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February 2022 
 

 

Calculating gradient, curl and divergence is very important in physics, especially in electrodynam-
ics and fluid mechanics. To calculate the gradient, curl and divergence under orthogonal curvilin-
ear coordinate systems, one must consider the Lame coefficients. Also, in many textbooks the 
calculation of gradient, curl and divergence under orthogonal coordinate systems are not well 
discussed.  

In this thesis the concepts such as manifold, tensors, differential forms and Lame coefficients are 
defined and three different ways-differential form method, covariant derivative method, and 
Hodge star operator method-of calculating gradient, curl and divergence are discussed. The gra-
dient, curl and divergence under three different orthogonal curvilinear coordinate systems are 
obtained. 

Key words: Orthogonal Curvilinear Coordinate System, Gradient, Curl, Divergence, Lame Coeffi-
cient
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1. INTRODUCTION 

Differential geometry is the application of the tools of differential calculus to the study of geometry. 

Gaspard Monge is considered the father of differential geometry[1], Elie Cartan is viewed as the 

father of exterior forms[2] and Shing-Shen Chern is known as the father of modern differential 

geometry[3]. The branches of differential geometry are Riemannian geometry, pseudo-

Riemannian geometry, Finsler geometry, symplectic geometry, complex geometry, and so on. 

Differential geometry is widely used in physics, especially in field theories. 

Calculating gradient, curl and divergence are very important in physics, especially in 

electrodynamics and fluid mechanics. In many textbooks the gradient, curl and divergence under 

orthogonal coordinate systems are obtained through coordinate transforms. But the gradient, curl 

and divergence under orthogonal coordinate systems are not easy to calculate and to remember. 

In this thesis the concepts such as manifold, tensors, differential forms and Lame coefficients are 

defined, and several differential-geometrical methods-differential form method, covariant 

derivative method, and Hodge star operator method-of calculating gradient, curl and divergence 

under orthogonal curvilinear coordinate systems are discussed. 

As a result, we present the equations for the gradient, curl and divergence in Cartesian, cylindrical 

and spherical coordinates: 

grad𝑓 =
𝜕𝑓

𝜕𝑥
𝒆𝑥 +

𝜕𝑓

𝜕𝑦
𝒆𝑦 +

𝜕𝑓

𝜕𝑧
𝒆𝑧 =

𝜕𝑓

𝜕𝑟
𝒆𝑟 +

1

𝑟

𝜕𝑓

𝜕𝜑
𝒆𝜑 +

𝜕𝑓

𝜕𝑧
𝒆𝑧 =

𝜕𝑓

𝜕𝑅
𝒆𝑅 +

1

𝑅cos𝜃

𝜕𝑓

𝜕𝜑
𝒆𝜑 +

1

𝑅

𝜕𝑓

𝜕𝜃
𝒆𝜃, 

curl𝑨 = (
𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
)𝒆𝑥 + (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
)𝒆𝑦 + (

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
)𝒆𝑧 =

1

𝑟
(

𝜕𝐴𝑧

𝜕𝜑
−

𝜕(𝑟𝐴𝜑)

𝜕𝑧
)𝒆𝑟 + (

𝜕𝐴𝑟

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑟
)𝒆𝜑 +

1

𝑟
(

𝜕(𝑟𝐴𝜑)

𝜕𝑟
−

𝜕𝐴𝑟

𝜕𝜑
)𝒆𝑧 =

1

𝑅cos𝜃
(

𝜕𝐴𝜃

𝜕𝜑
−

𝜕(𝐴𝜑cos𝜃)

𝜕𝜃
)𝒆𝑅 +

1

𝑅
(

𝜕𝐴𝑅

𝜕𝜃
−

𝜕(𝑅𝐴𝜃)

𝑅
)𝒆𝜑 +

1

𝑅
(

𝜕(𝑅𝐴𝜑)

𝜕𝑅
−

1

cos𝜃

𝜕𝐴𝑅

𝜕𝜑
)𝒆𝜃, 

div𝑨 =
𝜕𝐴𝑥

𝜕𝑥
+

𝜕𝐴𝑦

𝜕𝑦
+

𝜕𝐴𝑧

𝜕𝑧
=

1

𝑟
(

𝜕(𝑟𝐴𝑟)

𝜕𝑟
+

𝜕𝐴𝜑

𝜕𝜑
) +

𝜕𝐴𝑧

𝜕𝑧
=

1

𝑅2cos𝜃
(

𝜕(𝑅2cos𝜃𝐴𝑅)

𝜕𝑅
+

𝜕(𝑅𝐴𝜑)

𝜕𝜑
+

𝜕(𝑅cos𝜃𝐴𝜃)

𝜕𝜃
). 
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2. PRELIMINARIES 

In this chapter, the concepts of manifolds, tangent spaces, cotangent spaces, tensors, differential 

forms, exterior differentials, metric tensors, Riemannian manifolds, Lame coefficients, affine 

connections, covariant derivatives, musical isomorphisms and the Hodge star operator will be 

defined. These definitions will be used to calculate the gradient, curl and divergence under 

orthogonal curvilinear coordinates. 

2.1 Manifold 

Definition 2.1.1[4] A topological manifold 𝑀 of dimension 𝑚 is a Hausdorff space (that is, 𝑀 is 

a topological space and for each pair 𝑝1, 𝑝2 of distinct points of 𝑀 there exist neighborhoods 𝑉1, 

𝑉2 of 𝑝1, 𝑝2 such that 𝑉1 ∩ 𝑉2 = ∅) with following properties: 

1) Each point 𝑝 ∈ 𝑀 possesses a neighborhood 𝑉 homeomorphic to an open subset 𝑈 of 

ℝ𝑚; 

2) 𝑀  satisfies the second countability axiom, that is, 𝑀  has a countable basis for its 

topology. 

Assume the homeomorphism mentioned in Definition 1.1 is 𝜑𝑈: 𝑈 → 𝜑𝑈(𝑈), where 𝜑𝑈(𝑈) is an 

open set of ℝ𝑚, then (𝑈, 𝜑𝑈)  is called a coordinate chart of 𝑀. Since 𝜑𝑈 is a homomorphism, 

for any point 𝑦 ∈ 𝑈, we can define the coordinates of 𝜑𝑈(𝑦) as the coordinates of 𝑦, that is, to let  

𝑢𝑖 = (𝜑𝑈(𝑦))𝑖,    𝑦 ∈ 𝑈, 𝑖 = 1, ⋯ , 𝑚, 

we call  𝑢𝑖(1 ≤ 𝑖 ≤ 𝑚) the local coordinates of the point 𝑦 ∈ 𝑈. 

Assume (𝑈, 𝜑𝑈) and (𝑉, 𝜑𝑉) are two coordinate charts of manifold 𝑀. We say that two coordinate 

charts (𝑈, 𝜑𝑈) and (𝑉, 𝜑𝑉) are 𝐶𝑟 -compatible, if 𝑈 ∩ 𝑉 = ∅ or if  𝑈 ∩ 𝑉 ≠ ∅ then 𝜑𝑉 ∘ 𝜑𝑈
−1 and 

𝜑𝑈 ∘ 𝜑𝑉
−1 are 𝐶𝑟. 

Definition 2.1.2[5] Assume 𝑀 is an 𝑚-dimensional topological manifold. If there is a family of 

coordinate charts 𝐴 = {(𝑈, 𝜑𝑈), (𝑉, 𝜑𝑉), (𝑊, 𝜑𝑊), ⋯ } satisfies the following conditions, then we call 

𝐴 a 𝐶𝑟-differential structure on 𝑀: 

1) {𝑈, 𝑉, 𝑊, ⋯ } is an open cover of 𝑀; 

2) any two coordinate charts that belong to 𝐴 are 𝐶𝑟-compatible; 

3) 𝐴 is maximal, that is, for any coordinate chart of 𝑀, if it is 𝐶𝑟 -compatible with every 

coordinate chart in 𝐴, then it belongs to 𝐴. 

If there is a 𝐶𝑟-differential structure on 𝑀, then 𝑀 is called a 𝐶𝑟-differentiable manifold. A 𝐶∞-

differentiable manifold is called a smooth manifold. 
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  Diagram for the definition of manifold 

 

2.2 Tangent space and cotangent space 

 

Definition 2.2.1 The directional derivative of a function 𝑓 of 𝑥 in the direction of 𝒗 

D𝒗(𝑓) ∶=
𝑑

𝑑𝑡
[𝑓(𝑝 + 𝑡𝒗)]|𝑡=0 = ∑ [

𝜕𝑓

𝜕𝑥𝑖] (𝑝)𝑣𝑖
𝑖 . We define a vector 𝑋𝑝 at 𝑝, call it tangent vector, such 

that 𝑋𝑝(𝑓) ∶= D𝑋(𝑓) = ∑ [
𝜕𝑓

𝜕𝑥𝑖] (𝑝)𝑋𝑖
𝑖 . 

The tangent space at 𝑝 is the space 𝑇𝑝𝑀 of all tangent vectors at 𝑝. The dual space of the 

tangent space of 𝑀 at 𝑝 𝑇𝑝
∗𝑀 is called the cotangent space of 𝑀 at 𝑝. 

2.3 Tensor 

Let us define the concepts of tensor as in [4]. 

Let 𝑉 be a 𝑛-dimensional vector space. A 𝑘-tensor on 𝑉 is a real multilinear function defined on 

the product 𝑉 × ⋯ × 𝑉 of 𝑘 copies of 𝑉. Denote the set of all 𝑘-tensors by 𝑇𝑘(𝑉∗). 
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Given a 𝑘-tensor 𝑇 and an 𝑚-tensor 𝑆, we define their tensor product as the (𝑘 + 𝑚)-tensor 

𝑇⨂𝑆 given by 

𝑇⨂𝑆(𝑣1, ⋯ , 𝑣𝑘 , 𝑣𝑘+1, ⋯ , 𝑣𝑘+𝑚) = 𝑇(𝑣1, ⋯ , 𝑣𝑘) ∙ 𝑆(𝑣𝑘+1, ⋯ , 𝑣𝑘+𝑚). 

Tensors in 𝑇𝑘(𝑉) are called contravariant tensors on 𝑉, while the elements of 𝑇𝑘(𝑉∗) are called 

covariant tensors on 𝑉. There are also mixed (𝑘, 𝑚)-tensors on 𝑉, that is, multilinear functions 

defined on the product 𝑉 × ⋯ × 𝑉 × 𝑉∗ × ⋯ × 𝑉∗ of 𝑘 copies of 𝑉 and 𝑚 copies of 𝑉∗. The space 

of all (𝑘, 𝑚)-tensors on 𝑉 is denoted by 𝑇𝑘,𝑚(𝑉∗, 𝑉). 

The contraction of the 𝑖𝑡ℎ  (𝑖 ≤ 𝑘) upper index and 𝑗𝑡ℎ  (𝑗 ≤ 𝑚) lower index of the tensor 𝑇 ∈

𝑇𝑘,𝑚(𝑉∗, 𝑉) is defined as 

𝐶𝑗
𝑖𝑇 ∶= 𝑇(∙, ⋯ , 𝑒𝜇∗,∙, ⋯ ;∙, ⋯ , 𝑒𝜇 ,∙, ⋯ , ), 

where 𝑒𝜇∗
 takes the 𝑖𝑡ℎ upper index and 𝑒𝜇  takes the 𝑗𝑡ℎ lower index. 

A tensor 𝑇 is called alternating if 

𝑇(𝑣1, ⋯ , 𝑣𝑖 , ⋯ , 𝑣𝑗 , ⋯ , 𝑣𝑘) = −𝑇(𝑣1, ⋯ , 𝑣𝑗 , ⋯ , 𝑣𝑖 , ⋯ , 𝑣𝑘). 

Let 𝜎 be a permutation. Set 𝜎(𝑣1, ⋯ , 𝑣𝑘) = (𝑣𝜎(1), ⋯ , 𝑣𝜎(𝑘)). Let us define an alternating 𝑘-tensor 

Alt(𝑇), call it the alternator of 𝑇: 

Alt(𝑇) ∶=
1

𝑘!
∑ (sgn𝜎)(𝑇 ∘ 𝜎)all possible 𝜎 , 

where 

sgn𝜎 = {−1,   σ is odd
+1,   σ is even . 

2.4 Differential forms 

Let us define the concepts of differential forms as in [4]. 

Definition 2.4.1[4] A (𝑘, 𝑚)-tensor field is a map that to each point 𝑝 ∈ 𝑀 assigns a tensor 𝑇 ∈

𝑇𝑘,𝑚(𝑇𝑝
∗, 𝑇𝑝𝑀).  

Alternating tensor fields are very important objects called forms. 

Definition 2.4.2[4] Let 𝑀 be a smooth manifold. A form of degree 𝑘(or a 𝑘-form) on 𝑀 is a field 

of alternating 𝑘-tensors defined on 𝑀, that is, a map 𝜔 that, to each point 𝑝 ∈ 𝑀, assigns an 

element 𝜔𝑝 ∈ 𝛬𝑘(𝑇𝑃
∗𝑀). 

Definition 2.4.3[4] We now define the wedge product between alternating tensors: if 𝑇 ∈ 𝛬𝑘(𝑉∗) 

and 𝑆 ∈ 𝛬𝑚(𝑉∗), then 𝑇 ∧ 𝑆 ∈ 𝛬𝑘+𝑚(𝑉∗) is given by 

𝑇 ∧ 𝑆 ∶=
(𝑘+𝑚)!

𝑘!𝑚!
Alt(𝑇⨂𝑆). 

The wedge product can also be applied to forms, and it is not difficult to prove some properties of 

wedge product: 
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Theorem 2.4.4[5] Assume 𝜉, 𝜉1, 𝜉2 ∈ 𝛬𝑘(𝑉∗), 𝜂, 𝜂1, 𝜂2 ∈ 𝛬𝑙(𝑉∗), 𝜁 ∈ 𝛬ℎ(𝑉∗), then 

1) distributivity:  

i. (𝜉1 + 𝜉2) ∧ 𝜂 = 𝜉1 ∧ 𝜂 + 𝜉2 ∧ 𝜂, 

ii. 𝜉 ∧ (𝜂1 + 𝜂2) = 𝜉 ∧ 𝜂1 + 𝜉 ∧ 𝜂2; 

1) anti-commutativity: 𝜉 ∧ 𝜂 = (−1)𝑘𝑙𝜂 ∧ 𝜉; 

2) associativity: (𝜉 ∧ 𝜂) ∧ 𝜁 = 𝜉 ∧ (𝜂 ∧ 𝜁). 

 

2.5 Exterior differential 

 

Theorem 2.5.1[6] Let 𝑀  be an 𝑛 -dimensional smooth manifold, then there exists a unique 

mapping d, called the exterior differential, which maps 𝑘-forms to (𝑘 + 1)-forms, satisfying: 

1) for any 𝜔1, 𝜔2, d(𝜔1 + 𝜔2) = d𝜔1 + d𝜔2; 

2) if 𝜔1 is an 𝑟-form, then d(𝜔1 ∧ 𝜔2) = d𝜔1 ∧ 𝜔2 + (−1)𝑟𝜔1 ∧ d𝜔2; 

3) if 𝑓 is a differentiable function(0-form) on 𝑀, then d𝑓 is the differential of 𝑓; 

4) if 𝑓 is a differentiable function(0-form) on 𝑀, then d(d𝑓) = 0. 

The proof of this theorem can be found in books of differential geometry and is omitted. 

 

2.6 Metric tensor 

Definition 2.6.1[6] The metric tensor is the matrix 𝐺 = (𝑔𝑖𝑗) with entries 

𝑔𝑖𝑗 ∶= 〈𝑒𝑖 , 𝑒𝑗〉. 

2.7 Riemannian manifold 

Let us define the concept of a Riemannian manifold as in [6]. 

Let 𝑀 be a smooth 𝑛-manifold and 𝐺 is a symmetric 2-tensor on 𝑀. If (𝑈; 𝑢𝑖) is a local coordinate 

chart on 𝑀, then the tensor field 𝐺 on 𝑈 can be represented as  

𝐺 = 𝑔𝑖𝑗d𝑢𝑖⨂d𝑢𝑗 

where 𝑔𝑖𝑗 = 𝑔𝑗𝑖 is a smooth function on 𝑈. Let 𝑋 = 𝑋𝑖 𝜕

𝜕𝑢𝑖, 𝑌 = 𝑌𝑖 𝜕

𝜕𝑢𝑖. Let  

𝐺(𝑋, 𝑌) = 𝑔𝑖𝑗𝑋𝑖𝑌𝑖 

We call the tensor 𝐺 nondegenerate at 𝑝, if there exists a vector 𝑋 ∈ 𝑇𝑝𝑀 such that  
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𝐺(𝑋, 𝑌) = 0 

for all 𝑌 ∈ 𝑇𝑝𝑀, then 𝑋 = 0. This is to say, 𝐺 is nondegenerate at 𝑝 if and only if the system of 

equations 

𝑔𝑖𝑗(𝑝)𝑋𝑖 = 0, 1 ≤ 𝑗 ≤ 𝑚 

Has only null solutions, that is, the determinant det(𝑔𝑖𝑗(𝑝)) ≠ 0. 

If for any 𝑋 ∈ 𝑇𝑝(𝑀) there is 𝐺(𝑋, 𝑋) ≥ 0, then we say the tensor 𝐺 is definite at 𝑝. 

Definition 2.7.1 If on a 𝑚 -dimension smooth manifold 𝑀  there is a smooth everywhere 

nondegenerate symmetric 2-tensor field 𝐺 , then we call 𝑀 a pseudo-Riemannian manifold, 

while 𝐺 is called the metric tensor of the pseudo-Riemannian manifold 𝑀. 

If 𝐺 is positive definite, then 𝑀 is called a Riemannian manifold. 

 

Example 1.6.2 It is clear that 𝑀 = ℝ𝑛 with the metric 𝑔 = 𝑔𝑖𝑗𝑑𝑥𝑖⨂𝑑𝑥𝑖 is a Riemannian manifold. 

 

2.8 Lame coefficients 

 

Let 𝑀 be a three-dimensional oriented Riemannian manifold. Let 𝑥1, 𝑥2, 𝑥3 be local coordinates. 

The square of line element d𝑠2 = ℎ1
2d𝑥1

2 + ℎ2
2d𝑥2

2+ℎ3
2d𝑥3

2
, where ℎ1, ℎ2, ℎ3 are called Lame 

coefficients[9], 

ℎ𝑖 ∶= |
𝜕𝒙

𝜕𝑥𝑖
|. 

For 𝑅3 , under Cartesian coordinates 𝑥 , 𝑦 , 𝑧 , cylindrical coordinates 𝑟 , 𝜑,  𝜃 and spherical 

coordinates 𝑅, 𝜑, 𝜃, the square of line element  

d𝑠2=d𝑥2+d𝑦2 + d𝑧2 = d𝑟2 + 𝑟2d𝜑2 + d𝑧2 = d𝑅2 + 𝑅2𝑠𝑖𝑛2𝜃d𝜑2 + 𝑅2d𝜃2; 

The Lame coefficients are ℎ𝑥 = ℎ𝑦 = ℎ𝑧 = 1; ℎ𝑟 = 1, ℎ𝜃 = 𝑟, ℎ𝑧 = 1; ℎ𝑅 = 1, ℎ𝜑 = 𝑅𝑠𝑖𝑛𝜃, ℎ𝜃 = 𝑅. 

Theorem 2.8.1[9] 𝑔𝛼𝛽 = ℎ𝛼
2𝛿𝛼𝛽, 𝑔𝛼𝛽 =

1

ℎ𝛼
2 𝛿𝛼𝛽. 

 

2.9 Connections and Covariant derivative 

 

Definition 2.9.1[4] Let 𝑀  be a smooth manifold. The set of all smooth vector fields on 𝑀  is 

denoted by 𝛯(𝑀). An affine connection on 𝑀 is a map ∇: 𝛯(𝑀) × 𝛯(𝑀) → 𝛯(𝑀) such that 

1) ∇𝑓𝑋+𝑔𝑌𝑍 = 𝑓∇𝑋𝑍 + 𝑔∇𝑌𝑍; 
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2) ∇𝑋(𝑌 + 𝑍) = ∇𝑋𝑌 + ∇𝑋𝑍; 

3) ∇𝑋(𝑓𝑌) = (𝑋 ∙ 𝑓)𝑌 + 𝑓∇𝑋𝑌 

Ifor all 𝑋, 𝑌, 𝑍 ∈ 𝛯(𝑀) and 𝑓, 𝑔 ∈ 𝐶∞(𝑀, ℝ)(we write ∇𝑋𝑌 ∶= ∇(𝑋, 𝑌)). 

The vector field ∇𝑋𝑌 is sometimes known as the covariant derivative of 𝑌 along 𝑋. 

Notation[11] ∇𝒆𝑗
𝒗 ∶= 𝑣𝑠

;𝑗𝒆𝑠; 

    𝑣𝑖
,𝑗 ∶= 𝜕𝑗𝑣𝑖. 

Definition 2.9.2[9] The Christoffel symbol of the second kind 𝛤𝛽𝛾
𝛼 ∶=

1

2
𝑔𝛼𝜆(𝑔𝜆𝛾,𝛽 + 𝑔𝛽𝜆,𝛾 −

𝑔𝛾𝛽,𝜆). 

Theorem 2.9.3[9] 𝛤𝛽𝛾
𝛼 =

1

2

1

ℎ𝛼
2 (

𝜕(ℎ𝛾
2)

𝜕𝑥𝛽 𝛿𝛼𝛾 +
𝜕(ℎ𝛽

2 )

𝜕𝑥𝛾 𝛿𝛼𝛽 −
𝜕(ℎ𝛾

2)

𝜕𝑥𝛼 𝛿𝛾𝛽). 

Theorem 2.9.4[9] 𝑣𝑖
;𝑗 = 𝑣𝑖

,𝑗 + 𝑣𝑘𝛤𝑖
𝑘𝑗. 

2.10 Hodge star operator and musical isomorphisms 

Let us define the concepts of Hodge star operator and musical isomorphisms as in [8]. 

Musical isomorphisms ♭ and ♯ 

Definition 2.10.1 Let 𝒖 and 𝒗 be vectors, 𝛼 be a differential form and 𝑔 be the metric tensor. 

Then 

𝑣♭(𝒖) = 𝑔(𝒗, 𝒖), 

𝑔(𝛼♯, 𝒗) = 𝛼(𝑣). 

Hodge star operator ⋆ 

Definition 2.10.2 The Hodge star operator ⋆ is a mapping that maps 𝑘-vectors to (𝑛 − 𝑘)-

vectors, for 0 ≤ 𝑘 ≤ 𝑛: 

𝛼 ∧ (⋆ 𝛽) =〈𝛼, 𝛽〉𝒆1 ∧ ⋯ ∧ 𝒆𝑛. 

Theorem 2.10.3 (
𝜕𝑓

𝜕𝑥1
𝑑𝑥1 +

𝜕𝑓

𝜕𝑥2
𝑑𝑥2 +

𝜕𝑓

𝜕𝑥3
𝑑𝑥3)♯ =

1

ℎ1

𝜕𝑓

𝜕𝑥1
𝒆1 +

1

ℎ2

𝜕𝑓

𝜕𝑥2
𝒆2 +

1

ℎ3

𝜕𝑓

𝜕𝑥3
𝒆3. 

Theorem 2.10.4 (𝐴1𝒆1 + 𝐴2𝒆2 + 𝐴3𝒆3)♭ = 𝐴1ℎ1d𝑥1 + 𝐴2ℎ2d𝑥2 + 𝐴3ℎ3d𝑥3. 

Theorem 2.10.5 ⋆ (d𝑥1 ∧ d𝑥2) = d𝑥3, ⋆ (d𝑥2 ∧ d𝑥3) = d𝑥1, ⋆ (d𝑥3 ∧ d𝑥1) = d𝑥2 
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3. SEVERAL WAYS OF CALCULATING GRADI-
ENT, CURL AND DIVERGENCE UNDER OR-
THOGONAL CURVILINEAR COORDINATE 
SYSTEMS 

In this chapter, three different methods of calculating the gradient, curl and divergence under 

orthogonal curvilinear coordinate systems will be presented. 

3.1 Calculating gradient, curl and divergence under orthogonal 
curvilinear coordinate systems using differential forms 

Let us first calculate the gradient, curl and divergence under orthogonal curvilinear coordinates 

using differential forms. We follow the procedure presented in [7].  

In an oriented three-dimensional Euclidean space, every vector 𝑨 corresponds to a 1-form 𝜔𝑨
1  

and a 2-form 𝜔𝑨
2 . Let 𝑨, 𝝃 and 𝜼 be vectors. 

Define as follows: 

𝜔𝑨
1 (𝝃) ∶= (𝑨, 𝝃), where (𝑨, 𝝃) is the inner product of 𝑨 and 𝝃; 

𝜔𝑨
2(𝝃, 𝜼) ∶= (𝑨, 𝝃, 𝜼), where (𝑨, 𝝃, 𝜼) is the triple product of 𝑨, 𝝃 and 𝜼. 

Suppose that in the coordinates (𝑥1, 𝑥2, 𝑥3) the vector field 𝐴 has the form 𝐴 = 𝐴1𝒆1 + 𝐴2𝒆2 +

𝐴3𝒆3, with smooth component functions 𝐴1, 𝐴2 and 𝐴3. 

Then we have 

𝜔𝑨
1 (𝒆𝒊) = (𝑨, 𝒆𝒊) = 𝐴𝑖. 

Also, the 1-form 𝜔𝑨
1  decomposes over the basis d𝑥𝑖, meaning that 

𝜔𝑨
1 = 𝑎1d𝑥1 + 𝑎2d𝑥2 + 𝑎3d𝑥3 

for unique component functions 𝐴1, 𝐴2 and 𝐴3(see [4] p.195). We can represent these component 

functions using the Lame coefficients, since from the equation  

d𝑠2 = ℎ1
2d𝑥1

2 + ℎ2
2d𝑥2

2+ℎ3
2d𝑥3

2
 

we get that 

d𝑥1(𝒆𝑖) =
1

ℎ𝑖

, 

and using that we obtain 

𝜔𝑨
1 (𝒆𝒊) = (𝑎1d𝑥1 + 𝑎2d𝑥2 + 𝑎3d𝑥3)(𝒆𝑖) = 𝑎𝑖d𝑥𝑖(𝒆𝑖) =

𝑎𝑖

ℎ𝑖

. 
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Combining these two results we get 

𝑎𝑖 = 𝐴𝑖ℎ𝑖 , 

and thus we can write 

𝜔𝑨
1 = 𝐴1ℎ1d𝑥1 + 𝐴2ℎ2d𝑥2 + 𝐴3ℎ3d𝑥3. 

In the same way, we have 

𝜔𝑨
2(𝒆𝑗, 𝒆𝑘) = (𝑨, 𝒆𝑗, 𝒆𝑘) = 𝐴𝑖(𝑖𝑗𝑘 = 123,231,312). 

 Also, the  2-form 𝜔𝑨
2  decomposes over the basis d𝑥𝑗 ∧ d𝑥𝑘, meaning that 

𝜔𝑨
2 = 𝛼1d𝑥2 ∧ d𝑥3 + 𝛼2d𝑥3 ∧ d𝑥1 + 𝛼3d𝑥1 ∧ d𝑥2 

for unique component functions 𝐴1, 𝐴2 and 𝐴3. We can represent these component functions 

using the Lame coefficients, since from the equation 

d𝑠2 = ℎ1
2d𝑥1

2 + ℎ2
2d𝑥2

2+ℎ3
2d𝑥3

2
 

we get that 

d𝑥𝑗 ∧ d𝑥𝑘(𝒆𝑗 , 𝒆𝑘) =
1

ℎ𝑗ℎ𝑘
. 

Combining these two results we get 

𝛼𝑖 = 𝐴𝑖ℎ𝑗ℎ𝑘 , 

and thus we can write 

𝜔𝑨
2 = 𝐴1ℎ2ℎ3d𝑥2 ∧ d𝑥3 + 𝐴2ℎ3ℎ1d𝑥3 ∧ d𝑥1 + 𝐴3ℎ1ℎ2d𝑥1 ∧ d𝑥2, 

Theorem 3.1.1 The exterior differentiation of the 0-form, 1-form and 2-form corresponds to the 

gradient, curl, and divergence: 

d𝑓 = 𝜔grad𝑓
1 , d𝜔𝑨

1 = 𝜔curl𝑨
2 , d𝜔𝑨

2 = (div𝑨)𝜔3(𝜔3 is the volume element of 𝑀). 

Proof: The equations are independent of the chosen coordinate system, so to prove this, it is 

enough to prove that it holds under Cartisian coordinates: 

d𝑓 =
𝜕𝑓

𝜕𝑥
d𝑥 +

𝜕𝑓

𝜕𝑦
d𝑦 +

𝜕𝑓

𝜕𝑧
d𝑧, 

𝜔grad𝑓
1 =

𝜕𝑓

𝜕𝑥
ℎ𝑥d𝑥 +

𝜕𝑓

𝜕𝑦
ℎ𝑦d𝑦 +

𝜕𝑓

𝜕𝑧
ℎ𝑧d𝑧 =

𝜕𝑓

𝜕𝑥
d𝑥 +

𝜕𝑓

𝜕𝑦
d𝑦 +

𝜕𝑓

𝜕𝑧
d𝑧, 

so 

d𝑓 = 𝜔grad𝑓
1 ; 

because 

𝜔𝑨
1 = 𝐴1ℎ1d𝑥1 + 𝐴2ℎ2d𝑥2 + 𝐴3ℎ3d𝑥3, 

by Theorem 2.4.4 we have 
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d𝜔𝑨
1 = d(𝐴𝑥ℎ𝑥d𝑥 + 𝐴𝑦ℎ𝑦d𝑦 + 𝐴𝑧ℎ𝑧d𝑧) = d(𝐴𝑥d𝑥 + 𝐴𝑦d𝑦 + 𝐴𝑧d𝑧)

= d𝐴𝑥 ∧ d𝑥 + d𝐴𝑦 ∧ d𝑦 + d𝐴𝑧 ∧ d𝑧

= (
𝜕𝐴𝑥

𝜕𝑥
d𝑥 +

𝜕𝐴𝑥

𝜕𝑦
d𝑦 +

𝜕𝐴𝑥

𝜕𝑧
d𝑧) ∧ d𝑥 + (

𝜕𝐴𝑦

𝜕𝑥
d𝑥 +

𝜕𝐴𝑦

𝜕𝑦
d𝑦 +

𝜕𝐴𝑦

𝜕𝑧
d𝑧) ∧ d𝑦

+ (
𝜕𝐴𝑧

𝜕𝑥
d𝑥 +

𝜕𝐴𝑧

𝜕𝑦
d𝑦 +

𝜕𝐴𝑧

𝜕𝑧
d𝑧) ∧ d𝑧

= (
𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) d𝑦 ∧ d𝑧 + (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) d𝑧 ∧ d𝑥 + (

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
) d𝑥 ∧ d𝑦, 

also, 

𝜔curl𝑨
2 = (

𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) ℎ𝑦ℎ𝑧d𝑦 ∧ d𝑧 + (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) ℎ𝑧ℎ𝑥d𝑧 ∧ d𝑥 + (

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
) ℎ𝑥ℎ𝑦d𝑥 ∧ d𝑦

= (
𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) d𝑦 ∧ d𝑧 + (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) d𝑧 ∧ d𝑥 + (

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
) d𝑥 ∧ d𝑦, 

then we have 

d𝜔𝑨
1 = 𝜔curl𝑨

2 , 

because 

𝜔𝑨
2 = 𝐴1ℎ2ℎ3d𝑥2 ∧ d𝑥3 + 𝐴2ℎ3ℎ1d𝑥3 ∧ d𝑥1 + 𝐴3ℎ1ℎ2d𝑥1 ∧ d𝑥2, 

by Theorem 2.4.4 we have 

d𝜔𝑨
2 = d(𝐴1ℎ2ℎ3d𝑦 ∧ d𝑧 + 𝐴2ℎ3ℎ1d𝑧 ∧ d𝑥 + 𝐴3ℎ1ℎ2d𝑥 ∧ d𝑦)

= d(𝐴𝑥d𝑦 ∧ d𝑧 + 𝐴𝑦d𝑧 ∧ d𝑥 + 𝐴𝑧d𝑥 ∧ d𝑦)

= d𝐴𝑥 ∧ d𝑦 ∧ d𝑧 + d𝐴𝑦 ∧ d𝑧 ∧ d𝑥 + d𝐴𝑧 ∧ d𝑥 ∧ d𝑦

= (
𝜕𝐴𝑥

𝜕𝑥
d𝑥 +

𝜕𝐴𝑥

𝜕𝑦
d𝑦 +

𝜕𝐴𝑥

𝜕𝑧
d𝑧) ∧ d𝑦 ∧ d𝑧 + (

𝜕𝐴𝑦

𝜕𝑥
d𝑥 +

𝜕𝐴𝑦

𝜕𝑦
d𝑦 +

𝜕𝐴𝑦

𝜕𝑧
d𝑧) ∧ d𝑧

∧ d𝑥 + (
𝜕𝐴𝑧

𝜕𝑥
d𝑥 +

𝜕𝐴𝑧

𝜕𝑦
d𝑦 +

𝜕𝐴𝑧

𝜕𝑧
d𝑧) ∧ d𝑥 ∧ d𝑦 = (

𝜕𝐴𝑥

𝜕𝑥
+

𝜕𝐴𝑦

𝜕𝑦
+

𝜕𝐴𝑧

𝜕𝑧
) d𝑥 ∧ d𝑦 ∧ d𝑧, 

also, 

(div𝑨)𝜔3 = (
𝜕𝐴𝑥

𝜕𝑥
+

𝜕𝐴𝑦

𝜕𝑦
+

𝜕𝐴𝑧

𝜕𝑧
) ℎ𝑥ℎ𝑦ℎ𝑧d𝑥𝑥 ∧ d𝑥𝑦 ∧ d𝑥𝑧 = (

𝜕𝐴𝑥

𝜕𝑥
+

𝜕𝐴𝑦

𝜕𝑦
+

𝜕𝐴𝑧

𝜕𝑧
) d𝑥 ∧ d𝑦 ∧ d𝑧, 

then we have 

d𝜔𝑨
2 = (div𝑨)𝜔3. 

Qed. 

Because 

d𝑓 =
𝜕𝑓

𝜕𝑥1

d𝑥1 +
𝜕𝑓

𝜕𝑥2

d𝑥2 +
𝜕𝑓

𝜕𝑥3

d𝑥3, 

by 
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d𝑓 = 𝜔grad𝑓
1  

we have 

grad𝑓 =
1

ℎ1

𝜕𝑓

𝜕𝑥1
𝒆1 +

1

ℎ2

𝜕𝑓

𝜕𝑥2
𝒆2 +

1

ℎ3

𝜕𝑓

𝜕𝑥3
𝒆3;            (1) 

Because 

d𝜔𝑨
1 = (

𝜕(𝐴3ℎ3)

𝜕𝑥2
−

𝜕(𝐴2ℎ2)

𝜕𝑥3
)d𝑥2 ∧ d𝑥3 + (

𝜕(𝐴2ℎ2)

𝜕𝑥1
−

𝜕(𝐴1ℎ1)

𝜕𝑥2
)d𝑥1 ∧ d𝑥2 + (

𝜕(𝐴1ℎ1)

𝜕𝑥3
−

𝜕(𝐴3ℎ3)

𝜕𝑥1
)d𝑥3 ∧ d𝑥1, 

by 

d𝜔𝑨
1 = 𝜔𝑐𝑢𝑟𝑙𝑨

2  

we have 

curl𝑨 =
1

ℎ2ℎ3
(

𝜕(𝐴3ℎ3)

𝜕𝑥2
−

𝜕(𝐴2ℎ2)

𝜕𝑥3
)𝒆𝟏 +

1

ℎ1ℎ3
(

𝜕(𝐴1ℎ1)

𝜕𝑥3
−

𝜕(𝐴3ℎ3)

𝜕𝑥1
)𝒆𝟐 +

1

ℎ1ℎ2
(

𝜕(𝐴2ℎ2)

𝜕𝑥1
−

𝜕(𝐴1ℎ1)

𝜕𝑥2
)𝒆𝟑 =

1

ℎ1ℎ2ℎ3
|

ℎ1𝒆𝟏 ℎ2𝒆𝟐 ℎ3𝒆𝟑
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2

𝜕

𝜕𝑥3

𝐴1ℎ1 𝐴2ℎ2 𝐴3ℎ3

|;         (2) 

Because 

d𝜔𝑨
2 =  (

𝜕

𝜕𝑥1

(𝐴1ℎ2ℎ3) +
𝜕

𝜕𝑥2

(𝐴2ℎ1ℎ3) +
𝜕

𝜕𝑥3

(𝐴3ℎ1ℎ2)) d𝑥1 ∧ d𝑥2 ∧ d𝑥3, 

by 

d𝜔𝑨
2 = (div𝑨)𝜔3 = (div𝑨)ℎ1ℎ2ℎ3d𝑥1 ∧ d𝑥2 ∧ d𝑥3 

we have 

(div𝑨) =  
1

ℎ1ℎ2ℎ3
(

𝜕

𝜕𝑥1
(𝐴1ℎ2ℎ3) +

𝜕

𝜕𝑥2
(𝐴2ℎ1ℎ3) +

𝜕

𝜕𝑥3
(𝐴3ℎ1ℎ2)).    (3) 

 

3.2 Calculating gradient, curl, divergence under orthogonal 
curvilinear coordinate systems using covariant derivatives 

Let us then calculate the gradient, curl and divergence under orthogonal curvilinear coordinates 

using covariant derivatives as in [9]. 

By definition, use the differential operator to act on the scalar field we get the gradient, the 

contraction of the covariant derivative of the vector field with 𝛿𝛼𝛽𝛾 =
1

ℎ1ℎ2ℎ3
𝜀𝛼𝛽𝛾 (𝜀𝑖𝑗𝑘 = +1 if 𝑖𝑗𝑘 =

123,231,312; 𝜀𝑖𝑗𝑘 = −1 if 𝑖𝑗𝑘 = 321,132,213; 𝜀𝑖𝑗𝑘 = 0 if 𝑖 = 𝑗 or 𝑗 = 𝑘 or 𝑘 = 𝑖) is the curl, and the 

contraction of the differential operator with the vector field is the divergence. 

The results of this method are the same as first method: 

for the gradient 
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∇𝑓 ∶= ∇𝛼𝑓𝒆𝛼 = 𝑓;𝛼𝒆𝛼, 

by Theorem 2.9.4 and Theorem 2.9.3 we have 

∇𝑓 = 𝑓,𝛼𝒆𝛼 =
1

ℎ𝑖

𝜕𝑓

𝜕𝑥𝑖
𝒆𝑖; 

for the curl 

∇ × 𝑨 ∶= 𝛿𝛼𝛽𝛾𝐴𝛽;𝛼𝒆𝛾, 

by Theorem 2.9.4 and Theorem 2.9.3 we have 

∇ × 𝑨 = 𝛿𝛼𝛽𝛾𝜕𝛼𝐴𝛽𝒆𝛾 =
1

ℎ1ℎ2ℎ3

𝜀𝛼𝛽𝛾𝜕𝛼𝐴𝛽𝒆𝛾

=
1

ℎ2ℎ3

(
𝜕(𝐴3ℎ3)

𝜕𝑥2

−
𝜕(𝐴2ℎ2)

𝜕𝑥3

) 𝒆𝟏 +
1

ℎ1ℎ3

(
𝜕(𝐴1ℎ1)

𝜕𝑥3

−
𝜕(𝐴3ℎ3)

𝜕𝑥1

) 𝒆𝟐

+
1

ℎ1ℎ2

(
𝜕(𝐴2ℎ2)

𝜕𝑥1

−
𝜕(𝐴1ℎ1)

𝜕𝑥2

) 𝒆𝟑 =
1

ℎ1ℎ2ℎ3
||

ℎ1𝒆𝟏 ℎ2𝒆𝟐 ℎ3𝒆𝟑

𝜕

𝜕𝑥1

𝜕

𝜕𝑥2

𝜕

𝜕𝑥3

𝐴1ℎ1 𝐴2ℎ2 𝐴3ℎ3

|| ; 

for the divergence 

∇ ⋅ 𝑨 ∶= ∇𝛼𝐴𝛼, 

by Theorem 2.9.4 and Theorem 2.9.3 we have 

∇ ⋅ 𝑨 = 𝐴,𝜇
𝜇

+𝛤𝜇𝛼
𝜇

𝐴𝛼 =
1

ℎ𝜇

𝜕𝐴𝜇

𝜕𝑥𝛼
+

1

2

1

ℎ𝜇
2

(
𝜕(ℎ𝛼

2 )

𝜕𝑥𝜇
𝛿𝜇𝛼 +

𝜕(ℎ𝜇
2)

𝜕𝑥𝛼
𝛿𝜇𝜇 −

𝜕(ℎ𝛼
2 )

𝜕𝑥𝜇
𝛿𝛼𝜇) 𝐴𝛼

=
1

ℎ1ℎ2ℎ3

(
𝜕

𝜕𝑥1

(𝐴1ℎ2ℎ3) +
𝜕

𝜕𝑥2

(𝐴2ℎ1ℎ3) +
𝜕

𝜕𝑥3

(𝐴3ℎ1ℎ2)). 

3.3 Calculating gradient, curl and divergence under orthogonal 
curvilinear coordinate systems using Hodge star operator 

Finally, let us calculate the gradient, curl and divergence under orthogonal curvilinear coordinates 

using Hodge star operator as in [10]. 

 

Theorem 3.3.1 The gradient, curl and divergence can be calculated using the musical 

isomorphism and the Hodge star operator as 

grad𝑓 = (d𝑓)♯; 

curl𝑨 = (⋆ d(𝑨♭))♯; 

div𝑨 =⋆ d(⋆ 𝑨♭). 
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Proof: The equations are independent of the chosen coordinate system, so to prove this, it is 

enough to show that it hold under the Cartisian coordinates: 

by Theorem 2.10.3, Theorem 2.10.4, and Theorem 2.10.5, we have 

(d𝑓)♯ = (
𝜕𝑓

𝜕x
d𝑥 +

𝜕𝑓

𝜕y
d𝑦 +

𝜕𝑓

𝜕z
d𝑧)♯ =

𝜕𝑓

𝜕𝑥
𝒆𝑥 +

𝜕𝑓

𝜕𝑦
𝒆𝑦 +

𝜕𝑓

𝜕𝑧
𝒆𝑧 = grad𝑓; 

(⋆ d(𝑨♭))♯ = (⋆ d((𝐴𝑥𝒆𝑥 + 𝐴𝑦𝒆𝑦 + 𝐴𝑧𝒆z)♭))♯ = (⋆ d(𝐴𝑥d𝑥 + 𝐴𝑦d𝑦 + 𝐴𝑧d𝑧))♯

= (⋆ (d𝐴𝑥 ∧ d𝑥 + d𝐴𝑦 ∧ d𝑦 + d𝐴𝑧 ∧ d𝑧))♯

= (⋆ ((
𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
)d𝑦 ∧ d𝑧 + (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
)d𝑧 ∧ d𝑥 + (

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
)d𝑥 ∧ d𝑦))♯

= ((
𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
)d𝑥 + (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
)d𝑦 + (

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
)d𝑧)♯

= (
𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) 𝒆𝑥 + (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) 𝒆𝑦 + (

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
) 𝒆𝑧 = curl𝑨; 

⋆ d(⋆ 𝑨♭) =⋆ d (⋆ (𝐴𝑥𝒆𝑥 + 𝐴𝑦𝒆𝑦 + 𝐴𝑧𝒆z)
♭
) =⋆ d (⋆ (𝐴𝑥d𝑥 + 𝐴𝑦d𝑦 + 𝐴𝑧d𝑧))

=⋆ d(𝐴𝑥d𝑦 ∧ d𝑧 + 𝐴𝑦d𝑧 ∧ d𝑥 + 𝐴𝑧d𝑥 ∧ d𝑦)

=⋆ (d𝐴𝑥 ∧ d𝑦 ∧ d𝑧 + d𝐴𝑦 ∧ d𝑧 ∧ d𝑥 + d𝐴𝑧 ∧ d𝑥 ∧ d𝑦)

=

⋆ ((
𝜕𝐴𝑥

𝜕𝑥
d𝑥 +

𝜕𝐴𝑥

𝜕𝑦
d𝑦 +

𝜕𝐴𝑥

𝜕𝑧
d𝑧) ∧ d𝑦 ∧ d𝑧 + (

𝜕𝐴𝑦

𝜕𝑥
d𝑥 +

𝜕𝐴𝑦

𝜕𝑦
d𝑦 +

𝜕𝐴𝑦

𝜕𝑧
d𝑧) ∧ d𝑧

∧ d𝑥 + (
𝜕𝐴𝑧

𝜕𝑥
d𝑥 +

𝜕𝐴𝑧

𝜕𝑦
d𝑦 +

𝜕𝐴𝑧

𝜕𝑧
d𝑧) ∧ d𝑥 ∧ d𝑦)

=⋆ ((
𝜕𝐴𝑥

𝜕𝑥
+

𝜕𝐴𝑦

𝜕𝑦
+

𝜕𝐴𝑧

𝜕𝑧
) d𝑥 ∧ d𝑦 ∧ d𝑧) =

𝜕𝐴𝑥

𝜕𝑥
+

𝜕𝐴𝑦

𝜕𝑦
+

𝜕𝐴𝑧

𝜕𝑧
= div𝑨. 

Qed. 

The results of this method are the same as first method: 

by Theorem 2.10.3, Theorem 2.10.4, and Theorem 2.10.5, we have 

grad𝑓 = (d𝑓)♯ = (
𝜕𝑓

𝜕𝑥1

𝑑𝑥1 +
𝜕𝑓

𝜕𝑥2

𝑑𝑥2 +
𝜕𝑓

𝜕𝑥3

𝑑𝑥3)♯ =
1

ℎ1

𝜕𝑓

𝜕𝑥1

𝒆1 +
1

ℎ2

𝜕𝑓

𝜕𝑥2

𝒆2 +
1

ℎ3

𝜕𝑓

𝜕𝑥3

𝒆3; 
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curl𝑨 = (⋆ d(𝑨♭))♯ = (⋆ d((𝐴1𝒆1 + 𝐴2𝒆2 + 𝐴3𝒆3)♭))♯ = (⋆ d(𝐴1ℎ1d𝑥1 + 𝐴2ℎ2d𝑥2 + 𝐴3ℎ3d𝑥3))♯

= (⋆ (d(𝐴1ℎ1) ∧ d𝑥1 + d(𝐴2ℎ2) ∧ d𝑥2 + d(𝐴3ℎ3) ∧ d𝑥3))♯

= (⋆ ((
𝜕(𝐴3ℎ3)

𝜕𝑥2

−
𝜕(𝐴2ℎ2)

𝜕𝑥3

)d𝑥2 ∧ d𝑥3 + (
𝜕(𝐴1ℎ1)

𝜕𝑥3

−
𝜕(𝐴3ℎ3)

𝜕𝑥1

)d𝑥3 ∧ d𝑥1 + (
𝜕(𝐴2ℎ2)

𝜕𝑥1

−
𝜕(𝐴1ℎ1)

𝜕𝑥2

)d𝑥1 ∧ d𝑥2))♯

= ((
𝜕(𝐴3ℎ3)

𝜕𝑥2

−
𝜕(𝐴2ℎ2)

𝜕𝑥3

)d𝑥1 + (
𝜕(𝐴1ℎ1)

𝜕𝑥3

−
𝜕(𝐴3ℎ3)

𝜕𝑥1

)d𝑥2 + (
𝜕(𝐴2ℎ2)

𝜕𝑥1

−
𝜕(𝐴1ℎ1)

𝜕𝑥2

)d𝑥3)♯

=
1

ℎ2ℎ3

(
𝜕(𝐴3ℎ3)

𝜕𝑥2

−
𝜕(𝐴2ℎ2)

𝜕𝑥3

)𝒆𝟏 +
1

ℎ1ℎ3

(
𝜕(𝐴1ℎ1)

𝜕𝑥3

−
𝜕(𝐴3ℎ3)

𝜕𝑥1

)𝒆𝟐 +
1

ℎ1ℎ2

(
𝜕(𝐴2ℎ2)

𝜕𝑥1

−
𝜕(𝐴1ℎ1)

𝜕𝑥2

)𝒆𝟑 =
1

ℎ1ℎ2ℎ3
||

ℎ1𝒆𝟏 ℎ2𝒆𝟐 ℎ3𝒆𝟑

𝜕

𝜕𝑥1

𝜕

𝜕𝑥2

𝜕

𝜕𝑥3

𝐴1ℎ1 𝐴2ℎ2 𝐴3ℎ3

|| ; 

(div𝑨) =⋆ d(⋆ 𝑨♭) =⋆ d(⋆ (𝐴1𝒆1 + 𝐴2𝒆2 + 𝐴3𝒆3)♭) =⋆ d(⋆ (𝐴1d𝑥1 + 𝐴2d𝑥2 + 𝐴3d𝑥3))

=⋆ (d(𝐴1ℎ2ℎ3) ∧ d𝑥2 ∧ d𝑥3 + d(𝐴2ℎ1ℎ3) ∧ d𝑥3 ∧ d𝑥1 + d(𝐴3ℎ1ℎ2) ∧ d𝑥1 ∧ d𝑥2)

=⋆ ((
𝜕(𝐴1ℎ2ℎ3)

𝜕𝑥1

d𝑥1 +
𝜕(𝐴1ℎ2ℎ3)

𝜕𝑥2

d𝑥2 +
𝜕(𝐴1ℎ2ℎ3)

𝜕𝑥3

d𝑥3) ∧ d𝑥2 ∧ d𝑥3

+ (
𝜕(𝐴2ℎ1ℎ3)

𝜕𝑥1

d𝑥1 +
𝜕(𝐴2ℎ1ℎ3)

𝜕𝑥2

d𝑥2 +
𝜕(𝐴2ℎ1ℎ3)

𝜕𝑥3

d𝑥3) ∧ d𝑥3 ∧ d𝑥1

+ (
𝜕(𝐴3ℎ1ℎ2)

𝜕𝑥1

d𝑥1 +
𝜕(𝐴3ℎ1ℎ2)

𝜕𝑥2

d𝑥2 +
𝜕(𝐴3ℎ1ℎ2)

𝜕𝑧
d𝑥3) ∧ d𝑥1 ∧ d𝑥2)

=⋆ ((
𝜕(𝐴1ℎ2ℎ3)

𝜕𝑥1

+
𝜕(𝐴2ℎ1ℎ3)

𝜕𝑥2

+
𝜕(𝐴3ℎ1ℎ2)

𝜕𝑥3

)d𝑥1 ∧ d𝑥2 ∧ d𝑥3)

=  
1

ℎ1ℎ2ℎ3

(
𝜕

𝜕𝑥1

(𝐴1ℎ2ℎ3) +
𝜕

𝜕𝑥2

(𝐴2ℎ1ℎ3) +
𝜕

𝜕𝑥3

(𝐴3ℎ1ℎ2)). 
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4. THE GRADIENT, CURL AND DIVERGENCE UN-
DER CARTESIAN COORDINATE SYSTEM, CY-
LINDRICAL COORDINATE SYSTEM AND 
SPHERICAL COORDINATE SYSTEM 

In this chapter, the gradient, curl and divergence under Cartesian coordinate system, cylindrical 

coordinate system and spherical coordinate system will be computed. 

 

From (1), (2) and (3), we can calculate that 

grad𝑓 =
𝜕𝑓

𝜕𝑥
𝒆𝑥 +

𝜕𝑓

𝜕𝑦
𝒆𝑦 +

𝜕𝑓

𝜕𝑧
𝒆𝑧 =

𝜕𝑓

𝜕𝑟
𝒆𝑟 +

1

𝑟

𝜕𝑓

𝜕𝜑
𝒆𝜑 +

𝜕𝑓

𝜕𝑧
𝒆𝑧 =

𝜕𝑓

𝜕𝑅
𝒆𝑅 +

1

𝑅cos𝜃

𝜕𝑓

𝜕𝜑
𝒆𝜑 +

1

𝑅

𝜕𝑓

𝜕𝜃
𝒆𝜃 ,  

curl𝑨 = (
𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) 𝒆𝑥 + (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) 𝒆𝑦 + (

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
) 𝒆𝑧 =

1

𝑟
(

𝜕𝐴𝑧

𝜕𝜑
−

𝜕(𝑟𝐴𝜑)

𝜕𝑧
) 𝒆𝑟 + (

𝜕𝐴𝑟

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑟
) 𝒆𝜑 +

1

𝑟
(

𝜕(𝑟𝐴𝜑)

𝜕𝑟
−

𝜕𝐴𝑟

𝜕𝜑
) 𝒆𝑧 =

1

𝑅cos𝜃
(

𝜕𝐴𝜃

𝜕𝜑
−

𝜕(𝐴𝜑cos𝜃)

𝜕𝜃
) 𝒆𝑅 +

1

𝑅
(

𝜕𝐴𝑅

𝜕𝜃
−

𝜕(𝑅𝐴𝜃)

𝑅
) 𝒆𝜑 +

1

𝑅
(

𝜕(𝑅𝐴𝜑)

𝜕𝑅
−

1

cos𝜃

𝜕𝐴𝑅

𝜕𝜑
) 𝒆𝜃 ,  

div𝑨 =
𝜕𝐴𝑥

𝜕𝑥
+

𝜕𝐴𝑦

𝜕𝑦
+

𝜕𝐴𝑧

𝜕𝑧
=

1

𝑟
(

𝜕(𝑟𝐴𝑟)

𝜕𝑟
+

𝜕𝐴𝜑

𝜕𝜑
) +

𝜕𝐴𝑧

𝜕𝑧
=

1

𝑅2cos𝜃
(

𝜕(𝑅2cos𝜃𝐴𝑅)

𝜕𝑅
+

𝜕(𝑅𝐴𝜑)

𝜕𝜑
+

𝜕(𝑅cos𝜃𝐴𝜃)

𝜕𝜃
).  



17 
 

5.  SUMMARY 

The aim of this thesis is to discuss three differential-geometrical methods to calculate the gradient, 

curl and divergence under orthogonal curvilinear coordinates. The first method is the differential 

form method, the second method is the covariant derivative method and the third one is the Hodge 

star operator method. The gradient, curl and divergence under orthogonal curvilinear coordinates 

can be calculated also without using differential geometry just by using coordinate transform. 

 

As a result we have 

grad𝑓 =
1

ℎ1

𝜕𝑓

𝜕𝑥1

𝒆1 +
1

ℎ2

𝜕𝑓

𝜕𝑥2

𝒆2 +
1

ℎ3

𝜕𝑓

𝜕𝑥3

𝒆3, 

curl𝑨 =
1

ℎ1ℎ2ℎ3
||

ℎ1𝒆𝟏 ℎ2𝒆𝟐 ℎ3𝒆𝟑

𝜕

𝜕𝑥1

𝜕

𝜕𝑥2

𝜕

𝜕𝑥3

𝐴1ℎ1 𝐴2ℎ2 𝐴3ℎ3

||, 

(div𝑨) =  
1

ℎ1ℎ2ℎ3

(
𝜕

𝜕𝑥1

(𝐴1ℎ2ℎ3) +
𝜕

𝜕𝑥2

(𝐴2ℎ1ℎ3) +
𝜕

𝜕𝑥3

(𝐴3ℎ1ℎ2)). 
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