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DNA methylation signature of chronic low-grade
inflammation and its role in cardio-respiratory
diseases

We performed a multi-ethnic Epigenome Wide Association study on 22,774 individuals to

describe the DNA methylation signature of chronic low-grade inflammation as measured by

C-Reactive protein (CRP). We find 1,511 independent differentially methylated loci associated

with CRP. These CpG sites show correlation structures across chromosomes, and are pri-

marily situated in euchromatin, depleted in CpG islands. These genomic loci are pre-

dominantly situated in transcription factor binding sites and genomic enhancer regions.

Mendelian randomization analysis suggests altered CpG methylation is a consequence of

increased blood CRP levels. Mediation analysis reveals obesity and smoking as important

underlying driving factors for changed CpG methylation. Finally, we find that an activated

CpG signature significantly increases the risk for cardiometabolic diseases and COPD.
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In population-based studies, C-reactive protein (CRP)—an
acute phase reactant—is commonly used as a proxy for
chronic low-grade inflammation1,2. Low-grade inflammation

plays a key role in the development of a wide range of disease
such as type 2 diabetes (T2D)3,4, coronary heart and other car-
diovascular diseases5, chronic obstructive pulmonary disease
(COPD)6 as well as several psychological disorders such as post-
traumatic stress syndrome, schizophrenia and depression7,8. Prior
studies have strongly linked elevated serum CRP to genetics9,
overweight and obesity10,11 physical inactivity, fiber intake12 and
smoking13,14. However, the molecular mechanisms underlying
the robust associations of CRP with these factors are not well-
understood.

Epigenetic modifications such as the addition of a methyl
group to a cytosine base of human DNA is commonly referred to
as DNA methylation. This is a reversible process that affects gene
expression. DNA methylation in white blood cells can be a
consequence of exposure to risk factors such as subtle changes in
regulatory regions of the genome in the setting of excess adiposity
or smoking15,16 or a consequence of diseases like global changes
of CpG methylation in cancer17. These CpG methylation changes
affect gene expression patterns of different human tissues18, can
be inherited across generations19 and differ between ethnicites18.
Studying differential DNA methylation in relation to chronic
inflammation could highlight pathways that link the risk factors
to diseases and adverse effects.

In this study we performed a multi-ethnic epigenome wide
association study (EWAS) on serum CRP in 22,774 participants.
The large sample size of our study allowed us to create a reference
list of CpGs robustly associated to CRP. In addition, our strategy
could be used as a blueprint for generation of robust marker sets
for any exposure similar to the field of genome wide association
analysis. Our study suggests DNA methylation as consequences
of CRP, identifies underlying factors of the signature such as BMI
and smoking and gives a measure of the contribution to devel-
opment of disease such as T2D and coronary artery disease.

Results
Multi-ethnic discovery. We found a total of 1765 markers sig-
nificantly associated to serum CRP levels at a Bonferroni
threshold (P < 1e−7) in our multi-ethnic meta-analysis (Fig. 1A)
on 22,774 samples. Those were subdivided into African American
and African Ancestries (AA), European Ancestries (EA) and
South Asian Ancestries (SAA). Thirty studies provided summary
statistics about the association of CpG methylation with serum
CRP. Our regression model was adjusted for age, sex, blood cell
type composition and technical confounders. Effect sizes (Sup-
plemental Fig. 2) were ranging from 0.50 ± 0.06 to 9.85 ± 0.29
logarithmic mg/L change in CRP per unit increase in DNA
methylation in blood (scale for methylation 0-1, where 1 repre-
sents 100% methylation). We also standardized the regression
coefficients from the multi-ethnic discovery, for example, one
CpG near NF-κB inhibitor epsilon (NFKBIE) showed a decrease
of 8 standard deviations of DNA methylation per standard
deviations of logarithmic CRP. Standardized regression coeffi-
cients were ranging from 22.2 for a CpG near STK40 to −21.5 for
a CpG not in vicinity of any gene (Supplementary Data 2). P
values were ranging from 9.9×E−08 to 1.9×E−69.

We performed basic quality control of individual study DNA
methylation association data, including replication within known
CRP associated markers published by Ligthart et al.20 as well as
correlation of effect sizes between studies (Supplemental Figs. 3
and 4). Mean age of participants ranged from 16 (NFBC1986) to
75.5 (CHS-W) years, BMI from 23.7 kg/m2 (NFBC1986) to
32.9 kg/m2 (BHS-W Median serum CRP values extended from

0.2 mg/L mg/L (NFBC1986) to 4 mg/L mg/L (EPIC Norfolk).
Across all studies, 49.3% of the participants were female (Table 1).

To prevent reporting false positive signals due to bias and
unwanted variation such as population stratification, we applied
Genomic Control (see “Methods” and Fig. 1B). Additionally, we
applied an alternative strategy to control for bias and inflation21

(Supplemental Figs. 8, 9 and Supplementary Data 2). Using this
approach P-values were ranging from 2.2E−124 to 1.9×E−06,
and we discovered a total of 144 additional CRP-associated
markers given in Supplementary Data 3.

Next, we evaluated if the 1765 CRP-associated methylation
markers were significant across three ancestries in our study (AA,
EA, SAA), and whether there were ancestry-specific DNA
methylation markers. We defined CpGs as replicating in
ancestry-specific analysis if its P-value was below 0.05 and
direction of effect was consistent in each ancestry-specific
analysis. Among markers identified in the multi-ethnic meta-
analysis, 1765) were significant and showed a consistent direction
of effect in EA (100%, N~ 14,568, 22 studies,) alone, 1408 (79.7%,
N ~ 3430, 3 studies) in AA and 1550 (87.8%, N ~ 2688,1 study)
in SAA meta-analyses (Fig. 1C, Supplementary Data 2). In
addition, to the 1765 markers discovered in multi-ethnic meta-
analysis, we identified 62 Bonferroni significant markers in the
EA only (Supplementary Data 4) and 2 markers significant in SSA
ancestries only (Supplementary Data 4).

To further investigate differences between different ancestries,
we plotted Z-scores across the ancestry-specific meta-analysis
(Supplementary Fig. 4). However, we did not find any statistically
significant evidence for heterogeneity in multi-ethnic meta-
analysis.

DNA methylation correlation structure. To determine which of
the 1765 CRP-associated markers were independent and which
were correlated, we assessed the DNA methylation correlation
structure of these 1765 markers across 4 studies (N ~ 3920). We
noticed that the correlation structure across the analyzed cohorts
were similar despite of differences in mean age, ranging from 16
to 61 years, and detection platform (Supplemental Fig. 8). Fur-
thermore, we found that the correlation structure between CRP-
associated CpGs was consistent across chromosome borders
(Fig. 2A). However, the biggest contribution to the observed
correlation structure was the physical proximity between 2 or
more CpGs. To better understand this contribution to the cor-
relation structure we binned the correlation values according to
their distance separately for each chromosome and displayed the
results as boxplot (Fig. 2B). The Pearson correlation coefficients
depended on the distance between CpGs, with a drop below 0.2 at
about 5 kb. This average correlation value stayed stable for quite a
distance throughout the genome. Thus, we decided to apply a
5 kb window to identify a set of independent uncorrelated loci.
This strategy restricted our list of 1765 marker to a list of 1511
loci, which henceforth was used as input for any further analysis.

Because we observed coherent DNA methylation patterns
across chromosomes (Fig. 2A), we attempted to identify clusters
within our set of 1511 independent loci. We used a density-based
algorithm that suggested two correlation clusters within the
analyzed data (Fig. 2C). Mapping these group assignments back
to the original data (color code in Fig. 2A), we found that this
assignment reflected the actual correlation values for most of the
CpGs. Next, we looked into overlaps of the CpGs within each
correlation cluster (Fig. 2C) with genomic features. We found
similar distributions of the two clusters in broad genomic features
such as CpG islands, gene bodies, distance to transcription start
sites, and HiC. However, we found differences in more specific
genomic features, we detected in 22% of cluster 1 CpGs being
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RELA (also known as nuclear factor NF-kappa-B p65 subunit)
binding sites as opposed to 7.8% in cluster2 CpGs (see below).
Overlaps to GO terms suggest different functional contributions
of the 2 correlation sets (see below). The DNA methylation risk
score analysis, however, did not show significant different effects
of cluster1 CpGs or cluster2 CpGs on clinically relevant
phenotypes (Supplementary Data 23).

Sensitivity analysis. To evaluate the stability of the presented
association results, we compared the base model to a model
additionally adjusted for BMI across all studies. All 1765 markers
showed consistent effect directions. The Pearson’s correlation
between Z-scores (denoted ρ (Z-scores)) from these two models
was 0.985 (Fig. 3A). Out of 187 published BMI-associated CpGs16

we found 120 CpGs within our list of 1511 loci. In a subset of
cohorts (see methods), we evaluated possible influences of other
risk factors on the CpG CRP associations. For BMI adjusted
model effect sizes were ranging from 0.241 ± 0.151 to
6.648 ± 0.482 logarithmic mg/L change in CRP per unit increase
in DNA methylation in blood with consistent direction of effect.
We did not observe any significant changes in the distribution of
Z-scores when adjusting for additional risk factors such as
smoking, lipids, insulin, BMI, hip circumference, and waist cir-
cumference. (see methods, Supplemental Fig. 9). We observed a
total of 22 CpGs that changed the effect direction in at least one
model in the sensitivity analysis. (Supplementary Data 5). A total
of 140 CpGs had a nominal significant P value of heterogeneity,
of which one marker had a Bonferroni significant P-value of
heterogeneity.

Driving forces of the CRP CpG association: Mendelian Ran-
domization analyses. CpG methylation can be a transient state.

Thus, we studied whether or not CpG methylation of the 1511
loci were causal for the altered serum CRP levels or if differences
in CpG methylation is a consequence of altered CRP levels. It has
been shown for BMI and Crohn’s disease16,22 that differences in
CpG methylation were a consequence of the investigated trait.
Applying a similar strategy, we performed a 2-sample Mendelian
Randomization followed by a triangulation analysis (“Methods”).
We combined genetic and epigenetic data from more than 7000
participants derived from 11 studies. We identified 709 valid
genetic instruments for CRP associated CpG sites (Supplementary
Data 6), and found 8 loci showing Bonferroni significant effects of
their genetic instruments on CRP levels. Thus, suggesting a causal
effect of these 8 CpGs on serum CRP levels. We further investi-
gated the overall association between CpG instruments and
serum CRP levels in a triangulation analysis, with the following
basic assumption: If the effect of a CpG on serum CRP is causal, it
is possible to predict the effect of the genetic instrument (CpG-
specific SNP) on CRP via the combination of the effect of the
same SNP on CpG methylation and CpG methylation on CRP.
This association is shown as scatter plot. (Fig. 3C; Supplementary
Data 7). The analysis did not suggest an overall causal effect of
CpG methylation on serum CRP levels (Fig. 3C).

We further investigated if these 709 CpGs might be a
consequence of altered serum CRP levels, but did not find
Bonferroni significant associations between our genetic instru-
ments for CRP and CpG methylation. This suggests no causal
effects of CRP on any individual CpG (Supplementary Data 8).
Triangulation analysis, however, revealed that the majority of
CpGs predicted the observed effects. We observed a Pearson Rho
of 0.17 (P= 8.23e−06) (Fig. 3D; Supplementary Data 8) and the
sign test revealed a P value of 1.27e−05, suggesting a causal effect
of serum CRP levels on the majority of CpGs.
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Fig. 1 Results of multi-ethnic meta-analysis. Panel A is a circos plot representation of the multi-ethnic meta-analysis. Outermost track is chromosome
number followed by ideogram. The second track in blue is the Manhattan plot of the CpG CRP association results. Next track (in orange and light green)
are effect sizes of CpG CRP associations, where orange represents positive associations and light green negative. Track represented in brown track color
gives the overlap between the 1765 CRP associated CpG markers with CpG island in the genome. The innermost track (in dark green) gives the overlap
with enhancer regions as defined by Roadmap project23. Panel B is a qqplot of the genomic control corrected P-values from the multi-ethnic meta-analysis.
Panel C shows replication rates of 1765 across ancestries. Each bar gives the number of replicated CpGs across ancestries indicated as dots below the
barplot. Horizontal bars reflect the total number of replicated CpGs per ancestry group.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29792-6 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2408 | https://doi.org/10.1038/s41467-022-29792-6 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Table 1 Cohort characteristics.

Cohorts N Ethnicity Age Sex CRP BMI Smoking

AIRWAVE 1108 EA 41.6 (9.3) 40 1.0 (2.8) 27.2 (4.3) 64.4 / 23.8 / 10.5
ARIC 2182 AA 56.1 (5.75) 63.5 3.3 (7.7) 30.1 (6.2) 44.9 / 30.4 / 24.6
ARIES 777 EA 48 (4.28) 100 1.0 (3.1) 26.4 (5.1) 43.0/27.2/5.4
BHS-B 246 AA 43.6 (4.5) 45.1 2.1 (2.5) 30.1 (6.9) 54.2/ 21.1 / 24.7
BHS-W 572 EA 43.2 (4.5) 39.8 3.0 (3.1) 32.9 (8.9) 49.8/ 16.1 / 34.1
BIOS-CODAM 160 EA 66.3 (6.8) 46.2 2.2 (5.4) 28.2 (4.2) 26.3 / 58.1 / 15.6
BIOS-LLS 713 EA 58.9 (6.7) 52.2 1.2 (5.5) 25.1 (3.5) 30.9 / 55.7 / 13.3
BIOS-NTR 894 EA 33.6 (15.1) 65.9 1.4 (4.8) 24.0 (4.0) 57.2 / 24.8 / 17.9
BIOS-PAN 166 EA 63.2 (9.4) 37.9 1.5 (6.3) 25.6 (3.6) 39.8 / 32.5 / 27.6
CARDIOGENICS 200 EA 56 (6.7) 16.6 0.5 (6.4) 27.7 (4.3) 0.1759 / 82.41 / 0
CHS-B 321 AA 73.1 (5.5) 62.3 NA 28.7 (5.2) 44.8 / 37.4 / 54
CHS-W 321 EA 75.5 (5.1) 60.4 NA 26.7 (5.0) 44.2 / 41.4 / 11.8
EstBB-CTG 306 EA 50 (16.9) 50 1.2 (4.4) 26.4 (5.6) 51.3 / 30.4 / 18.3
EPIC Norfolk 1278 EA 60 (8.8) 50.9 4 (7.5) 27.2 (4.4) 45.1 / 39.3 / 15.6
EPICOR 507 EA 53.6 (7.3) 37.9 1.1 (2.5) 26.1 (3.9) 36.5 / 30.9 / 32.5
ESTHER-1a 974 EA 62 (6.5) 50.08 1.6 (5.6) 27.1 (4.4) 47.6/33.7/18.7
ESTHER-1b 543 EA 62 (6.6) 61.5 2.2 (6.7) 27.5 (4.8) 47.3/34.6/18.1
FHS 2008 EA 66 (9) 55 2.5 (2.9) 28.2 (5.2) / NA / 7.1
GENOA-27k 681 AA 65.1 (8.4) 72.1 0.35(1.4) 30.2 (6.5) 58.8 / 27.6 / 13.5
KORA 1724 EA 61 (8.8) 51 1.3 (3.7) 27.5 (4.8) 41.7/43.7/14.5
LBC 258 EA 72.1 (0.5) 46.9 1.4 (3.5) 27.6 (4.3) 132/109/17
LLD 695 EA 45.3 (NA) 58.2 1.7 (3.3) 24.6 (4.2) NA
LOLIPOP 2688 SAA 50.3 (10) 31.5 2.3 (7.2) 27.1 (4.3) 82.6/8.6/8.8
NAS 648 EA 73.2 (6.8) 0 3.3 (6.1) 28.1(4.1) 29.1 / 66.7 / 4.1
NFBC1966 727 EA 31 (0.33) 56.1 0.7 (3.6) 24.5 (3.5) 51.7 / 21.3 / 25
NFBC1986 517 EA 16 53 0.2 (3.4) 23.7 (3.8) 71.9 / 9.1 / 13.5
ROTTERDAM 722 EA 59.9 (8.2) 53.7 2.6 (4.7) 27.5 (4.8) 28.8 / 44.1 / 27.1
SHIP 236 EA 51.5 (13.5) 51.3 2.3 (4.0) 27.1 (4) 22.0 / 38.1 / 39.8
TWINSUK 416 EA 59.3(8.7) 100 1.6(7.8) 25.6(4.6) 59.4/30.8/9.9
YFS 186 EA 44.2 (3.4) 61 1.4(2.4) 26.2 NA

Column Cohorts gives all cohorts participating in the multi-ethnic meta-analysis in alphabetical order. N is the number of informative samples for this analysis. EA combines all European ancestries, AA
combines all African Ancestries and SAA combines all South Asian ancestries. Age is given in years plus standard deviation. Sex is given as percent female in every cohort. CRP is the median of measured
serum CRP levels in each cohort. BMI is body mass index. Smoking status given in percent as never smokers / former smokers / current smokers.
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Driving forces of CRP CpG association: Mediation analysis.
Mendelian Randomization highlighted complex associations
between serum CRP levels and CpG methylation. Sensitivity
showed that BMI attenuates but not abrogates the effect of
CRP on DNA methylation (Fig. 3) and a high overlap to
published BMI-associated CpGs. We observed a similar
situation for smoking (Supplementary Data 5). To better
understand those relationships between these traits and our
data, we performed a mediation analysis. Mediation analysis
was first performed on a small subset of data testing 6 different
models (“Methods”, Supplementary Data 9), which pointed
towards 2 models for further exploration (Fig. 3B): CRP being
the mediator of a CpG methylation caused by BMI or by
smoking (Fig. 3B). We used data from 4 cohorts (N ~ 3192)
and performed mediation analyses according to Baron Kenney
(“Methods”, Fig. 3B). To avoid violation of assumption made
by Baron Kenny approach we restricted the analysis to loci
with a nominal significant C-path and A-path (Fig. 3) and

only report mediation if the indirect effect (C’-path–C-path) is
negative. We found 1136 CpGs associated to BMI (nominally
significant), of which 729 (64.1%) show a significant P-value
for CRP mediating the effect of BMI effects on DNA methy-
lation, with 213 loci reaching Bonferroni significance (Sup-
plementary Data 2, 10).

We then evaluated possible effects of smoking on DNA
methylation mediated by CRP (Fig. 3B). We found 386 markers
associated to CRP also associated to smoking. Out of this set, we
observed the effect of smoking on DNA methylation being
mediated by CRP for 82 loci (21.2%) of which 32 loci reach
Bonferroni significance levels (Supplementary Data 11).

CRP associated CpGs in genomic and biological context. Next,
we evaluated if the CpG methylation signature was enriched
within certain genomic features. We performed an over-
representation analysis that mimicked the DNA methylation
variation structure of our 1511 loci (“Methods”). We compared
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the genomic positions of the CpG methylation signatures to
histone modifications, DNase hypersensitivity, and chromatin
model from the Roadmap project23 as well as Hi-C data24 and
Encode Transcription factor binding sites25(Fig. 4A). We found
that CRP-associated CpGs were enriched within gene bodies
but were depleted around transcription start sites (Fig. 4A;
Supplementary Data 12). We further found CpG markers
enriched in euchromatin and depleted in heterochromatin (Hi-
C compartments, Supplementary Data 12, 13, 14, 15, 16, 17,
18). Analysis of Roadmap’s chromatin model showed 30% of all
CRP-associated CpGs situated within enhancer regions,
whereas very few CpGs were on EZH2 binding sites, indicating
a minor impact of CpG islands on the presented DNA
methylation signatures (Figs. 1, 4A).

We mapped the CRP methylation signature to histone marks
across various tissues, however, did not find distinct evidence for
one tissue driving the CRP CpG signatures (Supplemental
Figs. 10, 11; Supplementary Data 12, 13, 14, 15, 16, 17, 18).

Mapping the CRP-specific DNA methylation signature to
transcription factor binding sites revealed about 40% of loci being
situated on Polymerase II subunit A binding site (POLR2A). This
suggests DNA methylation is a key regulator of Polymerase II
transcribed genes. Furthermore, we investigated the association
between gene expression and CRP-specific CpG signature
(“Methods”). Out of 1,511 CRP-associated loci 9% of CpGs were
significantly associated with gene expression. 22 CpGs showed a
positive association, whereas for the majority of CpGs (84 CpGs)
an inverse relationship prevailed. This set of 106 CpGs was
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Fig. 4 Overrepresentation analysis. Panel A gives the percentage of each CRP-associated gene set that overlaps with selected genomic feature. Orange
bars represent overlapping features by chance; green bars give the percentage that actually overlap with the CRP-associated CpGs. Transcription start site
and enhancer genomic region were used as defined by the Roadmap project. HiC regions were as reported in GSE63525, where component A was
connected to highly transcribed genomic regions and component B to heterochromatin. Panel B shows enrichment analysis between CRP-associated CpG
that were significantly associated with mRNA expression. Empirical P-values for the overlap derived from a permutation test (described in more detail in
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Panel C gives overlaps between CpGs observed in this study and published gene lists from large scale EWAS.
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subjected to gene set enrichment analysis, which showed a
mixture of enrichments for metabolic and immune system
processes (Fig. 4B).

We also studied the overlap between CRP-associated CpGs and
published gene lists in GWAS and EWAS catalog (Supplementary
Fig. 9; Supplementary Data 20, 21, 22). Comparing the CRP
signature to published EWAS results26 we found significant
overlaps to BMI, smoking, inflammatory diseases, and cancer-
specific published gene lists (Fig. 4C; Supplementary Data 21 and
22).

CRP associated CpGs in the clinical context. Finally, we
investigated the impact of CRP-associated CpGs on clinically
relevant phenotypes. We created a beta weighted risk score, fol-
lowing the same approach as for the polygenic risk scores in
GWAS analysis. Associations between CRP DNA methylation
signatures and clinically relevant phenotypes were evaluated in
the studies separately and then combined in a meta-analysis
(Fig. 5). There were no associations between cancer and the CpG
risk score, however, we found the CRP risk score positively
associated to weight, BMI, and waist circumference (P < 6E−07;
Supplementary Data 23). The CRP DNA methylation risk score
was also positively associated to several other inflammation
markers including IL6, IL1RA, and tumor necrosis factor receptor
(TNFR) (P < 0.05, Supplementary Data 23). We found strong
associations of CRP DNA methylation risk score to lung function
(FEV1, FVC) as well as COPD and receipt of chemotherapy
among breast cancer patients (Fig. 5B). Finally, we found strong
associations of the CRP-associated methylation risk score with
the tested cardiometabolic traits (Fig. 5A). We calculated the
adjusted relative risk based on published life time risk for cardi-
ometabolic traits (“Methods”). This may be interpreted as follows:
A full activation of the CRP DNA methylation risk score as given
in Fig. 5A indicates the theoretical maximum impact of the dis-
covered CpG on these clinically relevant traits. For this, the CRP-
associated CpGs would be either fully methylated or unmethy-
lated according to their direction of effect. This is, however, very
unlikely to happen for one single individual. Thus, we also cal-
culated the risk conveyed by one percent change in the DNA

methylation risk score. The increased relative risk per one percent
increased DNA methylation risk score was 1.007% for COPD,
1.7% for T2D, 2.9% for myocardial infarction, 4.3% coronary
artery disease, and 0.2% for hypertension.

Discussion
With a sample size of 22,774 this epigenome wide association
study on CRP, an important marker for chronic low-grade
inflammation, is one of the largest EWAS efforts thus far. In this
study, we identified a set of significantly associated CpGs that was
10× larger than in previously published EWAS16,27,28. Our ana-
lysis strategy in this study can be summarized as follows: To
maximize power in this analysis we use a sparse regression model
including only technical confounders. Next, we apply genomic
control procedure, a conservative approach more typically per-
formed in genome wide association studies29 (Fig. 1B), to prevent
from false positive associations between blood CRP levels and
DNA methylation. This allows us to use the maximum available
sample size in the regression analyses that can be taken forward
in the downstream analyses. Within the study, we then work
towards a better understanding of the driving forces of the CRP
DNA methylation association. We perform Mediation and
Mendelian Randomization analysis to understand the potential
causal connection between DNA methylation, blood CRP levels,
BMI, and smoking. Finally, we present a DNA methylation risk
score analysis, without any underlying assumptions, based on all
CRP-associated CpGs, alongside with more fine-grained, analysis
stratified for the analysis results of the study (Supplementary Data
2). Applying this strategy, the presented marker sets replicated
well across ancestries (Fig. 1C; Supplemental Fig. 7) and proved
to be stable in various sensitivity analyses (Fig. 3A; Supplemental
Fig. 9) and alternative meta-analysis strategies (Supplemental
Fig. 4, Supplementary Data 3)

One of the most interesting questions in terms of DNA
methylation is its causal vs. consequential role: does the observed
changed DNA methylation pattern contribute to risk for the
associated trait, or is it a consequence? Mendelian Randomiza-
tion, in which we use single nucleotide polymorphisms (SNP) as
proxies for the individual CpG or the investigated trait, can help
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Fig. 5 Associations of CRP DNA methylation signature to clinically relevant phenotypes. Forest plots give estimate from logistic regression (logODDs)
and confidence intervals (error bars) of CpG risk score regression against relevant phenotypes. N is the number of samples included in analysis. To produce
adjusted relative risk estimates we transformed odds ratios as follows: RR= odds ratio/1 − (lifetime risk) + (life time risk × odds ratio). Those estimates
indicate the theoretical maximum impact of the discovered CpG signature (100% DNA methylation change) on the tested traits. The risk conveyed by one
percent change in the DNA methylation risk score on the tested traits was 1.007% for COPD, 1.7% for T2D, 2.9% for myocardial infarction 4.3% coronary
artery disease, and 0.2% for hypertension. For continuous traits such as FEV1, FVC, systolic BP, and blood glucose estimates from linear regression
including confidence intervals are given.
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to answer this question30. If the SNPs associated with the CpGs
discovered in this study are associated with CRP as well, we can
infer a causal effect of the CpGs on chronic inflammation. In this
case, DNA methylation would be the cause of changed serum
CRP levels. Similar inference can be made with SNPs associated
with chronic inflammation. This classical Mendelian Randomi-
zation can be extended to a triangulation analysis31, which is
especially useful for DNA methylation studies. In triangulation
analysis, the effect size of the instrument-outcome association
should match the combined effect size of the instrument-
exposure association and exposure-outcome association. It has
been shown that BMI as well as Crohn’s disease cause DNA
methylation changes16,22. Our Mendelian Randomization results
suggest that the observed DNA methylation are likely a con-
sequence of low-grade inflammation (Fig. 3D). These results,
however, are less striking than similar results observed for BMI
and Crohn’s disease. This might be due to the increased number
of markers evaluated in this study compared to previous studies
or due to the complex relationship between low-grade inflam-
mation and metabolic syndrome, smoking, stress, and many other
factors32.

To put DNA methylation into context with other risk factors
for low-grade inflammation we performed a mediation analysis.
We observed more Bonferroni significant markers than previous
studies33,34 by a factor of about 10, and assessed a total of 6
different mediation models (“Methods”, Supplementary Data 9).
We observed that a large proportion of the CRP-associated DNA
methylation was caused by BMI (Fig. 3B) and a smaller fraction
of the described CpG signature was caused by smoking.

The CRP DNA methylation signature includes a mixture of
CpGs with evidence that they may play a central role in many
cardiovascular and other diseases and CpGs that may be con-
sequences of inflammation. One of the strongest markers for BMI
CRP mediation is PHOSPHO1 (cg02650017). We found evidence
that association of this marker, previously linked to BMI16, is
actually due to the effect of BMI on CRP (Supplementary Data 9,
C2 path for cg02650017 not significant). Similarly, we discovered
that MPRIP methylation (cg23842572), which was associated with
smoking in a previous large-scale study associated to smoking35,
was also mediated by CRP. Interestingly, the very same CpG
(cg23842572) is also associated with all-cause mortality36.

Similar to other complex trait DNA methylation association
studies we detected low-grade inflammation associated CpGs
predominantly located in open chromatin structures37,38,
enhancers, and other regulatory regions in the genome and
depleted in CpG island and related structures (Fig. 1A, 4). We
replicated the published association between increased DNA
methylation at AIM2 and lower serum CRP levels and lower
expression of AIM220. Additionally, our study suggests that this
effect is due to a BMI → CRP → DNA methylation (Supple-
mentary Data 9, C2 path for cg10636246 not significant). Fur-
thermore, we observed decreased DNA methylation associated
with higher levels of CRP and higher expression levels of NOD2,
an established marker for chronic inflammation39, which again
was due to a BMI → CRP → DNA methylation mediation effect
(Fig. 3B; Supplementary Data 9, cg01243823).

Our cluster analysis of correlation coefficients showed two
distinct groups. We observed the most pronounced differences
between correlation clusters within RELA binding site methyla-
tion (NF-κBp65 subunit, Fig. 4). GO term enrichment showed
enrichment of Immune system processes for both clusters and
enrichment of metabolic processes for cluster 2 (Fig. 4). A recent
study suggests mutual regulation of overnutrition and inflam-
mation by NF-κB40, which fits very well to the GO term
enrichments observed for cluster 2. Similarly, other studies
showed that RELA binding sites are not only controlling Immune

system associated genes but can also control triglyceride levels
and lipogenesis41,42. Finally, the vast majority of RELA binding
sites is linked to epigenetic regulators40 such H3K27ac, H3K4me
both of which are closely linked to changes in DNA
methylation43,44. Thus, we speculate that cluster 2 might reflect
this mutual regulation of overnutrition and inflammation.

The connection between low-grade inflammation and adverse
health outcomes is well established45–47, thus we investigated if
CpG methylation caused by low-grade inflammation explains
these associations. On a global level, creating a DNA methylation
risk score, we found strong evidence for this notion. However,
individual DNA methylation changes also suggest this. In a large-
scale nested case control study Chambers, JC et al.48 identified 5
CpGs affecting T2D risk. All 5 CpGs were associated with CRP in
this study and thus included in our risk score. The DNA
methylation signal of two markers, PHOSPHO1 and SOCS3, were
caused by a BMI → CRP → DNA methylation mediation. This
highlights the important contribution of inflammation to T2D
development and the importance of our findings to improve the
understanding of existing data and how this dataset can serve as a
reference for research into chronic inflammation. Similarly to
T2D, we find four out of the six top markers associated with
FEV1/FVC in a recent large scale meta-analysis49. The signal
from one marker in the AHRR gene could be back traced to a
smoking → CRP → DNA methylation mediation effect found in
our study.

This study has limitations: We assayed DNA methylation in
blood and thus we naturally investigated rather the consequences
of changed CRP levels than the causes, as CRP is primarily
synthesized in the liver50 and adipose tissue51. Our study provides
only a snapshot of DNA methylation changes associated with
chronic inflammation, as we were limited to loci present on the
Illumina Infinium Human Methylation450 Bead chips. The fact
that more than 100,000 probes are situated on CpG islands52,
which as we and others28,37 showed, further decreases the
number of actual analyzed genomic loci. Due to limited data
availability, we investigated only a small number of possible
underlying reasons for the CRP-associated DNA methylation
changes. Apart from smoking and BMI there might be other risk
factors that actually drive the CRP signature32. This large scale
setting, however, gives rise to other challenges, including the risk
of false positives due to technical as well as unknown biological
influences alongside with cellular heterogeneity21, which can be
amplified in larger samples.

The strengths of our study are its sample size and its multi-
ethnic discovery combined with a stringent analysis controlling
for unwanted variation, allowing conclusions relevant for
public health and disease management to be drawn. The large
number of samples guaranties stable, reproducible results. The
novel discovered signature shows higher replication rates across
ancestries than earlier EWAS on CRP with smaller sample
sizes20. Furthermore, studies included in meta-analysis used
different data normalization strategies and different microarray
technologies, which makes the resulting DNA methylation
signature very generalizable and likely to be reproducible in
many contexts.

Since DNA methylation is a reversible process53, our low-grade
inflammation-associated DNA methylation signatures could serve
as a valuable tool to monitor if changes in lifestyle are effectively
decreasing the risk of adverse health outcomes. They could be
used to monitor the efficacy of personalized interventions or may
even pave the way for new epigenetic treatments. In a healthy
population the DNA methylation signature can be applied as a
proxy for chronic inflammation, and serve as an indicator for the
transition between metabolically healthy obesity and obesity that
most likely lead to adverse health outcomes.
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In conclusion, we identified a robust set of CpGs associated
with chronic inflammation in a large-scale multi-ethnic discovery
analysis. Our analysis suggests that the discovered DNA methy-
lation signature was largely a consequence of chronic inflam-
mation that can be traced back to a mosaic of underlying driving
factors such as smoking and BMI. The presented DNA methy-
lation signature could be applied to understand the influence of
low-grade inflammation in any existing or novel epigenome-wide
association study and we hope that this large-scale meta-analysis
inspires similar efforts to produce reliable signature for other
complex traits. Most importantly, our study suggests that a sizable
proportion of the impact from low-grade inflammation on the
risk of heart disease, hypertension, T2D, and COPD is conveyed
by DNA methylation, which implies that these effects might be
reversible when changing the underlying causes such as BMI and
smoking.

Methods
Study populations. The study comprised of 22,774 participants from 30 inde-
pendent studies. The 25 participating studies of European Ancestries are AIR-
WAVE, ARIES, BHS-W, BIOS-CODAM, BIOS-LLS, BIOS-NTR, BIOS-PAN,
CARDIOGENICS, CHS-W, EstBB-CTG, EPIC Norflok, EPICOR, ESTHER-1a,
ESTHER-1b, FHS, KORA, LBC, LLD, NFBC1966, NFBC1986, ROTTERDAM,
SHIP-Trend, TWINS-UK, YFS; the four studies of African Ancestries (AA) are
ARIC, BHS-B, CHS-B, GENOA; and the one study of South Asian Ancestries is
LOLIPOP. Participants with log blood CRP levels outside median +/− 4× standard
deviation were excluded from analysis.

Sensitivity analysis was performed in AIRWAVE, NFBC1966, NFBC1986 and
LOLIPOP. Mediation analysis and correlation analysis were performed in
AIRWAVE, NFBC1986, NFBC1966, and KORA. SNP associations for Mendelian
Randomization analysis were retrieved from meta-analysis performed in
AIRWAVE, KORA, NFBC1966, NFBC1986, and the BBMRI cohorts consisting of
BIOS-CODAM, BIOS-LLS, BIOS-NTR, BIOS-PAN, ROTTERDAM, and LLD.

Analysis assessing association between clinical phenotypes and a CRP DNA
methylation risk score were run in AIRWAVE, KORA, FHS, SHIP, and YFS.

Methylation measurements and quality control. DNA methylation was mea-
sured in whole blood using the Illumina450K or EPIC platform. Each cohort
conducted their own quality control and normalization of DNA methylation data,
as detailed in the Supplementary Data 1. The methylation beta (β) values were
defined as β=M/(M+U). Cohorts excluded DNA methylation markers above
study specific detection P value threshold (predominantly P < 10−16) alongside
with samples failing to produce a significant amount of markers below the
detection P value threshold (predominant call rate filter was 95%). Each cohort
added technical covariates such as principal components of control probes, chip,
chip row/column, bisulphite conversion batch etc. to the regression model as
necessary in their dataset.

Cohort-specific CRP DNA methylation associations. Regressions were per-
formed for each CpG individually using lm function as implemented in base R. The
main regression model was:

log(CRP) ~ DNAmeth+ age+ sex+ estimated blood cell count+ technical
covariates

For the sensitivity model, we added BMI to model and present results from this
regression in the sensitivity analysis section. Overview of individual cohort
covariates as well as cohort design, ethnicity, and sample numbers are given in
Table 1. Blood cell count was estimated according to Housman et al.54 as
implemented in R package minfi55.

Meta-analysis and Genomic control procedure. Meta-analysis was performed to
combine results from all cohorts. We performed initial quality control and sanity
checks individually on every study. In this context, replication rates of blood CRP
markers reported in Ligthart S. et al.20 as well as differences in effect sizes between
studies were assessed (Supplementary Figs. 1 and 2). Meta-analysis was performed
to identify DNA methylation markers associated to blood CRP levels. The analysis
was restricted to autosomal markers on the Infinium Human Methylation 450K
BeadChip. Further, we excluded probes if they: (i) had a SNP in last 10 bp of the
probe sequence (ii) were flagged as cross-reactive probes56. This left 405,019 CpG
sites for analysis in our meta-analysis. Effect sizes and standard errors of the
30 studies were combined using inverse variance weighting method as imple-
mented in METAL software. We applied genomic control in and genomic control
out to control for population stratification and other unmeasured confounding
factors in the analysis57. Genomic control out was achieved by correcting P values
for the inflation factor lambda. Genomic control procedure was also applied in all
sensitivity analyses and the multi-ethnic replication analysis. For the multi-ethnic

replication analysis meta-analysis was performed separately for each ancestry. We
defined CpGs as replicating in ancestry-specific analyses if the P-value was below
0.05. As sensitivity analysis, we performed the meta-analysis using the R-package
BACON21 with default settings. To calculate standardized regression coefficients
(normalization to standard deviations of lnCRP and DNA methylation) we com-
bined the standard deviations of CpGs across all cohorts. Standard deviation of
lnCRP were combined across 6 cohorts (N= 7403, ARIES, ARIC, EPICOR,
LOLIPOP, NFBC1966, NFBC1988). Standardized regression coefficients were then
calculated as follows Coeffstandardized= (CoeffCRP~ CpG + [..] * combined SDCpG)/
combined SDlnCRP.

Correlation within CRP-associated markers. Pearson correlation coefficients
between DNA methylation vales were calculated separately for each cohort
(AIRWAVE, NFBC1966, NFBC1986, KORA). Analysis was restricted to CRP-
associated markers from multi-ethnic discovery meta-analysis. Correlation coeffi-
cients were then combined using the metacor function from the R package meta,
which weights correlation coefficients based on sample size. Overall correlation
structures between cohorts were very similar (Supplementary Fig. 3). To determine
whether or not correlation of DNA methylation values is depending on genomic
distance we binned correlation data into 13 bins depending on their distance to
each CpG. Bins were: 1–5 kb in 1 kb intervals then 10, 20, 50, 100, 150, 300, 450,
and >450 kb. Correlation between each CpG to any other CRP-associated CpG for
every chromosome separately was combined and then represented as boxplot
(Fig. 2). For any further analysis inclusive cluster analysis, we restricted the set of
CpG(n= 1765) markers to a set of 1511 independent CpG loci applying a 5 kb
window (Supplementary Data 2). For this, we took the CpG marker with the lowest
P-value for CPR association within a 5 kb forward to in depth analysis.

Correlation cluster. Correlation cluster analysis is based on meta-analyzed Pear-
son Rho values for 1511 independent CpG loci. We reduced correlation matrix to 2
UMAP dimension and calculated shared nearest neighbors using DBscan package.
SNNclust density estimation was performed in a neighborhood size of k= 35,
minimum points in cluster were 35, and eps parameter was 7.

Sensitivity analysis. To test the robustness of our CRP-associated markers and to
find out whether or not the CRP-associated blood DNA methylation pattern may
be driven by other metabolic risk factors we compared the summary statistics of the
1765 markers discovered with our base model “CRP ~ DNAmeth+ age+ sex+
technical covariates+WBC estimates” to the base model further adjusted with
additional risk factors. To determine if a marker signal may be influenced by an
additional risk factor we looked at 4 measures: 1. Does the direction of effect
change; 2. Do Z-scores between models correlate; 3. Do we observe a significant
difference in the coefficients of association (heterogeneity P-value); 4. Where
possible: Is the marker part of a published list associated with the risk factor. BMI
as additional risk factor was evaluated in all participating studies. Further risk
factors were evaluated in a subset of studies (AIRWAVE, NFBC1966, NFBC1986,
and LOLIPOP) Coefficients of subsequent models are compared to coefficients
derived from the base model of those four studies. The following models were
analyzed in our Sensitivity analysis. model 2s = base model + smoking status +
packyears; model 3s = base model + waist circumference; model 4s = base model
+ hip circumference; model 5s = base model + total cholesterol; model 6s = base
model + triglyceride; model 7s = base model + insulin; model 8s = base model +
BMI+ smoking status + packyears + waist circumference + hip.

Residualisation of DNA methylation values. For Mediation analysis, CRP DNA
methylation risk score analysis as well as when looking for CpG instruments in our
Mendelian randomization analysis we wanted to remove all unwanted variation
from the DNA methylation values. To achieve this, we regressed out covariates
known to influence the DNA methylation data from the quantile normalized DNA
methylation beta values. The regression model was as follows:

DNAmeth ~ age + sex + CD4T+NK+ Bcell + Mono + Neu + Eos +
batch+ [..]

For data integrated with CPACOR pipeline we added the first 10 principal
components of the control probe PCs.

Mendelian Randomization analysis. We performed a Mendelian Randomization
analysis to better understand the reasons for the differential DNA methylation
associated to CRP. For this, we defined a set of 1511 differential methylated loci
associated to blood CRP levels. This analysis was performed based on in genetic
data retrieved from 11 participating cohorts: AIRWAVE, BIOS-CODAM, BIOS-
LL, BIOS-LLS, BIOS-NTR, BIOS-PAN, BIOS-RS, NFBC1966, NFBC1986, and
KORA totaling a sample number of N ~ 7005.

We performed analysis to investigate two Hypothesis:

1. DNA methylation is causal for CRP changes
2. DNA methylation is a consequence of changed CRP levels.

To test hypothesis 1, we needed to find instruments for DNA methylation. For
this, we regressed DNA methylation value of every CpG against all SNPs present in
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“cis” of the concordant CpG. The cis-region of every sentinel CpG was defined, as
it’s chromosomal position +/− 500 kb.

Regressions were performed using rvtests software. We applied a dominant
inheritance model a using linear mixed model. The model included a kinship
matrix to adjust for cryptic relatedness and population stratification, as well as
estimated blood cell counts, age, and sex. Regressions were run individually in each
cohort. Results were combined using METAL software in the inverse variance
weighted mode. A valid instrument must have a genome wide significance SNP and
CpG association (P < 5×E−08). For the association to the CRP we extracted
coefficients and standard errors from the most recent CRP GWAS9. Furthermore,
we excluded SNPs with a direct effect on the CRP. That is if SNP~CRP+ lnCRP
gives a significant association between SNP and lnCRP if we add CRP as covariate
to the model. Again, this association were determined separately in every cohort
using rvtests software and results were combined using METAL. A direct effect was
defined as significant if the P value of association was below Bonferroni threshold
for 1511 tests (3.3e−05). We used the ratio method to determine significance in the
Mendelian Randomization analysis as implemented in the R package
MendelianRandomization where

MRbeta= BETA CpG~SNP/BETA CRP~SNP.
To test hypothesis 2, we used the latest published GWAS on CRP (Ligthart,

2018) to define a set of instruments for CRP. In contrast to testing of hypothesis 1
where we rely on large scale GWAS summary statistics for the association to our
outcome (CRP). As there is currently no large scale GWAS summary statistics for
Illumina 450k CpG as an outcome available, we created a CRP polygenic risk score
starting 52 SNPs. To generate a beta weighted risk score we used PLINK version
1.9. Next, we regressed the risk score against every sentinel CpG under an additive
model. CpG ~CRPPRS+ age + sex + blood cell estimates + genetic PC [1..10].
Again, association testing was performed in every cohort separately, and results
combined using METAL software. Furthermore, we excluded SNPs with a direct
effect on the outcome (CpG). For direct effect estimation we regressed every CRP-
associated SNP against DNA methylation levels of the 1511 sentinel CpGs adding
CRP as covariate to the model. Bonferroni threshold was for 52 SNP × 1511 CpGs
(P < 6.4 e−07). All SNP associated with any CpG were excluded from the polygenic
risk score. We found valid instruments for 709 CpGs which were used in this
Mendelian Randomization. To retrieve a comparable result for both Hypothesis,
we also restricted the CRP causes CpG changes direction of the MR to 709 CpGs.
We used the ratio method to determine significance in the Mendelian
Randomization analysis as implemented in the R package
MendelianRandomization where

MRbeta= BETACRP~SNP / BETACpG~SNP.

Mendelian Randomization triangulation. Next, we wanted to understand if there
is general trend for all CpGs to be cause or consequence of blood CRP levels. For
this, we applied a triangulation approach: The effect of the instrument on the
outcome (observed effect) should equal the product of the effect of the instrument
on the exposure and the effect of the exposure on the outcome. For hypotheses 1,
the observed effect is CRP ~SNP and the predicted effect is the product of the
effects of DNA methylation on the SNPs and CRP on DNA methylation. For
hypotheses 2 the observed effect is DNAmethylation ~GRS (polygenic CRP risk
score) and the predicted effect is the product of effect of CRP ~GRS and CRP
~DNAmethylation. If the observed effect is mediated through the predicted effect
those will correlate.

Mediation analysis. We performed a mediation analysis to better understand our
CRP-associated DNA methylation markers. We followed the analysis framework as
suggested by Baron Kenny (Fig. 3B). We assessed the results of four regressions:

– path: CRP ~ BMI+ covariates,
– b-path: DNAmeth ~ CRP+ BMI+ covariates,
– c-path: DNAmeth ~ BMI+ covariates (total effect) and
– c’-path: DNAmeth ~ BMI+ CRP+ covariates.

From this we can assess the indirect effect which is a*b. Values of this
multiplication were compared to c - c’, which should give the same result. Next, we
performed an Aroian Sobel test to assess the significance of the indirect effect.
Briefly, we extracted coefficients and standard errors from a path regressions and
b-path regressions and calculated a Z score as follows: Zscore= (a*b)/
sqrt((b^2*SEa^2)+(a^2*SEb^2))+(SEa*SEb).

This was performed for every CpG separately. Z score was calculated only if the
indirect effect was negative and we saw a significant association (P < 0.05) between
BMI and the tested CpG. For this analysis we excluded all samples with BMI values
outside of mean (BMI) +/− 4*SD(BMI). We tested 6 different mediation models
in NFBC1966. Model 1: BMI -> CRP -> DNAmeth; Model 2: CRP -> BMI ->
DNAmeth; Model 3: SMOKING -> CRP -> DNAmeth; Model 4: BMI ->
DNAmeth -> CRP; Model 5: CRP -> DNAmeth -> BMI; Model 6: SMOKING ->
DNAmeth -> CRP (Supplemental results Table 1). For model selection, we
evaluated if one or more assumption for Mediation analysis according to Baron
Kenney were violated. As given in Supplementary Data 10 we did not find any
significant association in path A for model 2; model 4 and 5 did not have a negative
indirect effects and model 6 did not produce results, because path C association
between Smoking and CRP was not significant in NFBC1966. That left only model

1 and model 3 that did not violate assumption necessary to perform a meaningful
mediation analysis. Additionally, incorporating published literature into the model
selection process we were looking into studies that showed that BMI is causal for
increased levels of blood CRP10,58, on a global level BMI causes alterations in DNA
methylation patterns16 as well as CRP causing changes in alteration in DNA
methylation pattern (this study). This makes models 2, 4, 5, and 6 highly unlikely
as at least one of their path according to Baron Kenny is in conflict with the
findings of these studies.

Thus, we extended the analysis to AIRWAVE, NFBC1986 and KORA cohort (N
~ 3192) for model 1 and model 3. To achieve this we ran all regressions (pathA to
pathC’) separately for each cohort and combined the effect sizes and standard
errors using inverse variance weighted approach. The meta-analyzed results were
then the basis for Mediation analysis according to Baron Kenny.

Association to Gene-expression. In Framingham Heart study a total of n= 2,648
participants had DNA methylation data (Illumina 450k array) and Gene expression
data (Affymetrix Human Exon Array) available. The quality control process is
described in a published manuscript59. To retrieve association between expression
and DNA methylation we performed linear regression analysis Geneex ~ CpG +
sex + age + houseman celltype + Principal Components and other technical
covariates, accounting for familial relationship.

Out of the 1511 CpG loci we found that 1320 could be mapped to EntrezID in
cis. From this pool of CpG 1170 could be mapped to the transcript IDs used in the
CpG × Gene expression data set. This gives a Bonferroni threshold of 4.3e−05 that
corrects for 1170 tests. Bonferroni significant association are given in
Supplementary Data 19.

Overrepresentation analysis. We wanted to determine the overlaps between our
1511 CRP-associated loci and publicly available lists of genomic features such as
Histone Modifications, Transcription factor binding sites, and chromatin states.
For this, we performed permutation tests. First, we assessed the number of overlaps
between our 1511 CRP-associated markers and a genomic feature of interest. Then
we sampled 10,000 sets of 1511 markers. For every set of 1511 marker we recorded
the number of overlaps to the genomic feature of interest. Those 10.000 overlaps
created our H0 distribution. We calculated an empirical P values separately based
on either the number of entries with higher or the number of entries with lower
overlap in our H0 distribution compared to our observed number of overlaps
recorded within the 1511 CRP-associated loci. Additionally, we calculated a Fisher
P value based on the mean of our H0 distribution and the observed overlap. We
collected the mean and standard errors of for each CpG from most studies in this
EWAS. 90% of standard errors were between 0.007 and 0.075. SD values in this
range were binned the SD data into 0.005 intervals. For generation of 10000
random sets of markers we used the equal numbers of markers within each
standard error bin as observed in the CRP-associated loci.

We calculated overlaps to the CpG annotation as given in the Illumina Manifest
file. We retrieved DNaseI-accessible sites from Encode project (http://www.
uwencode.org/proj/hotspot), specifically gapped peaks from Release 9 called with
MACSv2.0.10. For histone marks (H3K9 and H3K27) were retrieved gapped peak
data from Roadmap project for a collection of 127 tissues and cell lines as well as
probabilities for Roadmap 15 state chromatin model for selected cell lines23.
Encode Transcription factor binding sites were retrieved from UCSC browser
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=
wgEncodeRegTfbsClusteredV3. Next, we mapped Illuminas 450k probes to the
GWAS catalog hits (downloaded 20170626) of traits having 50 or more hits
recorded in the catalog. We allowed a window of 1MB to match the 450k probes to
each GWAS catalog entry and removed one or more hits in case they were
overlapping. Finally, we retrieved chromosome conformation capture data (HiC) as
described by Bing Ren et al.60 Supplementary Figures 10 and 11 give a
representative result for two enrichment analyses. Over representation analysis was
performed with several subsets of the data: all loci, BMI mediated loci, smoking
mediated loci, loci that cause CRP changes, correlation cluster 1 and cluster2.

Association to clinical phenotypes. We calculated one risk score per subset of
loci in AIRWAVE, ARIES, FHS, KORA, SHIP-Trend, and YFS. A total of 7 risk
scores per phenotype was produced. Those are: all loci, BMI mediated loci,
smoking mediated loci, CpGs identified to affect serum CRP levels, correlation
cluster 1 loci, correlation cluster 2 loci, and loci that are also associated with
changes in gene expression in cis. We calculated a beta weighted risk score using
the coefficients from the multi-ethnic discovery analysis (similar to a polygenic risk
score in GWAS).

For every participant in each study:
CpGriskSCORE= Σ CpGmethylation × CoefficienttransEthnicDiscovery
Then we performed logistic regression model (glm() option in R) for each

CpGriskSCORE against each outcome. Depending on the availability of phenotypes
across cohorts we combined the effect sizes and standard errors using inverse
variance weighted approach as implemented in METAL software. We present meta
analyzed effect sizes (logODDs) and P-values from logistic regression. Odd ratios
were transformed to produce adjusted relative risk estimates:

RR = odds ratio/1 − (lifetime risk) + (life time risk x odds ratio).
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We used lifetime risk estimates from current literature: COPD 11.45%61, T2D
39.9%62, MI 24.8%63, CAD 40.15%64 and Hypertension 81%65.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The individual participant data included in this project are generally not publicly available
due to data protection laws, but can be applied from the individual studies on reasonable
request. Information about the individual studies analyzed in this manuscript can be found
in the supplementary information. The summary statistics from the meta-analyses are
available on figshare website (https://doi.org/10.6084/m9.figshare.19188674.v1.)

Code availability
All code for data cleaning and analysis associated with the current submission is available
at https://github.com/Mwielscher/EWAS_CRP.
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