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Calculating gradient, curl and divergence is very important in physics, especially in electrodynam-
ics and fluid mechanics. To calculate the gradient, curl and divergence under orthogonal curvilin-
ear coordinate systems, one must consider the Lame coefficients. Also, in many textbooks the
calculation of gradient, curl and divergence under orthogonal coordinate systems are not well
discussed.

In this thesis the concepts such as manifold, tensors, differential forms and Lame coefficients are
defined and three different ways-differential form method, covariant derivative method, and
Hodge star operator method-of calculating gradient, curl and divergence are discussed. The gra-
dient, curl and divergence under three different orthogonal curvilinear coordinate systems are
obtained.
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1. INTRODUCTION

Differential geometry is the application of the tools of differential calculus to the study of geometry.
Gaspard Monge is considered the father of differential geometry[1], Elie Cartan is viewed as the
father of exterior forms[2] and Shing-Shen Chern is known as the father of modern differential
geometry[3]. The branches of differential geometry are Riemannian geometry, pseudo-
Riemannian geometry, Finsler geometry, symplectic geometry, complex geometry, and so on.

Differential geometry is widely used in physics, especially in field theories.

Calculating gradient, curl and divergence are very important in physics, especially in
electrodynamics and fluid mechanics. In many textbooks the gradient, curl and divergence under
orthogonal coordinate systems are obtained through coordinate transforms. But the gradient, curl
and divergence under orthogonal coordinate systems are not easy to calculate and to remember.
In this thesis the concepts such as manifold, tensors, differential forms and Lame coefficients are
defined, and several differential-geometrical methods-differential form method, covariant
derivative method, and Hodge star operator method-of calculating gradient, curl and divergence

under orthogonal curvilinear coordinate systems are discussed.

As a result, we present the equations for the gradient, curl and divergence in Cartesian, cylindrical

and spherical coordinates:

af af o , 4 1Of af of 1 of 10f

gradf = —e +—e +35,6:=5,6r +—— e, +--e; ﬁeR-l_Rcose%e‘P 729 €07
04, 04y 0Ax 04, Ay 9Ax 1 94, a(rA¢) aAr Az
curld = (52— 20e, + (G2 - Pe, + (52— Ue, =1 (G2 - 2e, + G- Uy, +
ay op
1(6(TA¢) 4y _ 1 94y a(A<pCOSH)) 4 1 ,04r 6(RA9)) l (6(RA¢) 1 aAR)
rs ar a9’ % Rcosh *dg €r R\ 06 ey + aR cosg a9’
9A a4 dA 1 a(rAr) 04 94, 1 d(R%cosfAR) , 0(RAy) | d(RcosfAg)
divA =2+ 2+ —~Z= £ = :
ax + ay 9z r( or ) 9z chose( dR + g + a0 )



2. PRELIMINARIES

In this chapter, the concepts of manifolds, tangent spaces, cotangent spaces, tensors, differential
forms, exterior differentials, metric tensors, Riemannian manifolds, Lame coefficients, affine
connections, covariant derivatives, musical isomorphisms and the Hodge star operator will be
defined. These definitions will be used to calculate the gradient, curl and divergence under

orthogonal curvilinear coordinates.

2.1 Manifold

Definition 2.1.1[4] A topological manifold M of dimension m is a Hausdorff space (that is, M is
a topological space and for each pair p,, p, of distinct points of M there exist neighborhoods V;,

V, of p,, p, such that V; NV, = @) with following properties:
1) Each point p € M possesses a neighborhood V homeomorphic to an open subset U of
R™;
2) M satisfies the second countability axiom, that is, M has a countable basis for its

topology.

Assume the homeomorphism mentioned in Definition 1.1 is ¢y,: U — ¢y (U), where ¢y (U) is an
open set of R™, then (U, ¢,) is called a coordinate chart of M. Since ¢, is a homomorphism,

for any point y € U, we can define the coordinates of ¢, (y) as the coordinates of y, that is, to let
u'=(pu()', yeEU, i=1-,m,
we call u‘(1 <i <m) the local coordinates of the pointy € U.

Assume (U, ¢y) and (V, ¢y ) are two coordinate charts of manifold M. We say that two coordinate
charts (U, ¢y) and (V,¢y) are C"-compatible, if UnV =@ or if UnV # @ then ¢, o ¢, ! and

@y o@, tareC.

Definition 2.1.2[5] Assume M is an m-dimensional topological manifold. If there is a family of
coordinate charts A = {(U, py), (V, py), (W, py), -+ } satisfies the following conditions, then we call

A a C"-differential structure on M:
1) {U,V,W,---}is an open cover of M;
2) any two coordinate charts that belong to A are C"-compatible;

3) Ais maximal, that is, for any coordinate chart of M, if it is C"-compatible with every

coordinate chart in A, then it belongs to A.

If there is a C"-differential structure on M, then M is called a C"-differentiable manifold. A C*-

differentiable manifold is called a smooth manifold.
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Figure 1. Diagram for the definition of manifold

2.2 Tangent space and cotangent space

Definition 2.2.1 The directional derivative of a function f of x in the direction of v

D,(f) := % [fp+ tV)]l=0 = X [%] (p)v'. We define a vector X, at p, call it tangent vector, such
0 .

that X, (f) := Dx(f) = %: [55] () X".

The tangent space at p is the space T,M of all tangent vectors at p. The dual space of the

tangent space of M at p T, M is called the cotangent space of M at p.

2.3 Tensor

Let us define the concepts of tensor as in [4].

Let VV be a n-dimensional vector space. A k-tensor on V is a real multilinear function defined on

the product V x --- x V of k copies of V. Denote the set of all k-tensors by T*(V*).



Given a k-tensor T and an m-tensor S, we define their tensor product as the (k + m)-tensor
T®S given by

T®S(U1' Vo Ukt 17k+m) = T(Ul, T vk) ' S(vk+1! T vk+m)'

Tensors in T*(V) are called contravariant tensors on V, while the elements of T*(V*) are called
covariant tensors on V. There are also mixed (k, m)-tensors on V, that is, multilinear functions
defined on the product V x --- x V' x V* x --- X V* of k copies of IV and m copies of V*. The space

of all (k, m)-tensors on V is denoted by T*™(V*, V).

The contraction of the i*" (i < k) upper index and jt" (j < m) lower index of the tensor T €
Tkm (V) is defined as
C}_lT = T(’ T eli*’.’ R T eﬂ’-’ e ),
where e*" takes the i*" upper index and e, takes the j** lower index.
A tensor T is called alternating if

T(vl’ ...’vi’ ...’vj’ ...’vk) — _T(Ul, ...'vj' ...'vi' ...'vk)_

Let o be a permutation. Set o (v, -, ) = (Vo1), 5 Vo(r))- LEL Us define an alternating k-tensor

Alt(T), call it the alternator of T

1
AlY(T) := EZall possible o(sgno)(T ° 0),

where

__ (+1, oiseven
sgno = {—1, oisodd *

2.4 Differential forms

Let us define the concepts of differential forms as in [4].

Definition 2.4.1[4] A (k, m)-tensor field is a map that to each point p € M assigns a tensor T €
TE™ (T, T,M).

Alternating tensor fields are very important objects called forms.

Definition 2.4.2[4] Let M be a smooth manifold. A form of degree k(or a k-form) on M is a field
of alternating k-tensors defined on M, that is, a map w that, to each point p € M, assigns an

element w, € A*(T;M).
Definition 2.4.3[4] We now define the wedge product between alternating tensors: if T € A¥(V*)
and S € A™(V*), then T A S € A¥*™(V*) is given by

(k+m)!
k!m!

TAS:=

Al(T®S).

The wedge product can also be applied to forms, and it is not difficult to prove some properties of

wedge product:



Theorem 2.4.4[5] Assume ¢,&,,&, € AK(V*), n,1m1,1, € ALV, ¢ € AM(V™), then
1) distributivity:
L Gt &)AN=8An+ AN,
i SAM 1) =SAN + AN,
1) anti-commutativity: £ An = (=D)*p A¢;

2) associativity: EANAT=EAMAD).

2.5 Exterior differential

Theorem 2.5.1[6] Let M be an n-dimensional smooth manifold, then there exists a unique

mapping d, called the exterior differential, which maps k-forms to (k + 1)-forms, satisfying:
1) forany w;, w,, d(w; + ;) = dw; + dw,;
2) if wq is an r-form, then d(w; A w;) = dw; A wy + (1) w; A dwy;
3) if f is a differentiable function(0-form) on M, then df is the differential of f;
4) if f is a differentiable function(0-form) on M, then d(df) = 0.

The proof of this theorem can be found in books of differential geometry and is omitted.

2.6 Metric tensor
Definition 2.6.1[6] The metric tensor is the matrix ¢ = (g;;) with entries

gij = <€i,€j> .

2.7 Riemannian manifold
Let us define the concept of a Riemannian manifold as in [6].

Let M be a smooth n-manifold and G is a symmetric 2-tensor on M. If (U; u}) is a local coordinate

chart on M, then the tensor field G on U can be represented as
G = g;jdu‘®@du’

where g;; = g;; is a smooth function on U. Let X = Xi%, Y=Y %. Let

GX,Y) = g;X'Y!

We call the tensor G nondegenerate at p, if there exists a vector X € T,,M such that



GX,Y)=0

for allY € T,M, then X = 0. This is to say, G is nondegenerate at p if and only if the system of

equations
gii(®X'=0,1<j<m
Has only null solutions, that is, the determinant det(g;;(p)) # 0.
If for any X € T,(M) there is G(X,X) = 0, then we say the tensor G is definite at p.

Definition 2.7.1 If on a m-dimension smooth manifold M there is a smooth everywhere
nondegenerate symmetric 2-tensor field G, then we call M a pseudo-Riemannian manifold,

while G is called the metric tensor of the pseudo-Riemannian manifold M.

If G is positive definite, then M is called a Riemannian manifold.

Example 1.6.2 It is clear that M = R"™ with the metric g = g,;dx'®dx" is a Riemannian manifold.

2.8 Lame coefficients

Let M be a three-dimensional oriented Riemannian manifold. Let x,, x,, x; be local coordinates.
The square of line element ds? = h,%dx;* + h,*dx,?+hs?dx;2, where hy, h,, h; are called Lame

coefficients[9],

ax
0x;

i

For R?, under Cartesian coordinates x, y, z, cylindrical coordinates r, ¢, 6 and spherical

coordinates R, ¢, 0, the square of line element
ds?=dx?+dy? + dz% = dr? + r2d¢p? + dz? = dR? + R?sin?0d¢? + R?d6?;
The Lame coefficients are h, = h, =h, =1, h, =1, hyg =1, h, =1; hg =1, h, = Rsin, hy = R.

Theorem 2.8.1[9] gup = ho’dap, 9 = 5 6.

2.9 Connections and Covariant derivative

Definition 2.9.1[4] Let M be a smooth manifold. The set of all smooth vector fields on M is

denoted by Z(M). An affine connection on M is a map V: £(M) x (M) — E(M) such that

1) VixsgrZ = fVxZ + gVyZ;



2) V(Y +2Z) = VgV + VyZ;

3) Vx(fY) =X Y + fVxY
Iforall X,Y,Z € Z(M) and f,g € C* (M, R)(we write V4Y := V(X,Y)).
The vector field VY is sometimes known as the covariant derivative of Y along X.
Notation[11] Ve, vi= ANT-PS

vi= vt

Definition 2.9.2[9] The Christoffel symbol of the second kind I, :=%g“'1(g,1yﬁ + 9pry —
9yp.2)-

_ 11 2] a(h) a(h)
Theorem 293[9] Fﬁc)l, = EE (Bx_ﬁ 60{}/ + [)x_Vgaﬁ T e 6yﬁ).

Theorem 2.9.4[9] v',; = v’ ; + VIl

2.10 Hodge star operator and musical isomorphisms

Let us define the concepts of Hodge star operator and musical isomorphisms as in [8].

Musical isomorphisms b and #

Definition 2.10.1 Let u and v be vectors, a be a differential form and g be the metric tensor.
Then

v'(w) = g(v,u),
g(@*,v) = a(v).
Hodge star operator x

Definition 2.10.2 The Hodge star operator x is a mapping that maps k-vectors to (n — k)-

vectors, for 0 < k < n:
an(xB)= {a,fB) e A ANe,.

O g+ g 1 gyt o L L LOf L 10r
Theorem 2.10.3 (Bx1 dx; + e dx, + o dx;)" = ™ e, . e, e 7s es.
Theorem 2.10.4 (A16'1 + Azez + 14363)b = Alhldxl + Azhdez + A3h3dX3.

Theorem 2.10.5 * (dx1 A dxz) = dX3, * (dxz N dx3) = dxl, * (dx3 N dxl) = de



3. SEVERAL WAYS OF CALCULATING GRADI-
ENT, CURL AND DIVERGENCE UNDER OR-
THOGONAL CURVILINEAR COORDINATE
SYSTEMS

In this chapter, three different methods of calculating the gradient, curl and divergence under

orthogonal curvilinear coordinate systems will be presented.

3.1 Calculating gradient, curl and divergence under orthogonal
curvilinear coordinate systems using differential forms

Let us first calculate the gradient, curl and divergence under orthogonal curvilinear coordinates

using differential forms. We follow the procedure presented in [7].

In an oriented three-dimensional Euclidean space, every vector A corresponds to a 1-form w}

and a 2-form wj. Let A4, & and n be vectors.

Define as follows:

w3 () := (4, %), where (4, §) is the inner product of 4 and §;

wi(&n) :=(4,&n), where (4,§ 1) is the triple product of A4, & and 7.

Suppose that in the coordinates (x;, x,, x3) the vector field A has the form A = A e; + A,e, +

Ase;, with smooth component functions 4,, A, and A,.
Then we have
wie) = (4,e) = Ay
Also, the 1-form w} decomposes over the basis dx;, meaning that
wj = a;dx; + a,dx, + azdx;

for unique component functions 4,, 4, and A;(see [4] p.195). We can represent these component

functions using the Lame coefficients, since from the equation
ds? = hy2dx, % + by dx, > +hy%dxs”

we get that
dx, (e;) = i
h;
and using that we obtain
a;

w}l(ei) = (a,dx; + a,dx; + azdx;)(e;) = a;dx;(e;) = h
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Combining these two results we get
a; = A;h;,
and thus we can write
wh = Ajhydx; + Ayhydx, + Azhgdxs.

In the same way, we have

wi(ej er) = (A e, e.) = A(ijk = 123,231,312).
Also, the 2-form wj decomposes over the basis dx; A dx;,, meaning that

w3 = a;dx, Adx; + aydx; Adx; + azdx; Adx,

for unique component functions 4,, 4, and A;. We can represent these component functions

using the Lame coefficients, since from the equation
ds? = hy2dx, % + by dx,*+hy%dxs”

we get that

1
de N dxk(ej, ek) = h]_hk

Combining these two results we get
a; = Ajhjhy,
and thus we can write
w3 = Ajhyhydx, Adxs + Ayhshdxs Adxy + Ashyhydxg Adx,,

Theorem 3.1.1 The exterior differentiation of the 0-form, 1-form and 2-form corresponds to the

gradient, curl, and divergence:
df = Wgraas, dwj = W34, dwj = (divA)w?(w? is the volume element of M).

Proof: The equations are independent of the chosen coordinate system, so to prove this, it is

enough to prove that it holds under Cartisian coordinates:

of af af
df = adx +@dy +£d2,

of of of of of of
wi,radf = ahxdx + @hydy + a—thdZ = adx + @d}/ + a—ZdZ,

o)
df = w;l;radf;
because
wi = Ajhydx; + Ayhydx, + Ashgdx,

by Theorem 2.4.4 we have
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dw} = d(Ayh.dx + Ayhy,dy + A,h,dz) = d(A,dx + A,dy + A,dz)
= dA, Adx + dA, Ady + d4, Adz

—(an +6A 04, )/\d + aAyd +aA dy +a"1 dz | Ad
=3 3y EP X o x 3y 9z zZ y
aAZ a142 Z
+<6x +6y 0z )/\dz
04, 04, 94, 04, 04, 04,
_(ay —E)dy/\dz+(az - ax)dZ/\d)C-l- . 3y dx A dy,
also,
2 (%494 hhd/\d+(an aA)hhd/\d+aA aA"hhd/\d
@eurta =5y " 97 YTz " a EAGET Tax oy )Y
_ (04, 04, i Ad (an aAZ>d N 04, 0A, end
“\oay oz yndz+ 0z ox )N ox  dy XAG
then we have
dw}l=w§ur1A'

because
w3 = Ajhyhydx, Adxs + Ayhshdxs Adxy + Ashyhydxg A dx,,
by Theorem 2.4.4 we have

dw3 = d(A,hyhsdy Adz + Ayhshidz A dx + Azhihydx A dy)
= d(A,dy Adz + Aydz Adx + A,dx A dy)
=dA, AdyAdz + dA, Adz Adx + dA, Adx Ady

94, 94, 94, 9 4, 04,

=<ax +ay v+, )/\dy/\dz+<a—dx+a—d +a—d2>/\dz

Nt <aa/)1€z aaf;Z aa/:z )/\ dx Ady = (a;lcx N 6% N a;:) dx Ady Adz,
also,

(divA)w? = (aﬁﬁaﬂ 04, )h hyh,dx, Adx, Adx, = (6‘4" +aﬂ + aAZ) dx Ady Adz,

0x dy 0z 0x dy 0z

then we have
dwj = (divA)w3.
Qed.
Because
df—a—fldx1 +:—xfzdx af3dx3,

by



12

df = wéradf
we have
1 df 1 of 1 9f .
gradf = o &1 +h x; €2 +h—3ae3, (1)
Because
dw} = (a(gihg a(Ath))dxz Adxs + (a(Azhz) a(Alhl))dxl Adx, + (B(A1h1) B(Aaha))dx3 A dxy,
2
by
dw}l = w?urlA
we have
— 1 (0(43hy) 0(4zhz) _1 (9(Aih1) _ 3(Ashs) _1 (9(Azhz) _ B(Arhi)y, _
curld = == (=5~ om, 61 T oL or, V€2 T oL ox, 63 =
h,ey hye; hzes
1 ) ) a |
hihzh3 6_761 E E ’ (2)
Alhl AZhZ A3h3
Because
dwj = ( (A1hzh3) + (Azh1h3) + (A h1h2)> dx; Adx, Adxs,
by
dwj = (divA)w? = (divA)h hyhydx; A dx, A dxg
we have
. 1
(divA) = Hraighs 2 ( (A1h2h3) ton (A2h1h3) o (A3h1h2)) (3)

3.2 Calculating gradient, curl, divergence under orthogonal
curvilinear coordinate systems using covariant derivatives

Let us then calculate the gradient, curl and divergence under orthogonal curvilinear coordinates

using covariant derivatives as in [9].

By definition, use the differential operator to act on the scalar field we get the gradient, the

1

contraction of the covariant derivative of the vector field with §*fY = T
17t21t3

Eaﬁy (Sijk = +1if l]k =
123,231,312; g = —1if ijk = 321,132,213, ¢, = 0if i = jor j = k or k = i) is the curl, and the

contraction of the differential operator with the vector field is the divergence.
The results of this method are the same as first method:

for the gradient
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Vf:=V,fe, = ﬁaeou
by Theorem 2.9.4 and Theorem 2.9.3 we have

10f .
szﬁaea :h_ia_xiei’

for the curl
VxA:=6%r4, e,

by Theorem 2.9.4 and Theorem 2.9.3 we have

VxA=§%0,Ape, = d.Age,

1
hohyhy P

_ 1 [(0(Ashs) 9(Azhp) or 4 1 (0(Aihy)  9(A3h3) .
h,hs \  0x, dx5 LU hiha \ 0xs dx, z

{hie1 hye; hzes)
1 <6(A2h2) 6(A1h1)> 1 0 a 0

€3 T hhohs | 9x, ox, 0x; |
Alhl AZhZ A3h3

hihy \ 0x, 9x, dx, 0Oxs

for the divergence
V-A:=V, A%,

by Theorem 2.9.4 and Theorem 2.9.3 we have

1 0A* 11 (3(h) a(h2) a(h2)
. _ u u _ - a u _ a
V-A= Ak 4Lk A% = B 9x° +- hﬁ( i Ona + e O = 5 By | A
1

0 0 0
-— (2@ 2 2 .
oy hs <6x1 (Ajhyh3) + o, (Azhyh3) + %, ( 3h1h2)>

3.3 Calculating gradient, curl and divergence under orthogonal
curvilinear coordinate systems using Hodge star operator

Finally, let us calculate the gradient, curl and divergence under orthogonal curvilinear coordinates

using Hodge star operator as in [10].

Theorem 3.3.1 The gradient, curl and divergence can be calculated using the musical

isomorphism and the Hodge star operator as
gradf = (df)";
curld = (» d(4"))*;

divA = d(* A%).
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Proof: The equations are independent of the chosen coordinate system, so to prove this, it is

enough to show that it hold under the Cartisian coordinates:

by Theorem 2.10.3, Theorem 2.10.4, and Theorem 2.10.5, we have

af af af af af af
(df)ﬁ = (&dx +a—ydy +Edz)ﬁ = aex + @ey + gez = gradf;

(x d(A")* = (xd((Acey + Aye, + Ae,))* = (x d(A,dx + A,dy + A,dz))*
= (* (d4; A dx + d4, Ady + dA, A dz))

04z _ 0%y 4y ndz+ O~ %% 4, p g+ 22~ 2% 40 payyy?
= (% _—— —_ [
O (G = Gy Adz+ (G = Z5dz A + (G2 = 5 5dx A dy)
_ 04, 04, dx + dA, 0A, dy + 0A, 0A, dgY?
_((ay az)x (az ax)y (ax ay)Z)
0A, 04, 04, 04, 04, 04,
= - - i A = curld:
<6y az)e"+<az ax>ey+ ax  ay )T A
b b
xd(x A%) =« d ( (Arex + Aye, + A,e;) ) =xd (x (Aydx + A,dy + 4,dz))
=+ d(A,dy Adz + A,dz A dx + A,dx A dy)
=+ (dAy Ady Adz + dA, Adz Adx + dA, Adx Ady)
<and +aA"d +and>/\d Adz + aAyd +6Ayd +6Ayd Ad
* _— _— _
axxayyazzyzaxxayyazzz
Ad +(aAZd +aAZd +aAzd>/\d Ad
x 0x x dy Y 0z z x Ay
an+aAy+aAz A AdyAd an+aAy+6Az diva
=% _— = _— = .
0x dy 0z X ACYAG2 0x dy 0z v
Qed.
The results of this method are the same as first method:
by Theorem 2.10.3, Theorem 2.10.4, and Theorem 2.10.5, we have
f of of 1 df 1 df 1 of

a
gradf = (df)* = (del +—dx, +
1

L dx ) =
0x, 0x4 *3)

———e; t+—=—e,+———e;3;
hydx, * hydx, > hzdxs °
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curld = (x d(A"))* = (x d((As; + Age, + Ases))) = (* d(Ayhydx; + Ayhydx, + Ashadis))?

3(A hs) a(Azhz) 0(14 hi)  9(Ashs) 0(Azhy)
= (x(( o, Ydx, Adxs + ( ) o, Ydxs Adx; + ( o,
6
( 1 1))d /\dxz))#
dx,
9(Aszhs) 0(Azh,) 0(A1hy)  9(Azh3) d(A;h,)
= (G, " T Wt ax, 9%t (5
d(A,hy)
— =5 —)dxy)*
1 0(Ashs) 9(Azhy) 1 9(A1hy)  0(Aszhs) 1 9(Azh,)
= - Jey + ( - e; + (
hyhs ~ 0x, 0x3 hihs > 0x; dx; hih, ~ 0x;
h,e; h,e; hzes
a4y, 1 [ a9

0%, 203 T hihohs | 0%, Ox, 0xs |
Alh’l AZhZ A3h’3

(leA) =% d(* Ab) =% d(* (A161 + A2e2 + A3e3)l’) =x d(* (Aldxl + Azde + A3dX3))
—x (d(A hyhs) A dxy A dxcg + d(Ayhyhy) A ds A dxy + d(Aghyhy) A dxg A dxy)

0(A1hyhs3) 9(A1hyhs3) 9(A;hyhs3)
=* ((——= — — Adx, A
* (( o, dx; + ox, dx, + %, dx3) Adx, Adxg
0(Azhqh3) 9(Azhyhs3) 9(A;hyh3)
A A
+( o, dx; + ox, dx, + o, dxs) Adxs Adxg
d(Ash,h d(Ashh d(Ash,h
+( (63 L Z)dx1+ (; ha) o dx, + ( 301 Z)dx3)Adx1Adx2)
X1 X2 Z
a(A h2h3) a(AZhth) a(ABhth)
=x* (( o, ox, + o, )dx; A dx, Adxs)

d d d
( (A hyh3) + (A hyh3) + (A3h1h2))

hihyhs "0
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4. THE GRADIENT, CURL AND DIVERGENCE UN-
DER CARTESIAN COORDINATE SYSTEM, CY-
LINDRICAL COORDINATE SYSTEM AND
SPHERICAL COORDINATE SYSTEM

In this chapter, the gradient, curl and divergence under Cartesian coordinate system, cylindrical

coordinate system and spherical coordinate system will be computed.

From (1), (2) and (3), we can calculate that

af af of af 10f af of 1 of 10f
T = — —_ —_ = — _— _ = — _—
g adf dx €x + ay ey + 0z €z or ér + rde e(p + 0z €z oR €r + Rcos6 d¢ e‘p R 00

9A A A A 94 A 1[04 a(ray) 0Ar 044
= () (- e+ () =2 2 (-2
cu ay 0z ex+ dz dx ey+ dx ay €z r\de 0z er+ 0z or e‘p+

E(M _ aﬂ) = 1 (aﬂ _ 6(A¢,cosl9)) . l(aﬂ _ M) ot l(B(RA(p) 1 6AR) .

r or de " Rcos@ e a0 R\ 06 R R OR cosf d¢
. 9A A 0A 1/9(rA A dA 1 d(R%cos64 d(RA d(RcosO A
diva = x4 y+_z=_(( ) <p) 047 _ (( R) | ( ¢)+( 9))

ax ay 9z r ar g 9z R2cos@ OR 510} 20
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5. SUMMARY

The aim of this thesis is to discuss three differential-geometrical methods to calculate the gradient,
curl and divergence under orthogonal curvilinear coordinates. The first method is the differential
form method, the second method is the covariant derivative method and the third one is the Hodge
star operator method. The gradient, curl and divergence under orthogonal curvilinear coordinates

can be calculated also without using differential geometry just by using coordinate transform.

As a result we have

1 of 1 of 1 of

df = ———e, +———e, + ———e;,
gradf = et o o
hie; hye, hse;
1 o a @
curld = _—

hihyhs | 0%, 0x, Oxs |
Alhl A2h2 A3h3

1 0 a 0
ivA) = ———|—(4 —(A — (A .
(divA) o hh <6x1 (Aihyhs) + o, (Azhyh3) + %, ( 3h1h2)>
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