). Such a description has to be supported by at least one
accessible reference, e.g., a public mailing list. Moreover, a CVE
describes one and only one independently fixable vulnerability,
meaning that each record describes a single instance of an issue
concerning a violation to the security policy of a product. This
makes us confident enough about the validity and quality of the
information contained in NVD.

Our focus on Java was motivated by the fact that previous
research on software vulnerabilities did not extensively targeted
this programming language (see Table 1): as such, our study
can be considered as the first investigation of the capabilities of
just-in-time detection approaches for the identification of known
Java vulnerabilities. In addition, our choice was based on the
availability of metrics that could characterize different aspects of
Java source code, as well as the tools that could automate the data
collection procedures.

3.3. Collecting vulnerability-contributing commits

When collecting software vulnerabilities, we mined data ex-
ploiting CVE-Search,7 an open-source tool that imports the entire
set of CVE records from NVD into a MongoDB database for easier
search and processing. We performed some additional filtering
steps with the aim of removing incomplete/incorrect data that
might have biased our conclusions: (1) we discarded CVEs that
reported commits pointing to more than one GitHub repository,
since we could not establish which project was involved in the
first place; (2) we filtered out vulnerabilities whose fixes were
marked as merge commits, as these do not apply any modifi-
cation in the project history but simply incorporate the changes
from a branch into another, i.e., we could not consider them as
actual patches since we were interested in getting precise infor-
mation about the time when fixes were added into the history
rather than the time when they were sent into the main branch.
After these filtering, we ended up with a total of 27 vulnerabilities
(CVEs) of 12 different types (CWEs).

Afterwards, we implemented a mining procedure based lever-
aging the well-known SZZ algorithm (Sliwerski et al., 2005) to
fetch the vulnerability-contributing commits (VCCs) (Meneely
et al., 2013), i.e., the commits that are likely to have contributed
to the introduction of a vulnerability. To this purpose, we started
from vulnerability-fixing commits that we mined from NVD.
Specifically, for each file fi touched by the fixing commit cfix, our
algorithm runs the git-diff command to extract the list of
modified lines in fi with respect to the previous commit cfix−1;
then, it runs the git-blame command on the deleted lines in
order to retrieve the commits where these were changed last. We
consider these commits as VCCs of the vulnerability fixed in cfix.
As a result, for each vulnerability we obtain a set of VCCs as more
than one commit might contribute to its introduction.

To improve the precision of this procedure, we applied some
additional adjustments to reduce the risk of catching false pos-
itive VCCs. We excluded files from cfix that were (1) non-source
Java files, (2) test classes, (3) build files, (4) documentation and
blob resources (the entire list of blacklisted files is available in our
online appendix4). We also filtered out the VCCs that appeared as
merge commits, as they do not report any actual modifications to
the project’s history—indeed, we were interested in the moments
in which the patches were added in the history for the first
time, not when they were merged into the main branch (Git,
2021). Finally, we managed the cases where the fixing commit
cfix consisted only of added lines. In these situations, there are
no lines to blame and we assumed that the files involved in the

7 https://github.com/cve-search/cve-search.

commit were born vulnerable: as such, we marked the commits
that introduced the files as vulnerable. Overall, we managed to
obtain a total of 90 distinct VCCs among the nine projects—a
detailed list reporting these commits is available in our online
appendix.4 Whether or not a commit contributes to a vulnerabil-
ity represents the dependent variable of the models built, i.e., the
information that we aimed at predicting using machine learning
techniques.

3.4. Collecting software metrics

Once we had collected vulnerability data, we focused on the
independent variables. In this respect, we exploited three families
of metrics that were investigated in previous studies on software
vulnerability detection: process, product, and textual features.
The detail of each of these metrics, along with the description
and the rational behind their usage, is described in Table 3.

With respect to process metrics, we considered different as-
pects previously treated in vulnerability research
(Shin and Williams, 2008; Zimmermann et al., 2010; Shin et al.,
2011; Perl et al., 2015; Yang et al., 2015) and able to characterize
the change history of the projects, like the churn metrics (con-
cerning added and deleted lines, methods, conditions, method
calls, and assignments), the extent of contribution made by the
committing author (i.e., the developer implementing the change),
the number of files involved in the commit, the scattering of
the changes, the number of previous changes and author of the
files, etc. To compute these metrics, we developed our own tool,
available in our online appendix.4 It is worth point out that most
of these metrics concerns metadata directly extracted from the
commit metadata – e.g., the number of days between the commit
date and the project creation date – while two of them, namely
Mean Days Since Creation andMean of Past Changes, were obtained
by analyzing the git metadata related to each file involved in
the commit. For these metrics, we aggregated the values obtained
from each valid file (with the same filters used in Section 3.3)
using the mean operator to bring them at commit-level, enabling
their use as predictors for the machine learning models.

As for product metrics, we took into account the Chidamber
and Kemerer (1994), a set of well-known Object-Oriented metrics
able to quantify different structural properties of the source code,
such as cohesion and coupling. Similarly, to process metrics, we
exploited an ad-hoc tool, available in our online appendix,4 able
to extract structural metrics from a given parsable Java files. To
reach our goals, we run it against all the Java files involved in
the commits to extract the traditional set of CK metrics (listed in
Table 3); afterwards, we computed the mean of the metric values
to bring them at commit level, similarly to what was done by
Yang et al. (2017) for the SLOC metric.

Finally, we extracted the textual features experimented by
Scandariato et al. (2014). For each commit, we selected the valid
files (which underwent to the usual filters described in Sec-
tion 3.3) so that we could make our document corpus. Then,
we extracted its bag-of-words (Zhang et al., 2010; Harris, 1954),
which is a compact representation of the documents in the corpus
through the number of occurrences of the words (a.k.a. terms)
appearing in the entire corpus (which constitute the vocabulary).
Namely, a file is represented as a vector of M integers, each
representing the counting of the M words appearing in the vo-
cabulary. At this point, the bags-of-words of the files involved
in a commit were summed together, so that any commit could
have its own bag-of-words made of the total number of times
each words appeared in the modified valid files only. We treated
each term as an independent variable for our models. To remove
any noise that could damage the models performance (De Lucia
et al., 2013; Silva and Ribeiro, 2003), we filtered out the high-
frequency words—removing the ones appearing in more than 80%
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documents, as they add poor information to the text; in addition,
we also dropped low-frequency words, appearing in less than 5%
documents, to reduce the dimensionality of the feature space,
which was shown to improve the training process (Martins, 2003;
Joachims, 1998). All in all, we ended up with 1318 distinct tokens,
each encoded as a numeric feature. In addition, following the
approach adopted by Perl et al. (2015), we extracted the bag-of-
words of the sole commits’ patches to count the terms involved in
the actual change, without considering the unaffected code areas.
Specifically, for each commit we obtained the bag-of-words of
the added lines only, and the bag-of-words of the deleted lines
sharing the same vocabulary. Then, we computed the absolute
difference between the two vectors, so that we could obtain the
number of times each term was involved, either in an addition
or deletion, in the actual patch. Also in this case we filtered
out high- and low-frequency words using the same filters used
for the entire files. In this case, we ended up with 128 distinct
tokens, encoded as 128 integer features. It is worth remarking
that we did not compute the overlap between these 128 terms
and the 1318 extracted in the previous step, as they originate
from two different corpuses (i.e., files and patches). Thus, we
considered a total of 1446 tokens. These two approaches were
implemented in our own scripts, which relied on Scikit-Learn’s
CountVectorizer class,8 and made it publicly available into our
appendix.4

3.5. Setting the machine learning methods

After having collected dependent and independent variables
to be used, we configured the machine learning models to detect
vulnerable commits. The design of our machine learning pipeline
is described hereafter.

3.5.1. Design of the models
As we had collected different families of metrics, we could

experiment with various models. We first devised three super-
vised techniques that relied, individually, on product, process, and
textual metrics to predict the proneness of the commits to be
vulnerable: in this way, we could assess the contribution given
by each metrics set. Afterwards, we started combining them by
adopting a stepwise method: we created models based on prod-
uct+process, product+textual, and process+textual features. Finally,
we also considered the model using all the features together.
As a consequence, we designed and experimented with seven
different combinations of features.

3.5.2. Selection of the classifier
We treated the problem as a binary classification task: de-

termining whether a commit contributed to a vulnerability or
not. As discussed in Section 2, the related literature did not pose
conclusive results on the machine learning algorithms that are
more suitable for the classification of software vulnerabilities. For
this reason, we experimented with the following eight learning
algorithms:

Support Vector Machine (SVM) (Cortes and Vapnik, 1995).
This is a statistical model that constructs the best hyper-plane
out of the infinite possibilities in a N-dimensional space—with N
being the number of features. The best hyper-plane is capable of
distinctly separate the data points, having the maximum margin
(namely the largest distance to the nearest training data points
of any class).

KNearestNeighbors (KNN) (Zhang, 2016). This a non-
parametric technique that classifies the samples using the dataset

8 https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.
text.CountVectorizer.html.

alone (i.e., without building a model). The classification is made
as a majority vote, i.e., based on the class of the majority of its k
nearest neighbors data points.

Decision Tree (Breiman et al., 1984). This is a classifier with
a tree-like structure, characterized by multiple nodes and leaf.
The nodes are linked through branches, representing a test. The
output is given by the decision path taken. The decision tree is
structured as an if-then-else diagram: given an input variable
(root node), it leads to multiple sub nodes through branches. The
process is iterated until the output (leaves) is reached.

Random Forest (Breiman, 2001). This is an ensemble tech-
nique that helps to overcome the overfitting issues of the decision
tree. Ensemble means that this model uses a set ofweak classifiers
(decision trees in this case) to solve the assigned problem. Each
individual tree is generated using a random subset of samples
in the dataset. To reduce the correlation between the individual
trees, the splitting point is chosen using a random subset of the
dataset, without replacement. Using this method, a Random For-

est is able to better generalize the data and reduce the overfitting
problem faced by other classifiers.

Extremely Randomized Trees (Geurts et al., 2006). Extra-
Trees adds a further randomization to the Random Forest, as
each node of the weak classifiers is split randomly. This means
that instead of relying to specific metrics for choosing the optimal
splitting point, this model randomly generates a series of splits
and choose the one which gives the best result. This characteristic
allows the model to be less computationally expensive compared
to the others, while maintaining high generalization capabilities.

AdaBoost (Freund and Schapire, 1997). This is an ensemble
model based on boosting (Schapire, 1990), in which each individ-
ual tree is trained in a sequential fashion. Initially, a single decision
tree is created and the same weight is assigned to all samples in
the training set. Progressively, the weights are increased for the
misclassified samples and another tree is generated. The whole
process continues until a predefined number of trees has been
generated or the accuracy of the model cannot be improved
anymore. With respect to the other ensemble models, AdaBoost
is less prone to overfitting.

Gradient Boosting (Friedman, 2001). As AdaBoost, it uses
an ensemble of individual trees which are generated sequentially.
A tree is generated after each iteration to minimize a differential
loss function. The process stops when the predefined number
of trees has been created or when the loss function no longer
improves.

XGBoost (Chen and Guestrin, 2016). An improved implemen-
tation of Gradient Boosting algorithm, allowing faster computa-
tion and parallelization.

The choice of focusing on these classifiers was driven by our
willingness to investigate the classification performance of a large
variety of algorithms, including ensemble methods. It is worth
remarking that in our research we were interested in benchmark-
ing narrow artificial intelligence techniques (Coppin, 2004): the
evaluation of other approaches belonging to the category of strong
artificial intelligence, e.g., deep learning, is part of our future
research agenda.

3.5.3. Preprocessing steps
As recommended in literature (Tantithamthavorn and Hassan,

2018), we performed a number of steps aimed at building a
machine learning pipeline that could avoid bias in the inter-
pretation of the results. In the first place, we applied a feature
selection in order to avoid multi-collinearity (O’brien, 2007). This
step was required to remove correlated metrics that provide the
machine learners with the same (or similar) information and
that might cause them to not being able to derive the correct
explanatory meaning of the features. In this respect, we exploited
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Table 3
List of metrics extracted from each commit in the dataset, used as independent variables (features) for the machine learners. The table reports a description, the
rationale behind their selection, and related works in which they have been used for VPMs.
Name Description Rationale VPMs

Process metrics

Added lines The number of lines added in the commit. A high amount of added lines indicates a large
commit, which has a higher risk of introducing
defects (Meneely and Williams, 2012; Nagappan
and Ball, 2005; Graves et al., 2000) or
vulnerabilities (Zimmermann et al., 2010;
Meneely et al., 2013; Shin et al., 2011).

Zimmermann et al. (2010),
Shin and Williams (2011),
Perl et al. (2015) and Yang
et al. (2017)

Deleted lines The number of lines removed in the commit. Same as Added Lines. Zimmermann et al. (2010),
Shin and Williams (2011),
Perl et al. (2015) and Yang
et al. (2017)

Added methods The number of new functions/methods added in
the commit.

New functions or methods may add new security
check or increase the attack surface (Piancó et al.,
2016; Yang et al., 2017).

Perl et al. (2015) and Yang
et al. (2017)

Deleted methods The number of removed functions/methods in the
commit.

Deleting security-critical functions or methods
may remove security checks or reduce the attack
surface (Piancó et al., 2016; Yang et al., 2017).

Perl et al. (2015) and Yang
et al. (2017)

Modified methods The number of changed functions/methods in the
commit.

The removal of security-critical functions or
methods may modify the security profile (Piancó
et al., 2016; Yang et al., 2017).

Perl et al. (2015) and Yang
et al. (2017)

Added conditions The number of added conditional expressions in
the commit.

Same as Added Methods. Yang et al. (2017) and Riom
et al. (2021)

Removed
conditions

The number of removed conditional expressions
in the commit.

Same as Removed Methods. Yang et al. (2017) and Riom
et al. (2021)

Added method
calls

The number of added function or method call in
the commit.

Same as Added Methods. Yang et al. (2017) and Riom
et al. (2021)

Removed method
calls

The number of removed function or method call
in the commit.

Same as Removed Methods. Yang et al. (2017) and Riom
et al. (2021)

Added
assignments

The number of assignments added in the commit. Adding new assignments may improve or drop
security constraints (Piancó et al., 2016; Yang
et al., 2017).

Yang et al. (2017) and Riom
et al. (2021)

Removed
assignments

The number of assignments removed in the
commit.

Same as Added Assignments. Yang et al. (2017) and Riom
et al. (2021)

Mean days since
creation

The mean number of days elapsed from the
creation dates of each modified file to the
commit date.

The ‘‘age’’ of each file could be correlated with
the presence (or absence Graves et al., 2000) of
vulnerabilities.

N/A

Mean of past
changes

The mean number of previous changes (i.e.,
commits) of each touched file.

A file that was changed many times is more
prone to defects (Nagappan and Ball, 2005) and
vulnerabilities (Zimmermann et al., 2010; Shin
et al., 2011; Perl et al., 2015).

Zimmermann et al. (2010),
Shin et al. (2011), Perl et al.
(2015) and Yang et al.
(2017)

Past different
authors

The size of the set of distinct authors that
touched the files modified in the commit.

A file touched by many different developers is
more prone to defects (Nagappan and Ball, 2005)
and vulnerabilities (Zimmermann et al., 2010;
Shin et al., 2011; Perl et al., 2015; Meneely and
Williams, 2012; Meneely et al., 2013).

Zimmermann et al. (2010),
Shin et al. (2011), Perl et al.
(2015) and Yang et al.
(2017)

Author past
contributions

The number of commits done by the author
before the commit.

Inexpert developers may involuntarily contribute
to vulnerabilities (Meneely et al., 2013).

Yang et al. (2017)

Author past
contributions
ratio

Author Past Contributions divided by the total
number of commits made to the entire project.

Same as Author Past Contributions. Perl et al. (2015)

Author 30-days
past contributions

The number of commits done by the author
within 30 days before the commit date.

Same as Author Past Contributions. N/A

Author 30-days
past contributions
ratio

Author 30-days Past Contributions divided by the
total number of commits made 30 days before
the commit date.

Same as Author Past Contributions. N/A

Author workload The amount of work that an author has invested
within a 30-days time window. Given a commit x
performed on date d, we considered the
distribution of commits done by the developers
involves within 30 days before d, scaled to [0..1]
range, and assigned its percentile value (Tufano
et al., 2017b).

A developer with high workload could implement
poor quality code (Tufano et al., 2017b), defects
(Nagappan et al., 2008) or vulnerabilities
(Zimmermann et al., 2010).

N/A

Days after
creation

The number of days elapsed from the project’s
repository creation (i.e., the first commit) date to
the commit date.

The ‘‘age’’ of the repository has an impact on the
general code quality (Tufano et al., 2017b) and
the introduction of errors (Parnas, 1994).

N/A

(continued on next page)
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Table 3 (continued).
Name Description Rationale VPMs

Fix Whether or not the commit had the goal to fix
an issue or a defect. This is done by looking at
specific keywords in the commit message
(reported in our online appendix).

Fix commits may cause collateral damages of
introducing new bugs (Kamei et al., 2012) or
vulnerabilities (Bandara et al., 2020).

Yang et al. (2017)

Touched files The number of files modified in the commit,
excluding the irrelevant ones (test,
documentation, build, and blob files).

A commit touching many files lacks of cohesion
and may have a higher risk of introducing defects
(Perl et al., 2015; Herzig et al., 2016; Yang et al.,
2017).

Yang et al. (2017) and Riom
et al. (2021)

Entropy of
changes

Distribution of changes across each modified file,
measured using the Normalized Static Entropy, as
used by Kamei et al. (Kamei et al., 2012).

A high entropy indicates a highly-fragmented
commit, i.e., scattered changes touching many
files, which indicates a highly-complex commit
(Hassan, 2009; Kamei et al., 2012; Tufano et al.,
2017a).

Yang et al. (2017)

Number of Hunks The number of continuous blocks of changes in
the commit diff.

Similar to Entropy of Changes. Perl et al. (2015)

Product metrics

LOC Lines of Code, counting both source and comment
lines.

Large files tend to have higher risk of becoming
vulnerable (Koru et al., 2009; Zimmermann et al.,
2010; Meneely and Williams, 2012; Perl et al.,
2015; Theisen et al., 2015).

Zimmermann et al. (2010),
Chowdhury and Zulkernine
(2011), Shin and Williams
(2011) and Zhang et al.
(2015)

SLOC Source Lines of Code, i.e., LOC without comment
and documentation lines.

Same as LOC. Chowdhury and Zulkernine
(2011) and Yang et al.
(2017)

WMC Weighted Methods per Class, i.e., the sum of the
complexities (i.e., McCabe’s Cyclomatic
Complexity) of all the methods in a class
(Chidamber and Kemerer, 1994).

Complex code is difficult to maintain and test
(Shin et al., 2011; Chowdhury and Zulkernine,
2011; McCabe, 1976) and thus has higher chance
of having vulnerabilities (Shin et al., 2011;
Chowdhury and Zulkernine, 2011; Zimmermann
et al., 2010).

Zimmermann et al. (2010),
Chowdhury and Zulkernine
(2011) and Zhang et al.
(2015)

CBO Coupling Between Object, i.e., the number of
dependencies a class has with other classes
(Chidamber and Kemerer, 1994).

Highly coupled code makes input from external
sources harder to trace (Shin et al., 2011), and
has positive correlation with vulnerabilities
(Chowdhury and Zulkernine, 2011).

Zimmermann et al. (2010)
and Chowdhury and
Zulkernine (2011)

RFC Response For a Class, i.e., the number of methods
(including inherited) that can potentially be called
by other classes (Chidamber and Kemerer, 1994).

Same as CBO. Chowdhury and Zulkernine
(2011), Shin et al. (2011)
and Zhang et al. (2015)

DIT Depth of Inheritance, i.e., the depth of the class
within its inheritance tree (Chidamber and
Kemerer, 1994).

A deep class is likely to have a larger number of
inherited methods, making it more complex to
predict its behavior as it is affected by many
ancestor classes (Chowdhury and Zulkernine,
2011).

Zimmermann et al. (2010)
and Chowdhury and
Zulkernine (2011)

NOC Number of Children, i.e., the number of direct
sub-classes (Chidamber and Kemerer, 1994).

Changing a class with many incoming
dependencies may introduce defects (Chowdhury
and Zulkernine, 2011).

Zimmermann et al. (2010)
and Chowdhury and
Zulkernine (2011)

LCOM1 Lack of Cohesion of Methods version 1, i.e., the
number of pairs of methods not sharing all the
fields they access to Chidamber and Kemerer
(1994).

Poor cohesive code has been shown to be
positively correlated with vulnerabilities
(Chowdhury and Zulkernine, 2011).

Chowdhury and Zulkernine
(2011)

LCOM2 Lack of Cohesion of Methods version 2, i.e., the
percentage of methods not accessing a specific
attribute averaged over all attributes in the class
(Henderson-Sellers et al., 1996).

Same as LCOM1. Chowdhury and Zulkernine
(2011)

Text metrics

Files Term(s)
Frequency

The counting of each word that appears in the
full text of the modified Java files.

Term frequency has been shown to improve the
prediction power if considered with other metrics
(Zhang et al., 2015; Theisen and Williams, 2020).

Scandariato et al. (2014),
Walden et al. (2014) and
Zhang et al. (2015)

Patches Term(s)
Frequency

The number of times in which the words
appearing in the patches involving Java files were
changed (added or removed).

Same as Files Term(s) Frequency. Perl et al. (2015)

the Variable Inflation Factor (VIF) method (O’brien, 2007): for
each independent variable and for each experimented model, the
vif function measures how much the variance of the model
increases because of collinearity. The features having a vif co-
efficient higher than 5 were removed; the process was repeated
until the point where all the features had coefficients lower

than the threshold. Afterwards, we considered the problem of
hyper-parameter configuration. In particular, we run the Random

Search algorithm (Bergstra and Bengio, 2012), which performs
a randomized search of the hyper-parameter space with the
aim of identifying the optimal hyper-parameter values to use
for the classification task. Bergstra and Bengio (2012) proved
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Fig. 1. The AUC–ROC scores obtained during the LOGO validation of the 56 models, grouped by the seven features combinations.

that this search algorithm is able to reach, using less computa-
tional resources, the same – or even better – hyper-parameter
configuration as an exhaustive search, e.g., Grid Search.

3.6. Evaluating the machine learning methods

Our empirical investigation led to the training and validation
of a total of 56 different models, coming from the combination
of the eight machine learning algorithms (Section 3.5.2) and the
seven features combinations (Section 3.5.1). The results of the
comparison of these models are reported in Section 4. After set-
ting the machine learners, we defined the data analysis procedure
to address our research question.

3.6.1. Training and validation strategy
To assess the capabilities of the considered models, we had

to define a training and validation strategy. We took into ac-
count the imbalance of the dataset: as previously shown (see
Table 2), each project has around 1% of vulnerable commits. As
such, we applied the Synthetic Minority Oversampling Technique
(SMOTE) (Chawla et al., 2002): for each project, this technique
generates artificial samples of the minority class (i.e., vulnerable
commits in our case) in order to rebalance the classes. Unfor-
tunately, we found that the technique could not be applied on
all the considered projects. In particular, SMOTE requires the
presence of at least two samples of the minority class; other-
wise, it does not have enough data to oversample the dataset.
In two projects, i.e., Junrar and Litemall, only one commit was
labeled vulnerable and it was not possible to apply the balancing
approach. This problem influenced our training procedures, as we
could not effectively train machine learners using a within-project
strategy.

Hence, we went for a cross-project training. This means that
we aggregated data coming from n-1 projects, balance the train-
ing set, and then verify the performance of the models on the
remaining project. More specifically, we adopted a Leave One
Group Out (LOGO) validation strategy, which divides the entire
dataset into folds, each containing all the commits of a single
project for a total of 9 folds. The validation consisted of 9 it-
erations, each using 8 folds to build the training set, and the
remaining one for the test set. As a consequence, each project
was used in n–1 training sessions, and only once for the testing.

3.6.2. Detection performance measures
For each fold experimented during the validation, we assessed

the machine learning models capabilities using a number of per-
formance measures. First, we computed precision and recall. How-
ever, as suggested by Powers (2011), these two measures present

some biases as they are mainly focused on positive examples
(i.e., vulnerable commits in our context) and predictions, so they
do not capture any information about the rates and kind of errors
made. The contingency matrix (a.k.a. confusion matrix), and the
related F-measure overcome this issue. Moreover, we computed
the Matthews Correlation Coefficient (MCC) (Matthews, 1975) to
understand possible disagreement between actual values and
predictions—the coefficient involves all the four quadrants of the
contingency matrix. In addition, from the contingency matrix
we retrieved the measure of true negative rate (TNR), which
measures the percentage of negative sample correctly catego-
rized as negative, false positive rate (FPR) which measures the
percentage of negative sample misclassified as positive, and false
negative rate (FNR), measuring the percentage of positive samples
misclassified as negative. The measure of true positive rate is
left out as equivalent to the recall. Finally, we computed the
Receiver Operating Characteristic (ROC) curve, and the related Area
Under the Curve (AUC–ROC). This measure gave us the probability
of ranking a randomly chosen positive instance higher than a
randomly chosen negative one.

3.6.3. Statistical analysis
The final step of our methodology consisted of the applica-

tion of statistical tests to verify whether the differences in the
performance achieved by the various experimented models were
statistically significant. Such an analysis was useful to assess the
existence of metrics and/or classifiers that were more suitable for
the problem of just-in-time vulnerability detection. Since the data
are not normally distributed, we exploited the Friedman Test with
the Nemenyi post-hoc test (Nemenyi, 1962) on all the machine
learning models. This is a post-hoc test that identifies the groups
of data that differ after a statistical test of multiple comparisons
has rejected the null hypothesis (the groups are similar), making
a pair-wise performance. We selected this test because it is robust
to multiple comparisons – which is our case since we had to
compare multiple models on multiple features – and does not
require the underlying distribution to be normally distributed. To
conduct the statistical analysis, we used the Nemenyi package for
Phyton.9

4. Empirical study results

Figs. 1 and 2 depict the box plots reporting the distribution
of AUC–ROC and F-measure values obtained during the LOGO
validation of the 56 machine learning models on the considered

9 https://scikit-posthocs.readthedocs.io/en/latest/.
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Fig. 2. The F-measure scores obtained during the LOGO validation of the 56 models, grouped by the seven features combinations.

dataset. In both figures, each color indicates the model produced
by the selected learning algorithms (Section 3.5); the box plots
were also grouped by the seven different combinations of fea-
tures. For the sake of readability and comprehensibility, we only
report in detail the results of two of the seven performance
metrics described in Section 3.6; however, the complete results
are included in the online appendix.4

Considering the AUC–ROC distributions (Fig. 1) the ensem-
ble methods (Random Forest, Extra Trees, AdaBoost, Gradient
Boosting, and XGBoost) generally performed better than the
three basic classifiers (SVM, KNN and Decision Tree) over all the
seven combinations of features. Among all the feature sets, the
product group alone (label ‘‘PRODUCT’’) caused the models to ob-
tain the worst AUC–ROC scores. Something similar, though with
lesser extent, happened for the textual metrics (label ‘‘PRODUCT’’).
The combination of these two groups (label ‘‘PRODUCT-TEXT’’)
did not yield any relevant positive effect, i.e., the addition of
product metrics does not provide substantial changes in terms of
AUC–ROC. Moreover, the sole presence of product and/or textual
metrics did not highlight any relevant difference between basic
classifiers and ensemble models, i.e., they are comparable in
terms of AUC–ROC. Although the ensemble models still show
better performance, the SVM and KNN models are the only ones
that greatly benefit from the presence of textual metrics. This
phenomenon becomes even more evident when moving from the
product+process group to the combined one. The most interesting
results occurred when process metrics were involved (all the
groups having the ‘‘PROCESS’’ label in Fig. 1). On the one hand,
these metrics further increased the differences among the AUC–
ROC distributions—e.g., the large gap between the box plots of
AdaBoost and SVM. On the other hand, almost all the models –
with the notable exception of the SVMs – received a general im-
provement. What is more, the ensemble models achieved the best
AUC–ROC scores in product+process feature combination (label
‘‘PRODUCT-PROCESS’’), hinting that the addition of textual metrics
causes negative, though marginal, effects. Once again, SVM and
KNN were not subject to these phenomena: their models did not
receive any positive effect from the presence of process metrics.
Indeed, similarly to the product metrics, they seem to be quite
‘‘insensitive’’ from the presence or absence of processmetric when
the textual metrics are already involved. This can be seen by
comparing the set having the textual metrics alone (label ‘‘TEXT’’)
with the ones including them (‘‘PRODUCT-TEXT’’, ‘‘PROCESS-TEXT’’,
and ‘‘COMBINED’’).

The F-measure trends (Fig. 2) are largely different from the
ones seen with the AUC–ROC. In the first place, not all the
ensemble methods benefit from the presence of process met-
rics. Random Forest, Extra Trees and XGBoost classifiers scored

even lower F-measures than the basic classifiers; this difference
becomes even larger when textual metrics are added: their F-
measures collapsed around 0. Differently, AdaBoost Gradient

Boosting preserve the general behavior seen with the AUC–ROC:
adding process metrics is always beneficial, i.e., the inter-quartile
ranges shrunk, while the mean and median values increased. To
a far lesser extent, these two models suffer from the presence of
textualmetrics, as they may slightly worsen their performance. As
an example, XGBoost dropped for about 0.1 point in F-measure
when textual metrics were added to product and process models
(i.e., from ‘‘PRODUCT-PROCESS’’ to ‘‘COMBINED’’). In any case, the
sole presence of process metrics is enough to achieve acceptable
performance.

Finding #1

The majority of the models benefit – in terms of both AUC–
ROC and F-measure scores – from the presence of process
metrics in the set of predictors. SVM- and KNN-trained clas-
sifiers give the best of themselves when textual metrics are
involved, while the opposite, to varying degrees, occurs for
the other models, especially in terms of F-measure—which is
much more susceptible than AUC–ROC.

From the point of view of the machine learning algorithms,
the Decision Tree provides the most unstable models, highly
influenced by the set of predictors used, i.e., they received the
largest drop in terms of both AUC–ROC and F-measure when tex-
tual metrics were added. This could be explained by the fact that
decision trees are particularly sensible to noise in the training
data, and cannot properly generalize. This effect is more obvious
in the case of a high dimensional feature space—i.e., the one
created when all the tokens from the two bag-of-words built are
added – or highly imbalanced data – which is true in this context
since the number of vulnerable instances is far lower than the
number of ‘‘safe’’ instances. Such a limitation is partially solved
by using ensemble methods. Conversely, the classifiers trained
using SVM and KNN are the only models positively influenced
by the presence of textual metrics. In particular, KNNs resulted
to produce the most stable models, being the least influenced
by other predictors that are not part of the textual group, and
achieving very similar scores in most combinations of predictors.
Between the two, KNN outperformed SVM in terms of AUC–
ROC, but it scored very low performance in terms F-measure.
Nevertheless, both algorithms did not manage to train models
with high scores, making them unsuitable in the context we
considered.

Random Forest and Extra Trees, despite having a similar
learning mechanisms, obtained quite different distributions: they
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both scored the worst possible F-measures, being around 0 in
most cases, even lower than a traditional Decision Tree. They
draw benefit from the inclusion of process metrics, but they are
too much negatively influenced by the tokens of the bag-of-words.
Curiously enough, they still managed to reach very high AUC–ROC
scores, sometimes even outperforming all the other learners. Such
contrasting AUC–ROC and F-measure values implies that there
is a possibility to improve the predictive capabilities of these
models by tuning the decision threshold: instead of keeping it to
the default value 0.5, change it accordingly to the specific needs,
finding the best trade-off between the recall and the false positive
rate, which also have an impact to the F-measure.

The scenario is thoroughly different for boosting-based mod-
els: AdaBoost, followed by Gradient Boosting, outperformed the
other learners on all fronts. This result was somehow expected
since both these models build sequential shallow weak classifier,
usually a single split decision tree, which are less prone to overfit
compared to the deep weak classifiers used by other ensemble
models like Random Forest. Moreover, the aggregation of the
prediction is weighted in the case of AdaBoost and Gradient

Boosting, hence the individual weak classifiers who performed
better have a higher weight compared to those who performed
poorly. In the other ensemble models, the prediction of each
weak classifier carries the same weight. Oddly enough, XGBoost,
despite being a boosting-based model, was very far from the
performance of AdaBoost and Gradient Boosting, and more
similar to Random Forest and Extra Trees.

Finding #2

Boosting-based classifiers, especially AdaBoost and Gradient

Boosting, achieved the best overall results. The other ensem-
ble models scored far worse F-measures, even lower than
basic classifier. RandomForest and ExtraTrees, however, ob-
tained very high AUC–ROC scores, hinting the possibility to
improve their predictive capabilities by properly tuning the
decision threshold. SVMs and KNNs are the only models to
benefit from textual metrics, and generally ignore the effect
of other features.

To assess whether the distributions of the performance met-
rics were statistically different when considering different combi-
nations of predictors, we run the post hoc Nemenyi rank test (Ne-
menyi, 1962) on all the machine learning models. For the sake of
readability, in this paper we only report and describe the results
for AdaBoost, i.e., the algorithm that provided the best results
over all the seven combinations of features. For consistency, we
show the p-values of the Nemenyi rank test computed on the
distribution of AUC–ROC and F-measure values by the means of
heatmaps (Figs. 3a and 3b). In addition, we report the statistical
results (in terms of AUC–ROC and F-measure) of the eight ex-
perimented machine learners trained using the product+process
features set, i.e., the best combination according to our results
(Figs. 4a and 4b). The complete results are reported in our online
appendix.4

Fig. 3a shows statistically significant differences (depicted in
dark violet) in AUC–ROC values between the models built using
the product metrics alone (label ‘‘PRODUCT’’ label) and both (1)
those built using process metrics (label ‘‘PRODUCT’’), and (2) the
ones trained using only the textual metrics (label ‘‘TEXT’’). This
confirms the large positive effect that process metrics have on
the AUC–ROC measure on AdaBoost-trained models. Between
the product and textual groups there are no statistically signif-
icant differences, implying that there is no sufficient evidence
to establish which provides higher predictive capabilities. On a

similar note, Fig. 3b shows the presence of statistically signifi-
cance differences between the combined group (label ‘‘COMBINED’’
and the groups involving either product or textual metrics (labels
‘‘PRODUCT’’, ‘‘TEXT’’, and ‘‘PRODUCT-TEXT’’) in terms of F-measure.
This is a further evidence on the contribution provided by the
process metrics.

Focusing on the process+product combination, which provided
the best models overall, Fig. 4a better highlights the comparable
performance obtained by the ensemble methods which signifi-
cantly differs from the ones obtained by SVM and KNN—which
did not benefit from the process metrics, but, rather, from textual
ones. Fig. 4b provides a different view of what could be seen
from the box plots (Fig. 2): AdaBoost and Gradient Boosting

far greatly surpassed the F-measures scored by RandomForest,
ExtraTrees, and DecisionTree models. Surprisingly, the Deci-

sionTrees were able to significantly surpass the performance
of RandomForest and ExtraTrees. This does not immediately
implies that decision trees are better than the related ensemble
methods. As a matter of fact, RandomForest and ExtraTrees still
scored higher AUC–ROC, suggesting the need to fine tune the
decision threshold to achieve better predictive capabilities, in-
stead of relaying on the default one (which could also be the best
choice in certain cases). This aspect, however, deserves further
investigation.

Finding #3

Significance tests confirm the findings discovered during the
qualitative analysis of the distributions by the means of box
plots: the adoption of process metrics to AdaBoost models
provides improvements in terms of both AUC–ROC and F-
measure. More in general, the boosting-based algorithms are
better than other classifiers, while non-boosting ensemble
methods still need further investigation on how to improve
their capabilities by tuning their decision thresholds.

5. Discussion and implications

The results achieved in our empirical study revealed a number
of insights that may lead to concrete implications for the software
engineering research community, and that we further discuss
hereafter.

Comparison with other just-in-time VPMs. Our analyses re-
vealed a number of insights that could be related to the ones
discovered by Perl et al. (2015) and Yang et al. (2017), i.e., the
closest studies to our work and that represent the current state-
of-the-art in just-in-time vulnerability prediction modeling. Sim-
ilarly to what Riom et al. experienced (Riom et al., 2021), we
could not provide a precise comparison with the VPMs described
in Perl et al. (2015) and Yang et al. (2017), as the original papers
point to appendices that no longer exist, preventing us to access
to the raw results they achieved. Moreover, the description of
the metrics extraction provided in those papers do not report
implementation details, making the reproduction even harder.
For all these reasons, we only compared our findings with the
ones reported in Perl et al. (2015) and Yang et al. (2017), leaving
out any detailed comments on the actual performance scores
achieved by the models. In this respect, our goal was to find any
possible point of agreement and/or disagreement between our
contribution and the current state-of-the-art VPMs.

The performance of the two VPMs (Perl et al., 2015; Yang
et al., 2017) were reported in terms of precision, using the ra-
tionale that, in the context of predicting software vulnerabili-
ties, a higher precision is preferable as the minimization of the
false positive rates is instrumental for preventing developers
to pointlessly inspect a large number of commits that will not
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Fig. 3. Nemenyi test p-values obtained for comparing the eight AdaBoost models trained on the seven features combinations.

Fig. 4. Nemenyi test p-values obtained for comparing the models trained on product+process feature combination using the eight machine learning algorithms.

contribute to the insertion of vulnerable code. Because of this,
the authors compared their models with a baseline static analysis
tools, i.e., FlawFinder (FlawFinder, 2021), to find whether they
could outperform its detection capabilities at the same recall
level (done by varying the decision threshold). In both stud-
ies, the models were able to achieve much higher precision,
i.e., they largely reduced the amount of false positives discovered
by FlawFinder. Yet, such a comparison is still limited, as it does
assess the actual effectiveness of machine-learning models. As a
matter of fact, under these configurations – i.e., when setting the
decision threshold to have the same recall level as FlawFinder

– the SVM built in Perl et al. (2015) obtained an F-measure of
0.343, while the RandomForest used in Yang et al. (2017) scored
0.198. Both these results indicate limited effectiveness. It is worth
remarking that we could not compare these scores with ours
as all the studies considered different contexts and feature sets,
making any comparison unfair and leading to wrong conclusions.
In any case, the F-measure, together with precision and recall,
cannot be the sole measure to be taken into account, especially
when working with imbalanced datasets. Indeed, other measures,
such as AUC–ROC and MCC, are recommended to provide a better
overview on the predictive capabilities of the models (Shepperd
et al., 2014; Pecorelli et al., 2020). To the best of our knowledge,
our study is one of the first in JIT vulnerability prediction that
does not consider the precision alone, and whose primary goal is
not overcoming static analysis tools, but rather comparing many
learning algorithms to find which provides the best models, as
well as adopting critical pre-processing steps aimed at improving
the training session.

Both Perl et al. (2015) and Yang et al. (2017) considered the
use of textual metrics under the ‘‘code metrics’’ feature group.
Specifically, Perl et al. (2015), not only they run the bag-of-
words on the patch content, but they also added the counting

of the C/C++ language keywords (e.g., if, goto, etc.) in the same
group; similarly, Yang et al. (2017) counted the C/C++ keywords
appearing in the modified files of the commit. The behavior of
our SVM models seems to be in line with the one by Perl et al.
(2015): the textual metrics seems to be beneficial, as opposed to
the process metrics (which they called GitHub meta-data). This
may be explained by the fact that SVMs are able to perform
well even with large and sparse feature space, i.e., when consid-
ering words counting (Joachims, 1998). On the other hand, the
RandomForest in Yang et al. (2017) obtained the worst perfor-
mance when involving the textual metrics, the same encountered
with our RandomForests. In both studies the authors managed
to obtained the best performance when considering all metrics
together, confirming the results observed in Theisen andWilliams
(2020) at the file granularity level. Our SVMs did not experience
this effect, as the best model is obtained when only textual
features were considered, while our RandomForests confirmed
this effect only for the AUC–ROC scores, as the addition of textual
metrics dropped the F-measure close to 0. This hints the need of
better data pre-processing activities tailored on the requirements
of each learning algorithm.

JIT vulnerability detection: Are we there yet? In the title of
the paper, we pose this question. According to our results, the
answer is: ‘‘No’’. The accuracy of the existing vulnerability predic-
tion models is not enough to make developers aware of possible
vulnerabilities when committing new changes onto a repository.
Our study identifies a number of open issues and challenges that
the research community should further consider and on which
we elaborate more in the remainder of the section. From the
predictive power of the features to the machine learning pipelines
configured for the prediction exercise, the currently available
solutions cannot provide a just-in-time feedback to developers.
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From a practical perspective, our results indicate the lack of tech-
niques that can analyze the changes done within a commit and
detect possible inconsistencies inducing vulnerabilities. As such,
developers must still rely on longer-term predictions that analyze
entire releases to identify vulnerable files. This represents a threat
to the usability and usefulness of the available approaches, as
indicated by previous work (Kamei et al., 2012). Hence, our work
points out the need for further research on the matter and that
should be devoted to all components of the machine learning
pipelines.

The existing metrics are not enough. One of the key out-
comes of our research is the inability of current metrics to char-
acterize vulnerable commits in an effective and consistent man-
ner. Indeed, despite having considered most of the metrics ex-
ploited in previous work on VPMs, in many cases the performance
achieved in terms of F-measure are low. This is particularly ev-
ident when considering the textual metrics: the bag-of-words
source code representation which was found successful by Scan-
dariato et al. (2014) was instead poorly accurate in our case. This
is true for both models exploiting this representation individu-
ally and those where textual features are combined with other
metrics. This might be due to the fact that, when run on the set
of modified files, the representation takes into account too many
irrelevant tokens possibly creating noise, hindering the predic-
tive capabilities of the bag-of-words to indicate the whether a
commit contributes to a vulnerability. For this reason we also (1)
employed the use of thresholds to discard both high- and low-
frequency words, and (2) added the tokens extracted from the
commit patch only, with the aim of reducing the noise and using
more relevant features. Yet, these actions did not improve the
overall quality of the textual metric set, highlighting the need
for additional specific pre-processing activities aiming at further
reducing noise. On a similar note, general-purpose code metrics
alone often lead to poor results. For instance, the product metrics
exploited in our study – and in vulnerability research in general
– refer to the quantification of code quality aspects like cohesion,
coupling, and complexity: while these have been successfully
employed in other branches, e.g., code smell or defect predic-
tion (Azeem et al., 2019; Hall et al., 2011), we observed that their
contribution for just-in-time vulnerability detection is limited.
Therefore, our results represent a call for new software metrics
that can better characterize additional aspects of the source code,
e.g., capturing security-related aspects (Alshammari et al., 2011;
Chowdhury et al., 2008; Younis et al., 2016), and evolutionary
properties correlated to the presence of vulnerabilities.

Better together? On the combination of feature sets. As a
follow-up discussion, it is worth analyzing the results achieved
while combining multiple metrics. As recently reported by
Theisen and Williams (2020), vulnerability prediction models
relying on a mixture of code, process, and textual metrics perform
better than models based on individual features. When lowering
the granularity of the prediction to commit-level, we found that
this is not always the case, hence partially contrasting their
results. As a matter of fact, there are some specific learning al-
gorithms that appear to perform well under certain performance
measures but fail when evaluated with different measures. For in-
stance, despite showing very high AUC–ROC scores, the Random

Forest models resulted to be one of the worst models in terms of
F-measure when all the features were involved, apparently owing
to the addition of textual metrics. At the same time, Theisen
and Williams (2020) show that the combination of textual and
software metrics lead to a considerable drop in precision, hence
affecting F-measure as well, in line with the results we observed
in Fig. 2. This suggests the need for automated mechanisms that
can exploit contextual information to recommend which features
would best fit the needs of the system where vulnerabilities must

be diagnosed. A partial exception to this general finding was
represented by process metrics: as shown in our study, these are
the features that allow machine learners to significantly improve
their detection capabilities. Our results seem to be in line with
previous research showcasing the positive impact that change
history information has on predictive modeling approaches (Pas-
carella et al., 2019; Rahman and Devanbu, 2013). As such, it seems
reasonable to argue that further research on the processes around
the introduction of vulnerabilities should be performed to better
characterize and improve their detection.

Ensemble learning for vulnerability prediction. In our in-
vestigation, we observed that the choice of the classifier has an
impact on the resulting capabilities of just-in-time vulnerability
detection models. While base learning algorithms typically have
low performance, we noticed that the use of ensemble methods
improves the classification capabilities. On the one hand, this
result does not come as a surprise, as ensemble learning has been
introduced with the aim of overcoming the performance of base
classifiers. On the other hand, however, it is also worth pointing
out that previous investigations in the field of software engi-
neering have revealed that the improvements given by ensemble
methods might be limited when other aspects (e.g., availability
of a balanced training set) come into play (Laradji et al., 2015;
Pecorelli and Di Nucci, 2021). Our findings specifically highlight
that boosting methods might be promising for vulnerability de-
tection and, indeed, the AdaBoost learner is the one obtaining
the best performance. As observed in Section 4, its characteris-
tics allow it to iteratively train a weak classifier on subsequent
training data, assigning a weight to each instance of the training
set, and leading to boost the learning capabilities. These results
might drive practitioners in the selection of the technique to
use when predicting vulnerabilities at commit-level, but also
researchers to build upon these characteristics to engineer ad-hoc
methodologies to further improve the boosting performance.

6. Threats to validity

This section discusses the possible biases to our results and
reports the employed mitigation strategies.

Threats to construct validity. A first threat in this category
relates to the dataset exploited. We mined the National Vulner-
ability Database with the aim of collecting real, verified data on
the vulnerabilities that affected software projects in the past. The
nature of the information contained in NVD allowed us to be
confident about the reliability of the dataset. Nonetheless, we
cannot exclude imprecision: for instance, a patch reported in the
database might have not removed a vulnerability as intended.

We relied on a technique based on SZZ to fetch the
vulnerability-contributing commits that are likely to have caused
the patch applied in the vulnerability-fixing commits mined from
NVD. Previous studies have shown that this algorithm may
frequently produce false positives (Rodríguez-Pérez et al., 2018);
to mitigate this risk we adopted some precautions. We exploited
the implementation of SZZ provided by PyDriller (Spadini et al.,
2018), which follows the standard version of the algorithm
(Sliwerski et al., 2005) on which some adjustments have been
included, i.e., discarding the candidate commits where only com-
ments, cosmetic changes, or empty lines were blamed. This im-
plementation achieved the highest recall with respect to the other
variants (Rosa et al., 2021), and so we opted for it to reduce the
risk of missing relevant VCCs.

Over the initial population of 56,286 commits considered in
our context, we sampled 8991 commits due to computational
constraints. We are aware that this sampling could have affected
the performance of the machine learning models during the train-
ing and testing phases; however, our sampling criterion was
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carefully made random with the aim of mitigating the selection
bias.

Another potential threat may be related to the selection of the
independent variables used to build the experimented models. In
this respect, we have carefully considered the related literature
and the features previously used by researchers who targeted
the problem of file-level vulnerability detection. Perhaps more
importantly, our analyses targeted three different families of met-
rics, hence allowing us to experiment with features capturing
different aspects of source code. Nevertheless, we cannot rule out
that other metrics, not considered in the study, could provide
additional contribution to the performance of just-in-time vul-
nerability detection methods. We plan to investigate this aspect
further in the future.

Finally, when using the bag-of-words method we discarded
the words appearing in over 80% of the documents (i.e., files or
patches) or less than 5%. While this step could have removed
some relevant features, and so possibly hindered the performance
of the models, it is a recommended pre-processing step to re-
move noisy data and reduce the dimensionality of the dataset,
which has been seen to have positive effects on the training
process (Martins, 2003; Joachims, 1998). The choice of these
thresholds was directed by the need to have a reasonable number
of features to train the models in an acceptable time without
removing important tokens.

Threats to internal validity. In the context of our work, we
selected and experimented eight machine learning models to
better understand their strengths and weaknesses. Of course,
the setting up of these approaches might have biased our re-
sults. However, we followed well-established guidelines (Song
et al., 2010; Tantithamthavorn and Hassan, 2018) through which
we addressed possible issues due to multi-collinearity, missing
hyper-parameter configuration, and data balancing issues. When
focusing on these issues, we used methods and techniques that
have been widely employed in the past (e.g., the vif function
to deal with correlated variables) and that are recognized as
effective.

Threats to external validity. Our study involved nine systems
written in Java. On the one hand, we recognize that larger-scale
studies would be desirable to further understand the capabilities
of machine learning models for vulnerability detection. On the
other hand, we are aware that different results might be obtained
when addressing our research question on projects written in dif-
ferent programming languages or developed in different contexts
(e.g., industrial systems). To enable replicability, we made all data
and scripts available in our online appendix.4 In any case, our
future research agenda includes a large-scale replication of the
study.

Threats to conclusion validity. To derive conclusive results on
the performance of just-in-time vulnerability detectors, we first
computed a number of evaluation metrics in an effort of capturing
various angles of their capabilities. All of them uniformly indi-
cated the poor performance of the experimented models, hence
confirming our conclusions. In addition, we also applied statistical
tests to verify the significance of the differences observed: we run
the Nemenyi rank test (Nemenyi, 1962) to deal with the problem
of multiple comparisons. This test is particularly useful in our
context as it is suitable for non-normal distributions like the ones
we experienced.

7. Conclusion

This paper proposed an empirical investigation into the capa-
bilities of machine learning models for just-in-time vulnerability
prediction. We took into account a set of eight machine learners
and three families of features to provide a broad overview of how
software vulnerabilities can be identified at commit-level.

Our key results indicated that the problem should be fur-
ther investigated, as elaborated in Section 5. First, the currently
available metrics seem to be not enough and, perhaps more im-
portantly, their combination does not necessarily improve the de-
tection capabilities. The research community should invest effort
in defining empirical investigations into the features connected to
the introduction of vulnerabilities at commit-level, other than the
features that developers consider more relevant. For instance, we
can envision the definition of longitudinal studies where develop-
ers are monitored for a given time period so that their activities
might be closely analyzed in order to identify the key inducers
of vulnerabilities. Similarly, we can envision studies aiming at
elaborating catalogs of micro-antipatterns that developers fre-
quently apply when contributing to vulnerabilities. An improved
understanding of the features that more characterize the prob-
lem of software vulnerabilities would definitively improve the
accuracy of just-in-time prediction models. On the basis of these
empirical investigations, the definition of novel instruments able
to compute those metrics and, perhaps more importantly, novel
comprehensive datasets would be key to enable more and more
research on the matter.

Second, our results indicate that the choice of the classifier
impacts the performance: while most of the algorithms exper-
imented achieve low F-measure scores, we observed that an
ensemble method like AdaBoost seems to provide promising
results that should be further analyzed and possibly improved by
the research community. In other terms, our findings stimulate
research targeting the engineering of software vulnerability pre-
diction models. For instance, we could envision empirical stud-
ies and/or novel software engineering for artificial intelligence
methods that could mix together the capabilities of individual
classifiers or even dynamically adapt the classifier to use based on
the peculiar characteristics of code commits and of the developers
applying changes.

Last but not least, a collateral finding of our study concerns
with the lack of public data and scripts that can be used to
replicate/reproduce previous studies. This is pretty worrisome
and allows us to recommend further research effort on the defi-
nition of standards and guidelines to make research reproducible,
especially to enable researchers to compare the previous findings
with new ones, hence leading to advance the state of the art in a
safe and sustainable manner.

Our future research agenda includes a larger-scale replica-
tions of our study, other than the definition of novel techniques
for (1) selecting features to use when identifying vulnerabilities
at commit-level and (2) improving the training capabilities of
ensemble approaches.
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ABSTRACT
Anomaly detection has been attracting interest from both the in-
dustry and the research community for many years, as the num-
ber of published papers and services adopted grew exponentially
over the last decade. One of the reasons behind this is the wide
adoption of cloud systems from the majority of players in multi-
ple industries, such as online shopping, advertisement or remote
computing. In this work we propose a Dataset foR cloud-nAtive
memoRy anomaliEs: RARE. It includes labelled anomaly time-series
data, comprising of over 900 unique metrics. This dataset has been
generated using a microservice for injecting artificial byte stream in
order to overload the nodes, provoking memory anomalies, which
in some cases resulted in a crash. The system was built using a
Kafka server deployed on a Kubernetes system. Moreover, in order
to get access and download the metrics related to the server, we
utilised Prometheus. In this paper we present a dataset that can
be used coupled with machine learning algorithms for detecting
anomalies in a cloud based system. The dataset will be available
in the form of CSV file through an online repository. Moreover,
we also included an example of application using a Random Forest
algorithm for classifying the data as anomalous or not. The goal of
the RARE dataset is to help in the development of more accurate
and reliable machine learning methods for anomaly detection in
cloud based systems.

CCS CONCEPTS
• Software and its engineering → Software organization and
properties; Correctness; Designing software.

KEYWORDS
Dataset, anomaly detection, kubernetes, self healing, machine learn-
ing
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1 INTRODUCTION
Cloud-native systems have many more moving parts than tradi-
tional monolithic ones. These systems are composed of several
connected services, usually deployed on different machines. The
different services communicate together through the network and
there are orchestrators, load balancers, message buses, and many
other components not needed in monolithic systems that can go
wrong. In such a complex system, runtime failures are unavoidable
and must be kept under control [4, 12].

Therefore, the introduction of anomaly detection systems is of
paramount importance, to maintain the quality of service and to
avoid to run to unexpected costs, due to anomalous usage of cloud
resources [12, 14].

An anomaly can be defined as a rare event where the system
behaviour deviates from what is standard, normal, or expected.
This event usually differs significantly from the rest of the data. For
example, a service could use an anomalous amount of memory or
processors that will not enable other services to run properly. As
another example, some service consumer might stop sending fetch
requests to the broker, meaning that the service could be stalled or
dead.

Different researchers proposed anomaly detection mechanisms.
However, the vast majority are based on proprietary datasets or
on very generic datasets [7, 12, 14] Moreover, memory-related is-
sues are some of the most common anomalies in cloud-native sys-
tems [12] and the lack of labeled dataset clearly reporting where
memory-related anomalies occur and in particular, when the event
that generate the anomaly is introduced, do not allow researchers
to define accurate prediction models to prevent these type of anom-
alies.

The goal of this work is to provide a dataset generated from
a cloud-native system, with a series of labelled memory-related
anomalies, to enable researchers to apply machine learning models
enabling them to compare the performances of their models.

For this purpose, in this paper we present the “dataset foR cloud-
nAtive memoRy anomaliEs” (RARE). RARE is a labeled dataset
specifically created for cloud-native memory-related anomalies. It

https://doi.org/10.1145/nnnnnnn.nnnnnnn
Francesco Lomio (TAU)



includes 7,062metrics collected on 10K data points, and 600memory
anomalies randomly injected.

The RARE dataset will enable the benchmark ofmachine learning
models for memory-related anomaly detection. The usage of a
common dataset will also allow researchers to replicate existing
works, and to improve the performances of the machine learning
algorithms adopted for the anomaly detection phase.

At the best of our knowledge, two other datasets have been
presented for the analysis of anomalies in cloud-native systems:
the Yahoo Webscope S5 [1] and the Numenta Anomaly Benchmark
[9]. However, none of them includes memory-related anomalies.

(1) Yahoo Webscope S5 was created following some recent
events in Yahoo’s website who almost caused a crash in
their website. They provided a dataset that includes a set of
anomalies (crashes) of the system. The dataset is composed
of 367 time series, each one with length equal to 1,500. To
increase the simplicity of the dataset it has been divided
into 4 classes with count: 67/100/100/100. The class 𝐴1 is
composed of real data from computational services, while
the following three (namely 𝐴2, 𝐴3, 𝐴4) are composed of
synthetic anomaly data with increasing complexity. For all
time series, the Ground Truth (GT) is available.

(2) NumentaAnomalyBenchmark (NAB) is a rigorous bench-
mark for evaluating real-time anomaly detection algorithms.
We followed three requirements to generate the dataset: in-
clude all possible types of streaming anomaly, include multi-
ple data metrics and represent common challenges including
noise. It is composed of 58 data files each with 1,000-22,000
data instances. The whole dataset has been labeled manually.
The main characteristic of the dataset however, is the very
rigorous scoring function which weights different kinds of
errors differently. The main three points at the foundation of
scoring in NAB are: the anomaly window, its scoring func-
tion and the application profile. The anomaly window is
the range of point which are centered around a GT anom-
aly, the scoring function use such windows to identify true
positives, false positives and false negatives. The grading
of the application profile uses a sigmoidal function, which
gives higher points to the early detection of anomalies and
negative points to the detection outside such windows.

The remainder of this paper is structured as follows. Section
2 presents the RARE dataset while Section 3 describes the tech-
nologies adopted to generate it. Section 4 presents the method we
adopted to collect the data. In Section 5 we propose a case study
to validate the applicability of machine learning on the dataset.
Section 5 presents possible applications, and in particular possible
machine learning avenues. Section 7, finally draws conclusions and
discusses future works.

2 RARE: THE MEMORY ANOMALY DATASET
RARE aims at proposing a dataset generated from a cloud-native
system affected by lack of memory in its containers. We define
memory anomalies, and in the following only anomalies, increased
amount of usage of memory in the containers running the cloud-
native system, that might decrease the system performance.

Table 1: List of metrics in the dataset grouped by tool.

TOOL No. Metrics Example of Metric

Java_lang 206 java_lang_runtime_starttime
jmx 3 jmx_config_reload_failure_total
kafka 187 kafka_exporter_build_info
kube 62 kube_node_created
kubernetes 1 kubernetes_build_info
node 155 node_arp_entries
prometheus 130 prometheus_engine_queries
workqueue 11 workqueue_adds_total
Other 180 get_token_count

In particular, we considered an anomaly the availability of less
than 85% of memory in the containers. In the remainder of this
Section, we present the RARE dataset, together with its structure. A
detailed description of the system adopted to generate the dataset
is available in Section 4.1 while the description of the technologies
adopted is available in Section 3.

2.1 The Dataset
In the current version of the RARE dataset, we provide time-series
data where each row contains a time stamp plus a single scalar
value for a set of 7,062 metrics. The goal of the RARE dataset is to
(i) include all types of metrics collected from the industry leading
tools such as Prometheus, Kafka, and Kubernetes, (ii) a labelled
time-series that indicates where we started to inject the anomalies
and when the anomaly ended. In Figure 1, it is possible to see an
example of an anomaly present in the dataset.

Targeting a specific range of applications is fundamental in a
time-series based dataset. When it comes to training a model to
prevent and overcome a specific event in time, it is important to have
a dataset which is capable of faithfully describing such an event. It
is thus important for RARE to provide a sequence of data which
represents the evolution of the state of the nodes before, during
and after a data overloading. Therefore, we opted for artificially-
generated data to reduce confounding variables, and to ensure
that the anomalies are injected because of a specific (artificially
generated) event. A real dataset would have not allowed us to
identify the exact reason of the anomalies, and even more, the exact
event that triggered the anomaly.

The dataset contains a total of 942 unique metrics, a summary
of which is described in Table 1. Most metrics have values related
to different instances, therefore the full dataset has a total of 7,062
metrics.

2.2 Dataset Structure
The dataset presented in this work consists of two tables, each of
them stored in a different CSV file: List_of_anomalies and RARE.

List_of_anomalies includes an explanation of the anomalies in-
jected. As the dataset is artificially-generated, the overloading has
been injected through a script, this provides us very accurate la-
bels of the timestamps related to the beginning and the end of any
event in the system. An example of 5 entrances of anomalies in
the dataset are presented in Table 2. Specifically, we can see the
following fields:



Table 2: Example of 5 entrances of the List_of_anomalies.

Timestamp_from Timestamp_to Before_anomaly
1579033135 1579033155 11

1579033582 1579033602 10

1579033997 1579034017 8

1579034411 1579034431 7

1579034846 1579034866 13

Table 3: Example of 5 entrances of RARE dataset.

Time Anomaly Instance Node Kafka_server machine_
_load _brokertopic memory_
1_0 metrics_byt bytes_0

esinpersec_c
ount_2

1579033025 0 Waiting for 0.21 207 2089807872
Kafka stream

to start
1579033132 0 Kafka running 1.2 276 2089807872
1579033142 1 Generating 1.47 414 2089807872

anomaly
1579033167 0 Waiting for 0.97 552 2089807872

the script
to start

1579034005 1 Generating 1.36 828 2089807872
anomaly

• Timestamp_from: when the anomaly injection starts (ex-
pressed in Unix/Epoch time [5])

• Timestamp_to: when the anomaly injection finishes (also
expressed in Unix time [5]).

• Before_anomaly: The number of seconds that Kafka has been
sending messages before the beginning of the anomaly.

RARE is the file that contains the actual dataset. It includes 10K
entries, each of which is characterized by the following variables:

• Time: the timestamp for each datapoint, recorded every one
second, expressed in Epochs.

• Anomaly: a label (boolean) indicating whether the data point
is anomalous or not.

• Instance which can have four different values: (i) Waiting
for the script to start which indicates that the Pod is being
created after having been destroyed. This action usually
takes 300 to 350 seconds, (ii)Waiting for the Kafka stream to
start which indicates the time between the container starts
and the Kafka producer starts to send a bytes stream, (iii)
Kafka running, meaning that the Kafka producer sends bytes
but the anomaly is not being generated, and (iv) Generating
anomaly indicating that the anomaly is being generated.

• the list of metrics, with one variable for each metric pre-
sented. There are a total of 942 unique metrics (summarized
in Table 1), with each present for each pod and instance
created, for a total of 7,062 metrics.

Figure 1: An example of anomaly in the dataset: the red dot-
ted line indicates the presence of the anomaly, while the blue
line indicates the memory available (in GB).

3 THE TECHNOLOGIES ADOPTED
In order to generate the dataset we built a microservice-based sys-
tem using Kubernetes, Docker, Kafka, and Prometheus. In this
Section, we briefly introduce these technologies.

• Docker 1 allows packaging and deploying of applications
in containers. Each container wraps up all it needs to be
an independent running system and, even if it is isolated
from other containers, it can communicate with the others
when requested. For its characteristics a container is usually
mistaken for a virtual machine however, compared to the
latter, it is lighter as a group of containers are run by a
single operative single kernel. For this reason they do not
need to start and deploy a whole operative system to work.
Moreover, they only use resources which are needed and
share such resources without being aware of it, which makes
it necessary to use an external entity for such management.

• Kubernetes2 is an open source platform used for running
and managing containerized applications across clusters of
machines. For each application, Kubernetes is capable of
managing the entire life cycle, transforming them into a
complete distributed system. Such systems are complete,
reliable and scalable. The platform is capable of ensuring
such qualities, since it is composed of multiple layers. At
the base of such system there are Pods. Pods are containers
that are guaranteed to be on the host machine and can share
resources without conflict. Their management can be del-
egated to a controller. A set of Pods working together are
defined as a Service while a pod contains a set of containers
like Docker.

• Prometheus3 is the most used monitoring system in Kuber-
netes. It is an open source platform capable of generating hu-
manly readable event logging and metrics. The Prometheus
server is periodically scraping the targets to generate such

1https://www.docker.com
2https://kubernetes.io
3https://prometheus.io

https://www.docker.com
https://kubernetes.io
https://prometheus.io


datamoreover, it has also an auto-discover feature to increase
targets. The datamodel generated is based on key-value pairs,
in which no accident is the same as in Prometheus.

• Kafka4 is a scalable messaging system based on publish-
subscribe architecture. This means that a publisher sends
streams of records so that customers may receive them. In
this system, which has been adopted exponentially from
some of the most famous web-based companies, messages
are organized in topics therefore, the use of keywords help
the grouping of messages belonging to the same class. For
our purposes the most important characteristics are that
it allows fault tolerance and produces real time streaming
messages [8].

4 DATA COLLECTION AND PREPARATION
In this Section, we first introduce the system we monitored and
how we injected memory anomalies. Then, we describe how we
collected the data from the same system.

4.1 The System Monitored
The previously described tools have been assembled to create and
deploy the microservice-based system, the anomaly generator sys-
tems and the complete infrastructure including Kubernetes, Kafka,
and Prometheus as shown in Figure 2.

The first step in developing the system was related to the deploy-
ment of Kubernetes on 4 different Virtual Machines (VMs) where
one was acting as the master and the other three as workers. We se-
lected VMs with 2 CPUs, 2 GB RAM and Ubuntu Operating Systems.
All machine were configured on the same network.

As second step, we set up Kafka through Zookeeper, an open
source software for distributed systems coordination [17]. Follow-
ing, Prometheus and its Alertmanager were installed and then con-
figured using a custom configuration file. Once the latter has been
run, it is possible to check the status of Prometheus through its GUI,
which is accessible from a web browser. The implementation of
Kafka resulted in a ”StatefulSet” of 3 Kafka brokers pods and a ”State-
fulSet” of 3 Zookeeper Pods. In order to allow other applications
from the cluster and outside the cluster to access Kafka brokers, a
service to expose Kafka endpoints to a static port was created using
NodePort. This means that Kafka producers and consumers may
be easily created and connected to the brokers. The chart also pro-
vides options to configure metrics that Prometheus collects, in this
particular case we exported JMX metrics and others provided by
Kafka. Prometheus was deployed using and editing some manifest
from [16]. It was defined as a Deployment of 1 replica and exposed
a NodePort similarly as Kafka. By doing so, Prometheus GUI could
be accessed by any browser using the master’s IP and the external
port provided by NodePort. Prometheus alert manager was set up
using the same approach of a Deployment and Service. Additionally
two more services were launched to generate more metrics: Kube-
state-metrics [6] and Node Exporter [2], the first was responsible
for the update of the cluster state, while the second was a hardware
information collector. The main elements presented on the cluster
were 4 deployments (Kafka brokers, Zookeeper, Prometheus and
Kube-state-metrics) and one DaemonSet (NodeExporter).
4https://kafka.apache.org

MS1 
(API-Gateway) MS2 MS3

Anomaly  
Generator

  Prometheus ZooKeeper

Figure 2: Kubernetes cluster.

The third step was to deploy the system to be monitored (MS1,
MS2, and MS3 in Figure 2. Then, once the system was correctly
up and running, we needed to generate anomalies (i.e. strange or
unexpected conditions that provoke unusual situations).

To generate anomalies, we implemented an “anomaly generator”
microservice that provokes a memory anomaly. The anomaly gen-
erator microservice starts in a separate Kubernetes Pod inside the
cluster, then it connects to a Kafka broker and sends a byte-stream
for a random number of seconds until such a request exceeds the
maximum allowed and provokes the destruction of the container.
The randomization is intended to make the dataset closer to a real
life situation, while retaining the advantages of artificially created
anomalies. The anomaly generator is based on a script that includes
an infinite loop which runs in the background once the connection
with the broker is established.

More details on the system implemented and on the configura-
tion adopted can be found in [13].

4.2 Data Collection and Preparation
In this section we provide a small summary of the key points de-
scribed in the previous section

• Setting-up the system: We first installed the system on a
cluster of 4 nodes where one was working as a master and
the other 3 as workers. We also installed the monitoring
system (i.e. Prometheus) and Kafka.

• Anomalies generation: We created a script to injected anom-
alies into the system. The scripts starts a Kafka stream, it
randomly waits a time frame between 5 and 15 seconds, and
after produces the anomaly.

• Anomalies duration: The anomalies have a random duration
between 4 and 20 seconds.

• System duration: We executed the system for three hours
setting the monitoring systems to collect data every second.

• Data Exporting: The data has been exported in a CSV format.
• Dataset upload: Finally, we uploaded the generated dataset
to Figshare [11].

https://kafka.apache.org


5 A MACHINE LEARNING BASED APPROACH
FOR DATASET VALIDATION

In this section we conducted an example case study to understand
if it is possible to apply machine learning algorithms to the dataset.

The goal of the case study is to understand whether the anomaly
depends on the metrics available in the dataset.

Therefore, we formulated our Research Question (RQ) as
RQ1: Is it possible to predict the memory-anomaly based on the

metrics available on the dataset?

5.1 Data Analysis
In order to answer our RQ, we adopted a Random Forest [3] bi-
nary classifier, using the anomaly as dependent variable (boolean
variable), and the remaining metrics as independent variables.

We fitted the classifier using 1,000 trees as base classifiers. We
decided to adopt a Random Forest classifier as it is less prone to
over fitting compared to a simpler model, and at the same time has
a good level of randomization when sub-sampling the data that
it uses for building the model [3]. Also, we didn’t choose more
advanced tools like deep neural networks, because our scope for
this work was to give an example application of machine learning
to the RARE dataset.

To assess the detection accuracy of the Random Forest algorithm,
we performed a 10-fold cross-validation, dividing the data into ten
parts; i.e., we trained the models ten times, always using 1/10 of
the data as a testing fold. The data related to each project was split
into ten sequential parts, thus respecting the temporal order and
the proportion of data for each project. The models were trained
iteratively on groups of data preceding the test set. The temporal
order was also respected for the groups included in the training set:
For example, in fold 1, we used group 1 for training and group 2 for
testing; in fold 2, groups 1 and 2 were used for training and group
3 for testing, and so on for the remaining folds.

As accuracy metrics, we first calculated precision and recall.
However, as suggested by [15], these two measures present some
biases as they are mainly focused on positive examples and predic-
tions and do not capture any information about the rates and kinds
of errors made.

The contingency matrix (also called confusion matrix) and the
related f-measure help to overcome this issue. Moreover, as rec-
ommended by Powers [15], the Matthews Correlation Coefficient
(MCC) should also be considered to understand any potential dis-
agreement between the actual values and the predictions, as it
involves all four quadrants of the contingency matrix.

From the contingency matrix, we retrieved the true negative rate
(TNR) measure, which measures the percentage of negative sam-
ples correctly categorized as negative; the false positive rate (FPR),
which measures the percentage of negative samples misclassified
as positive; and the false negative rate (FNR), which measures the
percentage of positive samples misclassified as negative. The true
positive rate measure was left out as it is equivalent to the recall.
The way these measures were calculated can be found in Table 4.

5.2 Results
The application of the Random Forest algorithm [3] to the data
showed interesting dependencies between the existing metrics.

Table 4: Accuracy Metrics Formulas

Accuracy Measure Formula
Precision 𝑇𝑃

𝐹𝑃+𝑇𝑃

Recall 𝑇𝑃
𝐹𝑁 +𝑇𝑃

MCC 𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁√
(𝐹𝑃+𝑇𝑃 ) (𝐹𝑁 +𝑇𝑃 ) (𝐹𝑃+𝑇𝑁 ) (𝐹𝑁 +𝑇𝑁 )

f-measure 2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

TNR 𝑇𝑁
𝐹𝑃+𝑇𝑁

FPR 𝐹𝑃
𝑇𝑁 +𝐹𝑃

FNR 𝐹𝑁
𝐹𝑁 +𝑇𝑃

TP: True Positive; TN: True Negative; FP: False Positive; FN: False Negative

In particular, we can see that the model trained using all the
variables, performed remarkably well, confirming the dependency
between the metrics and the anomaly injected. The contingency
matrix (Table 5) confirm the accuracy of the model, as well as the
other accuracy measures collected (Table 6).

Table 5: Contingency matrix

Predicted

A
ct
ua

l True Positive False Negative
122 14

False Positive True Negative
6 2361

Table 6: Accuracy Metrics Results

Accuracy Measure Formula
Precision 95.31%
Recall 89.71%
MCC 92.05%

f-measure 92.42%
TNR 99.75%
FPR 0.25%
FNR 10.29%

We are aware that different metrics with different roles (e.g., met-
rics of communication between services) can be more frequent than
others and might have a different impact on the results. Moreover,
we do not exclude the possibility that other statistical or machine
learning approaches, such as Deep Learning, might have yielded
similar or even better accuracy than our modeling approach.

This validation was mainly aimed at verifying dependencies be-
tween the metrics, without considering the evolution of the values.
The identification of dependencies in each datapoint, opens for
further investigations, and confirm the possibility of conducting
time-series analysis.

6 POSSIBLE APPLICATIONS
This dataset will open different avenues for researchers in Machine
Learning and in Software Engineering. It will be possible to investi-
gate different machine-learning aspects such as:

• Identify Real Time applications for preventing anomalies. As
the RARE is a time based artificial dataset, it relies on specific



time windows which can help the trained machine learn-
ing method to learn to forecast the anomaly and therefore
prevent the congestion before happening.

• Define Machine learning based methods. In fact, the dataset
might be used for building tailored made machine learning
methods to tackle the specific case of memory congestion
anomaly.

• Propose self-healing mechanism to proactively prevent the
anomalies. As an example, when the real time anomaly de-
tection algorithm will detect a possible anomaly, it will be
possible to activate the Kubernetes self healing mechanism
to prevent the out of memory error.

We are planning to apply different machine learning algorithms
to the RARE dataset. Algorithms include decision tree-based, en-
semble techniques, neural networks, and others. The comparison
will be performed in terms of prediction accuracy, training and
test time, but also in terms of resources required. As an example,
an algorithm might be much more accurate than another one, but
requiring a too long training or testing time, or too much resources.

Moreover, once a suitable machine learning method has been de-
fined, this could be used to test how much time before it is possible
to forecast the anomaly, together with what are the essential met-
rics needed for the forecasting. This can serve as an indicator for
practitioners to collect and focus only on a specific set of metrics.

7 CONCLUSIONS
In this paper we present RARE, a dataset containing 10k data points
and 7,062 metrics describing artificially generated memory anomaly.
The dataset has been meticulously prepared in order to provide a
faithful time-based anomaly test bed. The different stages regarding
the development of the dataset have been described in detail in the
paper. Moreover, to complete such description, a test example has
been provided, showing a simple random forest algorithm used for
classifying a data point as anomalous or not.

The RARE dataset will allow researchers to benchmark their ma-
chine learning algorithms for memory-related anomaly detection.
Specifically, some possible applications have been introduced with
the hope of stimulating new research questions related to the time
based anomaly detection.

Although we believe that the RARE dataset will be used for the
development and advancement in the area of machine learning and

software engineering, we recognize that the dataset can be further
extended and improved. For this reason, future work includes the
extension of the dataset, executing different type of systems, and
injecting different types of anomalies, including cpu-related anom-
alies, but also other kinds such as denial of services attacks. Last
but not least, we are planning to conduct different experiments, to
test the most suitable AI method [10].
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