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A B S T R A C T   

Effective surgical margin assessment is paramount for good oncological outcomes and new methods are in active 
development. One emerging approach is the analysis of the chemical composition of surgical smoke from tissues. 
Surgical smoke is typically removed with a smoke evacuator to protect the operating room staff from its harmful 
effects to the respiratory system. Thus, analysis of the evacuated smoke without disturbing the operation is a 
feasible approach. Smoke transportation is subject to lags that affect system usability. We analyzed the smoke 
transportation delay and evaluated its effects to tissue classification with differential mobility spectrometry in a 
simulated setting using porcine tissues. With a typical smoke evacuator setting, the front of the surgical plume 
reaches the analysis system in 380 ms and the sensor within one second. For a typical surgical incision (duration 
1.5 s), the measured signal reaches its maximum in 2.3 s and declines to under 10% of the maximum in 8.6 s from 
the start of the incision. Two-class tissue classification was tested with 2, 3, 5, and 11 s repetition rates resulting 
in no significant differences in classification accuracy, implicating that signal retention from previous samples is 
mitigated by the classification algorithm.   

1. Introduction 

Cancer is a major cause of death and disability. The majority of 
cancer patients are treated with surgery involving the excision of the 
tumor with clear margins to ensure that all of the tumor tissue is 
removed [1]. Margin assessment largely relies on palpation and visual 
examination by the surgeon in support with imaging (e.g., specimen 
radiography), frozen section analysis, and imprint cytology. These 
methods extend the operation time, only partially consider the resection 
margin, and may even lead to reoperation if the analysis is performed 
postoperatively. Less applied margin assessment methods include ul
trasound imaging, optical methods, and radiofrequency spectroscopy. 
However, these disturb the normal surgical workflow and hence 
potentially delay the operation [2]. An ideal method should be accurate 

and integrate into the existing devices and the surgical workflow. 
Schäfer et al. proposed a method based on mass spectrometry (MS), 

in which the resected tissue is recognized from surgical smoke [3]. 
Analysis of surgical smoke is compelling since electrocautery is widely 
used in soft tissue surgery and an analyzer directly coupled with the 
surgical device could enable thorough margin assessment without dis
rupting the workflow. Another advantageous aspect is that the means to 
capture the smoke are already available, as smoke evacuation systems 
are widely used in operation rooms, and an analyzer could be coupled 
with these devices enabling contact-free margin assessment. 

However, MS is a complex and resource-intensive technology. Our 
team has developed a differential mobility spectrometry (DMS) based 
system as a potential and more cost-effective alternative [4–6]. In order 
to enable the accurate localization and re-incision of the positive 
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margin, the surgeon requires rapid feedback. While the effect of delay 
has not been studied in this application, even relatively small latencies 
of 150–700 ms have been shown to affect the surgical performance in 
telesurgery [7–9]. Both MS and DMS-based systems are subject to delays 
caused by the limited sample gas flow rate, signal spreading due to flow 
profile, adhesion of molecules to the tubing as well as computing. 
Alongside latency, signal carry-over (i.e., the overlap between consec
utive samples) is a significant challenge and likely the limiting factor for 
very fast systems. 

The purpose of this study is to experimentally analyze the kinetics of 
an analytical system consisting of a standard smoke evacuator, sample 
pre-processing system, and DMS. The findings of this study provide a 
framework to all gas analysis systems that operate in time-sensitive 
applications. 

2. Materials and methods 

2.1. Experimental setup 

Our experimental setup consists of commercial diathermy surgery 
equipment combined with a system intended for diathermy smoke 
analysis. The setup was constructed with the following devices: Itkacut 
350MB diathermy device (Innokas Medical, Finland); SafeAir® Smoke 
Evacuator compact surgical smoke evacuator (Stryker Corp, USA) with a 
3-meter surgical evacuation tube and 50 l/min flow rate; Ionvision DMS 
spectrometer (Olfactomics Oy, Finland); and a custom-made filtration 
unit. We used commercial porcine muscle and renal tissues purchased 
from a local grocery store as the test sample. 

We applied a nominal cutting power of 40 W and a frequency of 450 
kHz to produce electrosurgical incisions to the porcine tissue samples. 
The surgical smoke produced by the incisions was analyzed by DMS. A 
DMS sensor device is essentially an electric field-tunable ion filter [9]. 
The filter has two separation electrode channels sized to 6×20×0.25 
mm. Channel doubling enhances sensitivity by doubling the ion flow 
compared to a single channel. Electrodes are driven with two adjustable 
electrical field parameters, a high-frequency asymmetric alternating 
field, and a sequentially tuned constant compensation field. IonVision 
DMS can be flexibly set-up to sample the datapoints anywhere in its 
measurement range (any pair of high-frequency and compensation 
fields). Waveform generation is implemented as direct pulsing without 
resonators allowing for a rectangular pulse shape. The frequency of the 
separation field is adjustable from 250 kHz to 1 MHz. In this study, we 
used 1 MHz frequency. Separation field voltage is software-limited to 1 
kV. Analog to digital converter (ADC) sampling rate is 333 kHz and 
features user-adjustable averaging between 1 and 215 samples. Used 
averages are presented in Table S1. 

We used eleven pre-selected pairs of compensation and separation 
fields ranging from 0 to 22 V/mm and from 800 to 3668 V/mm, 
respectively. The field strengths and the number of averaged data points 
used in this study are provided in Table S1. Each DMS timepoint con
sisted of eleven datapoints from the positive and eleven datapoints from 
the negative ions. A small number of measurement points was used to 
enable high temporal sampling rate. We used forward feature selection 
from a detailed scan to select the used voltage pairs [10]. 

The filtration unit was an in-house developed prototype, of which the 
main purpose was to remove smoke particulates and deliver molecules 
to the spectrometer. The measurement setup is shown in Fig. 1. Transfer 
delays are estimated between the surgical scalpel, the filter and the 
spectrometer unit. 

2.2. Description of variables 

Time-dependent signals from the experiment setup were:  

1. The diathermy current, which indicated the current flown through 
the porcine tissue  

2. The corona discharge current in the filtration unit, in which the 
current was relative to the amount of smoke particulates and 
molecules 

3. The DMS response to molecules. From these we derived six numer
ical indicators expressing the delay. 

These times are illustrated in Fig. 1 and presented in Table 1. 

2.3. Experiments 

Two separate experiments were conducted to study the transfer line 
characteristics (the delays) and to assess the effect of delay on the per
formance of tissue classification. The experiments were executed with a 
fixed time delay to study transfer line kinetics and with a varying delay 
to assess its effect on classification. Data was captured with 3.7 Hz fre
quency in all experiments. The performance of tissue classification was 
evaluated using a shrinkage linear discriminant analysis (sLDA) model. 

2.3.1. Time series with fixed delays – kinetics testing dataset 
The first dataset comprised tissue vapor impulses from 1.5 s elec

trocautery incisions to porcine renal cortex and skeletal muscle in a 
randomized order. Examples of data generated in this test are illustrated 
in Fig. 1. We repeated the incisions 50 times in 20 s intervals. Intervals 
were kept even so that all the remnants from the previous cut dissipated. 

2.3.2. Time series with varying delays – impulse interference effect for 
classifier 

To study the effect of sampling (incision) intervals on the classifi
cation, we created a dataset in which the delays between the 1 s in
cisions varied between 2 s and 11 s (2, 3, 5, and 11 s). The one second 
incision duration was chosen to simulate a surgical procedure. Porcine 
renal cortex and skeletal muscle were incised in a randomized order. The 
dataset included ten subsets. Each of the first five subsets included 
twenty incisions, between which the order of the delays was the same for 
each repeat. The order of the tissues was the same for the first three and 
the next two sets. 

For the latter five subsets, the order of the delays and tissues was 
randomized separately for each set. Also, the number of incisions was 
increased to 21 to fit 20 spaces in each set as illustrated in Fig. 2. 

2.4. Data analysis 

2.4.1. Impulse response shape analysis 
We studied the structure of signal tailing with curve fitting to un

derstand the overall system behavior. An accurate tailing function 
would benefit the system simulations in later studies. Four different 
distribution functions were fitted to the averaged intensity responses 
obtained with the DMS data from 50 incisions. The distributions were 
inverse gaussian, Lévy distribution, lognormal distribution, and geo
metric Brownian motion distribution. Signals were synchronized by the 
time of a threshold crossing at the rising edge of a signal. For diathermy, 
we used a multiplier of 1.1 from the baseline level as the threshold level 
and for DMS, a multiplier of 1.6. The duration of the cuts varied around 
the targeted 1.5 s, which led to accumulation in the averaged peak 
shapes. 

2.4.2. Temporal classification 
In the analysis of time dependency on tissue classification, we used 

leave-one-set-out as the cross-validation method. On each round, four 
sets were used as the training set and the fifth dataset was in turn 
assigned as the testing set. The datasets consisted of 50 randomized 
samples of porcine renal tissue and 50 randomized samples of porcine 
muscle. The intensity peaks were isolated to use individual time points 
for tissue classification. To remove linear drifting during the data 
collection, the data was detrended pixelwise based on the baseline 
values before each incision. For each time point in the extracted and 
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Fig. 1. Figurative explanations for the six delay indicators characteristic to each transfer line (A) and example signals visualizing the delays (B). Time to sensor 
detection describes the delay from the surgical incision to the first response in the DMS. Time to filter detection describes the time from the surgical incision to the 
filter unit. This is roughly the delay in the surgical tube. Time to sensor peak describes the delay from the incision to the peak response in DMS. Time to filter peak 
describes the delay from the incision to the strongest response in the filter unit. Time to sensor recovery describes the delay from the maximum signal to the 10% level 
of the baseline. Time from filter peak to sensor peak describes the delay in the device without the surgical tube. 
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synchronized signals, separate, cross-validated (sLDA) classification 
models were created, and the classification accuracy was reported as a 
function of time from the peak signal strength. Impulse tailing interferes 
with later impulses. Therefore, we also studied how these earlier im
pulses affect the classification results. We studied how the classifier 
performs as a function of the time from the previous signal peak at the 
highest intensity value. In this analysis, the classifier was also trained 
with the leave-one-set-out method. 

2.4.3. Similarity metrics between tissue types 
To evaluate the generalizability of animal tissue signal kinetics to 

actual surgery, we compared our data to measurements from a separate 
study with malignant and benign breast tissues [11]. These tissue sam
ples were vaporized by a CO2-laser and analyzed with DMS. The samples 
included 192 measurements from two breast cancer specimens. We 
estimated the similarity between malignant and benign breast tissue, 
and between muscle and renal tissue by using the Euclidian distance of 
the classes from the respective archetypes (mean spectrums) of benign 
breast tissue and renal tissue. The Euclidean distance depicts the 
shortest distance between the two data vectors and can thus be used to 
estimate the relative differences of sample distributions [12]. If the 
relative differences between the tissue types are similar, we can expect 
similar temporal classification behavior. 

3. Results 

3.1. Delay induced during sample transfer 

After sample incision, the first response is measured from the 
diathermy current probe. Second, as the smoke reaches the filter unit, 
the current in the corona discharge changes. Last, the molecules reach 
the DMS sensor unit. The delayed signal is illustrated in Fig. 3. 

The smoke evacuator tube used in the study was three meters long 
with a 10 mm inner diameter. Thus, the volumetric flow rate would 
approximate to 50 l/min and the travel time of an ideal plug flow to 
300 ms. However, we recorded a mean delay of 340 (SD 170) ms. 
Similarly, an ideal plug flow from the corona discharge of the filter to 

DMS detection would be 350 ms. However, the recorded delay (TSD- 
TFD) was more than 700 ms. 

The first detectable signal in the DMS was measured 1.1 (SD 0.3) 
seconds after the beginning of cutting. Then, the intensity increased for 
approximately 1.2 s and diminished to under 10% from the maximum 
within 8.2 (SD 2.3) seconds. All measured delays had outliers due to 
irregularities in the manual sampling. The delay distributions are pre
sented as boxplots (Fig. 4). 

We modeled the averaged impulse response with four heavy tailed 
distributions. The best fit was obtained with the Lévy distribution, a 
special case of inverse gaussian distribution, followed from a Lévy 
random walk [13] The result is illustrated in Fig. 5. Other functions 
included the Log-normal, which is a maximum entropy probability 
distribution, and Geometric Brownian motion distribution, which fol
lows the random walk with a gaussian distribution. The residual stan
dard errors for the fittings were as follows: Lévy distribution 0.030, 
Inverse gaussian 0.037, Log-normal 0.047, and geometric Brownian 
motion 0.052, respectively. None of the fitting functions managed to 
describe the extra heavy tail after the peak well. The properties of the 
handmade input impulse affected the signal. The duration and the 
incision depth varied considerably and thus affected the sample 
concentration. 

Based on the impulse response test, the classification accuracy of 
renal cortex and skeletal muscle correlated with the average signal in
tensity of the test set with some delay (Fig. 6). However, decaying of the 
signal weakened the classification. Many of the 11 voltage pair channels 
on higher separation field values posed lower signal-to-noise ratios than 
the channel illustrated in Fig. 6. Although an increase in the DMS sep
aration field enhances ion cluster separation, it simultaneously de
creases ion passing. As high electric field increases the movement 
amplitude of the ions it concurrently increases the probability of ion 
collisions to the separation electrodes, which neutralizes the ions. This 
phenomenon decreases the signal strength. It is noteworthy that there is 
similarly a high time-dependent noise in the classification accuracy. 

3.2. The effect of signal carry-over on the classification accuracy 

The measurements concerning the effect of carry-over on the clas
sification accuracy did not reveal a specific threshold time for unsuc
cessful classification. We utilized variable delay times and the 
classification was tested at peak intensities (Fig. 2). For 2, 3, 5, and 
11 second intervals, there were no statistically significant differences. 
Both datasets consisted of 25 points per delay value. Classification ac
curacies are presented in Table 2. Herein, all ten partially and totally 
randomized subsets are combined. The results showed no observable 
trend as a function of delay time. It is worth noting that these delay times 
were instructed to the knife operator. Due to the manual operation, the 
actual delay times had some variance. These delay time distributions are 
presented in the supporting material Fig. S1. The distributions revealed 
few outliers caused by errors in the manual sampling. In addition, the 
correlation between the actualized delay times and the classification 
showed no clear bias (Fig. S2). 

Table 1 
Delay indicators used to characterize and quantify transport kinetics.  

Indicator Description 

Time to sensor detection 
(TSD) 

Delay from the beginning of the dissection to the 
beginning of the DMS response 

Time to sensor peak (TSP) Delay from the beginning of the dissection to the 
DMS signal maximum 

Time to sensor recovery (TSR) Decay time from the DMS signal maximum to the 
10% level from the baseline 

Time to filter detection (TFD) Delay from the dissection beginning to the first 
response in the filter 

Time to filter peak (TFP) Delay from the dissection beginning to the 
maximum corona filter current 

Time from filter peak to sensor 
peak (TFP-SP) 

Delay between the corona filter maximum current 
and the DMS maximum signal  

Fig. 2. One fifth of the randomized delay dataset from a single voltage pair 
channel. Red vertical lines indicate peaked signals, where classification 
is analyzed. 

Fig. 3. Averaged and synchronized molecular transfer delays in the surgical 
sampling system. 
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3.3. Tissue type Euclidian distances 

The relative differences in the Euclidian distances between malig
nant and benign breast tissues and the porcine tissues were alike (Fig. 7). 
Median Euclidian distance of individual malignant tissue samples to 
benign archetype was 0.59, and for benign tissue samples 0.44. The 
median Euclidian distance of individual muscle tissue samples to kidney 
archetype was 0.92, and individual kidney samples to kidney archetype 
0.83. This finding suggests that the results of the study are also expected 
to be generalizable to clinically relevant tissues. 

4. Discussion 

In this study we shed light on the kinetics of gas detector systems for 
surgical tissue assessment with a well-controlled mechanistic model. 
The characteristics of the system are well comparable to those docu
mented with mass spectrometers and further validate the potential of 
these technologies in surgical use. 

Delay in the sample analysis greatly affects the usability and prac
tical applicability of the device. We observed an average delay of 1.12 
(SD 0.3) seconds from tissue contact to sensor detection. This is com
parable to mass spectrometer-based systems, such as the iKnife system 
which has a delay from 0.7 to 2.5 s [14] or 1.8 (SD 0.40) seconds [15], 

Fig. 4. Distributions of the delay indicator values are illustrated as boxplots. The dataset delay distributions are illustrated for each indicator parameter.  

Fig. 5. Curve fitting for the sum of positive ions. The best fit was obtained using 
the Lévy distribution, a special case of inverse gaussian distribution. 

Fig. 6. The classification accuracy for impulse response. A decaying signal 
weakened the classification accuracy. After 7–8 s from the impulse peak, the 
classification accuracy decreased significantly. The average peak shape with the 
separation voltage (Usv) of 200 V and compensation voltage (Ucv) of 0.5 V. 

Table 2 
The classification accuracies alongside 95% confidence intervals for different 
delay times. Notably, there are no statistically significant differences in the 
accuracies.  

Delay Accuracy 95% confidence interval 
lower limit 

95% confidence interval 
upper limit 

1 s  0.74  0.56  0.85 
2 s  0.80  0.66  0.90 
4 s  0.82  0.69  0.91 
10 s  0.71  0.56  0.84  
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but is greater than delays documented for SpiderMass system (0.4 s 
± 0.1) [16]. In contrast to our system, which is an add-on to existing 
smoke evacuators, the iKnife and Spidermass utilize integrated tubing to 
enable the control of the tube diameter and flow rate. This evidently 
improves the time to detection. In this study, the TFD was less than half 
of the TSD implicating that the majority of the delay originated from the 
pneumatics of the prototype system. In addition to the smoke arrival 
delay, there is a data acquisition delay of around 200 ms and a data 
processing delay of around one second in our prototype system. How
ever, these delays can be largely eliminated by increasing computing 
power and optimizing communication. 

Even though the time to detection is rapid and sufficient for clinical 
use, the residual time of the molecules in the system is long at 8.6 s. This 
finding is in line with a previous MS study, where increase in the flow 
rate had a lesser effect on the retention time than on the time to 
detection [16]. Practical real-time use requires an ability to tolerate 
signal carry-over to an extent. We assessed this perspective by con
ducting electrocautery incisions in a random order with randomized 
delays on two different tissues. Surprisingly, we observed similar clas
sification accuracies across the sampling intervals from 2 to 11 ss with a 
relatively simple sLDA model despite significant carry-over from the 
previous measurements. However, we hypothesize that the performance 
would decay at intervals below 2 s. The achieving of such sub-second 
intervals with a similar study setup would require 
computer-controlled sampling which may otherwise not be comparable 
to a human user. Additionally, impulse type sampling is likely easier to 
classify than a smooth transition from one tissue to another. The reality 
during surgery is between these two cases. In a study observing elec
trocautery activation patterns by consultants and specialists, Meeuwen 
et al. documented average activation times from 1.4 to 2.3 s [17], 
resembling more pulsed than continuous smoke production. This is in 
line with our observations of the system in operation theatre use [18]. 

As illustrated in Fig. 6, the best classification performance was ob
tained at the signal peak at 1.1 s after initial detection. This is theoret
ically the optimal time point for classification due to its high signal-to- 
noise ratio. Correct classification is therefore possible very shortly 
after detection, which is ideal for practical use. It is worth noting that the 
classification accuracy does not decrease along with the decaying signal 
strength. Rather, there seems to be a minimum requirement for signal 
strength. In contrary to our expectations, the classification accuracy did 
not improve with longer recovery delays between cuts. The absolute rate 
of correct classification remained modest especially for fully randomized 

delay. This is likely due to the relatively small sample size that does not 
enable the classifier to reach its full potential. However, the sample size 
is sufficient to detect the practically meaningful rate of relative classi
fication between delays. 

We found no relevant studies related to the effect of surgical margin 
detection latency on the usability of a surgery assisting device. Litera
ture on latency focuses on telesurgeries, in which the acceptable latency 
is less than one second [8]. Considering only the time to detection, a 
latency in this range can be reached whereas taking the retention time 
into account, we consider a 2–3 s latency realistic for pneumatic systems 
like DMS and MS. As surgeons typically cut tissues at a pace of 
5–15 mm/second [19,20], this latency is acceptable for the intended 
purpose of alarming of a positive margin during cancer surgery. 

The analysis of kinetics in this study was conducted exclusively with 
benign porcine tissues. In order to assess the generalizability to relevant 
cancerous tissues, we conducted a similarity analysis of data from 
cancerous tissues and of porcine tissues in this study. The finding that 
the difference between grossly malignant and benign tissue is larger 
than the difference between kidney and muscle tissue is intuitively 
surprising but is likely explained with heterogeneity of healthy tissue. 
Additionally, molecular profiling studies have demonstrated pan- 
cancerous characteristics that exceed the difference between organs. 
Nevertheless, the findings should be interpreted cautiously and 
confirmed with more extensive experiments with both benign and ma
lignant human tissues. [21,22]. 

In order to build a theoretical model for kinetics of surgical smoke 
analysis systems, we studied the distributions of the signals. Farsad 
et al., 2013 [23] and Na-Rae et al., 2018 [24] studied chemical pulse 
transfer under forced flow in ambient air without tubes. Due to diffu
sion, the impulse response should follow inverse gaussian distribution in 
forced flow and Lévy distribution when there is no flow [25]. However, 
in our application and experiment setup, forced flow in a tube was used. 
These conditions introduced additional effects, namely turbulence and 
sorption-desorption events to tube walls, into the setting. In 
sorption-desorption interaction, molecules hit and stick to the tube 
walls, which delays and stretches the chemical signal. Therefore, we can 
assume that the signal tail lasts longer than commonly used heavy tailed 
distributions can estimate. We discovered that the Lévy distribution, 
which is characterized by a heavy tail, described our system the best, but 
still lacked heaviness in the tail. We did not try any function combina
tions to improve the fitting. Another explanation for curve mismatch 
could be the long nonideal input impulse. In addition to impulse 

Fig. 7. A) The distributions of the Euclidian distances between malignant and benign breast tissue compared to the benign archetype. B) The distributions of the 
Euclidian distances between muscle and renal tissue compared to the renal tissue archetype. 
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response, the tube material, size, and temperature affect the overall 
delay [26]. An accurate model would be beneficial for the simulation of 
the system behavior. 

The sample size was limited, which limits the reliability of the re
sults, since noise and other sporadic system variations may have affected 
the results. sLDA classifier boundaries are in a linear dimensional space 
so it can only respond linearly to nonlinear phenomena. Other methods, 
such as convolutional neural networks (CNNs), could provide different 
results in terms of the effect of delay on the classification accuracy but 
require larger data sets to operate sufficiently [6] Therefore, they were 
not evaluated in the study. In addition, manual sampling has limitations 
in its accuracy and reliability. However, these accuracy related factors 
unlikely affected the main conclusions of this study. 

The delay comparison between the filter current and the DMS is not 
straightforward. If a molecule hits the tube wall, it is delayed. In 
contrast, particulates stick to the wall permanently. Therefore, the 
particulate signal consists only of non-delayed particulates and the 
molecular signal is slower than the particulate signal. In other words, the 
particulate signal does not have a heavy tail. In addition, particulates 
attached to the tube walls emit molecules. These factors enhance the 
difference between the filter and the DMS response. The filter responds 
to both molecules and particulates whereas the DMS responds only to 
molecules. In addition, in the filter, particulates decrease current caused 
by ion mobility, and molecules increase the mobility. This causes the 
two-directional response seen in Fig. 3 filter current. 

5. Conclusions 

The studied surgical smoke detection system has low latency on 
signal detection but suffers from long retention times. Surprisingly, the 
retention time does not have a significant effect on the correct classifi
cation rate. The sample impulses produce heavy tailed responses, which 
are best described by the Lévy distribution, although still lacking 
heaviness in tailing. The delays exhibited by the smoke analysis system 
are comparable to MS-based methods and are short enough to enable the 
surgical application of tissue identification based on surgical smoke. 
However, to maximize the applicability of the surgical smoke detection 
systems, a thorough optimization of tubing lengths, flow control, and 
computational integration are required. 
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Lévy flights (and others), Anomalous Transp. 129 (2008). 

[14] J. Balog, et al., “Intraoperative Tissue Identif. Using Rapid Evaporative Ioniz. Mass 
Spectrom.,” vol. 5 (194) (2013) 194ra93, doi: 10.1126/SCITRANSLMED.3005623. 

[15] E.R. John St, et al., “Rapid evaporative ionisation mass spectrometry of 
electrosurgical vapours for the identification of breast pathology: towards an 
intelligent knife for breast cancer surgery, Breast Cancer Res. 19 (1) (2017) 1–14. 

[16] B. Fatou, et al., In vivo real-time mass spectrometry for guided surgery application, 
Sci. Rep. 6 (1) (2016) 1–14. 

M. Karjalainen et al.                                                                                                                                                                                                                           

https://doi.org/10.1016/j.snb.2022.131902
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref1
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref1
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref1
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref2
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref2
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref3
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref3
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref4
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref4
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref5
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref5
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref6
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref6
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref6
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref7
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref7
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref8
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref8
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref9
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref9
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref9
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref10
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref10
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref11
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref11
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref12
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref12
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref12
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref13
http://refhub.elsevier.com/S0925-4005(22)00544-5/sbref13


Sensors and Actuators: B. Chemical 365 (2022) 131902

8
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