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ABSTRACT

Deep learning-based object detectors have shown outstanding performance with state-
of-the-art results on public benchmarks. However, they typically consist of millions
of parameters and require a large number of training samples to tune these param-
eters appropriately. These samples are labeled by human annotators, which is a te-
dious, time-consuming, and expensive process. Moreover, object detectors have high
computational costs both for the training and inference phase. This dissertation con-
siders these two aspects of training and deploying deep learning object detectors.

First, we study data labeling for the training phase and the robustness of object
detectors towards label noise. We classify possible label noise scenarios in 2D object
detection and study the sensitivity of one-stage object detectors to label noise in the
training phase. We then propose methods for efficient bounding box annotation by
utilizing human-machine collaboration. Extensive experiments have been done to
study an efficient and effective bounding box annotation scheme for deep learning
object detectors. Additionally, we created an easy-to-use, medium-sized, multiclass,
fully labeled object detection dataset from indoor premises and released it publicly
for registration-free use.

Second, we study the practical problem of object detection network deployment
with an efficient implementation of the object detection network for applications
such as facial analysis, human detection and tracking, and the path prediction of
mobile objects on resource-limited devices. We implemented object detection in an
image processing pipeline integrating with other tasks for multiple applications and
studied the optimal design process. We present the details of the system-level design
to incorporate a multitasking network efficiently with the proper system architec-
ture design.
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1 INTRODUCTION

With the computers being present in every aspect of daily human life, the endeavor
to maximize their potential usage leads us towards Artificial Intelligence (AI) and
Machine Learning (ML). Machine Learning has the been a significant part of trans-
forming industry, logistics, medicine, agriculture, and automobiles.

By combining Computer vision and Machine learning, we create a goal of de-
veloping systems that can understand the visual content in an image or a video in
the same way humans do. The recent evolution in Convolutional Neural Networks
(CNN) and deep learning have changed the landscape of this field with significant
increase in the performance accuracy compared to traditional methods.

In a typical case, deep object detectors process a large number of examples to
understand the underlying features from the training data and apply the logic on un-
seen samples to predict the output. Collecting such data in large number of images
and videos is tedious and expensive. On the other hand, deep networks usually per-
form better the bigger they get, which means they have large memory footprints.
This thesis studies both aspects; efficient object labeling on training dataset for deep
learning object detectors and efficient implementation of such networks on image
processing pipeline for the real-time performance on low-resourced devices. We aim
to propose annotator-friendly human-in-the-loop schemes to facilitate image anno-
tation and experiment with efficient deployment techniques for detection networks
on low-resourced devices.

1.1 Objectives and Scope of the Thesis

Supervised object detection is the most common approach widely used in research
projects and applications. It is considered a safe choice as a building blocks for higher-
level decision-making systems for private and commercial uses. However, for super-
vised machine learning, the challenge lies in finding a suitable training dataset. Ob-
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ject detection datasets consist of images with one or more objects in a frame that are
typically assigned by human annotators. As stated before, collecting such a dataset
is not straightforward since it requires special attention and domain expertise (e.g.,
medical images) which costs time and money. As an example, the commonly used
crowd-sourcing platform of Amazon Mechanical Turk (AMT) requires 42 seconds
per instance to draw a bounding box with a class label on the popular object detec-
tion dataset for ImageNet Large Scale Visual Recognition Challenge (LSVRC) [77].
Due to these issues scientists started exploring alternative annotation schemes.

Researchers have been resolving this challenge by open-sourcing large-scale data-
sets, developing efficient annotation tools, and studying efficient alternatives such as
transfer learning and weakly supervised learning. Many fully labeled public bench-
mark datasets from multiple domains have facilitated object detection breakthroughs
in various fields. However, for real-world detection applications, these public datasets
rarely satisfy the need for good performing object detector. Object detection tasks
can be particular to a specific environment and use case, so relying only on public
datasets often does not generalize well. Thus, there is a need for custom datasets
from the testing environment. The custom dataset creation process can be enhanced
with the help of in-house, efficient, and human-friendly data labeling tools, leading
to broader usage of object detection-based applications.

Moreover, modern CNN-based object detectors have millions of parameters that
require powerful computing resources to train and inference for the applications.
The broader availability of mobile and embedded devices have initiated research to-
wards more efficient implementation of detectors for real-time inference on these
devices.

The objective of this thesis is to improve the efficiency of manual labeling with
the assistance of a machine learning tool for bounding box annotation. In addition
to annotator-friendly annotation schemes, the thesis aims to implement object detec-
tors for vision-based applications and find the optimal design strategy for deploying
on imaging pipelines for low-powered edge devices at scale.

1.2 Research Questions

In this dissertation, there are mainly three perspectives from which the research ques-
tions are derived and studied. The first research perspective is about the Label noise
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impact on CNN-based object detectors. The quality of training data is one of the
critical factors affecting the performance of machine learning models. Since label
noise in the training dataset is inevitable, it is worth investing in the techniques to
tolerate the noise while achieving the desired performance.

The second research perspective is about efficient image labeling for modern ob-
ject detection. The annotation of object location with a class category on image
datasets is costly and time-consuming. While there are many services and platforms
available for data annotation, the cost, privacy issues, and the nature of the data
sometimes make it impossible to use such services. For example, companies usually
do not want to share their data to protect confidentiality and competence. Thus, an
annotator-friendly easy to adopt method is needed for object detection.

The third research perspective is about the efficient implementation of CNN-
based object detectors in diverse applications. CNN-based object detectors have
been successful with state-of-the-art performance in different domains. Typically,
these detectors consist of millions of parameters and require extensive resources to
store and operate. On the other hand, the rapid growth of mobile phones, embed-
ded devices, and cloud computing has expanded the use of detection-based systems
in applications designed to operate on these platforms. The speed versus accuracy or
memory footprint versus detection performance trade-off is a long-standing debate
in deep learning. The existing detection network can be efficiently deployed by ap-
plying tricks such as the network pruning and modifying the network parameters
such as input size, number of layers, and feature extraction network.

Based on the perspectives mentioned above, we attempt to answer the following
research questions studied in this thesis.

• Research Question 1:
How sensitive existing object detectors are to label noise and how to improve
the robustness of the detectors?

• Research Question 2:
How to use existing machine learning and human annotator efficiently to label
training data for supervised object detectors?

• Research Question 3:
How to integrate object detection networks into an image-processing pipeline
for the resource-limited platforms and put them into production at scale?

17



1.3 Summary of the Publications

The results and the contributions of the publications included in this thesis are sum-
marized as follows.

Publication I This article proposes a semi-automatic approach to speed up the
bounding box annotation process with a minimal manual work-
load. Our approach trains the object detector on a small set of
manually labeled data and learns to predict bounding boxes and
class labels for the unlabeled data. A human annotator then re-
views these annotation proposals and fixes potential mistakes.
We showed that the proposed approach could reduce manual an-
notation workload by up to 90%. Additionally, we published a
fully labeled indoor dataset for the object detector training.

Publication II We propose an iterative annotation method that utilizes human-
machine collaboration with human-in-the-loop annotation. At
each iteration, the method trains an object detection network
on a recently labeled dataset and predicts annotation proposals
for the next batch of unlabeled images. These predictions are
reviewed and verified by a human annotator. The iterative an-
notation is straightforward and it could reduce manual annota-
tion workload by up to 80%, depending on the sample selection
strategies.

Publication III This work proposed an efficient sample selection approach that
provides informative samples to label with our iterative anno-
tation method proposed in publication II. We aimed to label a
whole dataset by selecting informative images based on a practi-
cal and intuitive idea. We showed that the image-to-image simi-
larity metric is effective for selecting image samples for efficient
annotation of object detection datasets.

Publication IV This paper studies the robustness of two different object detec-
tion loss functions on label noise. Experiments with different
amounts of missing labels showed that focal loss is more sensitive
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than cross-entropy loss. Also, the experiments showed that suit-
able hyperparameters for the focal loss function could improve
the detector robustness even in extreme label noise cases.

Publication V This article studies challenges in the practical implementation of
a distributed computer vision system for person detection and
tracking. A privacy-aware system is designed and tested in a real-
world environment while receiving data from multiple edge de-
vices via the cloud server. Additionally, the design and imple-
mentation aspects for real-time execution in a low-resourced edge
computing device are studied.

Publication VI This article investigates practical implementation issues of mul-
tiple algorithms for facial attributes recognition tasks integrated
within a single system. The system utilizes known techniques
that recognize age, gender, expression, and face similarity against
a celebrity dataset. Moreover, the paper presents a real-time facial
analysis system running on a single desktop and evaluates many
design options, such as what neural network models to use for
individual facial analysis tasks.

Publication VII This article introduces an efficient object detection system to
predict the trajectory of moving objects. A lightweight object
detector is trained on custom data collected from the test envi-
ronment and deployed in a Raspberry Pi equipped with a camera
module to detect the moving objects. The proposed approach
predicts the trajectory of moving objects based on the detection
results and timestamps of the detection.

19



Structure of the Thesis

The structure of the dissertation is as follows. Chapter 2 presents a brief overview of
the field, including machine learning and deep learning, as well as a brief review of the
evolution of object detectors and standard object detection networks. Additionally,
Chapter 2 provides an overview of different types of image labeling practices used for
object recognition tasks, performance measurement metrics, and the dataset used for
experiments. Chapter 3 discusses the label noise effect on the datasets while training
deep learning object detectors. It summarizes the works on faster and efficient im-
age annotation methods for 2D object detection, namely bounding box annotation.
Chapter 4 presents the author works on implementing object detection networks on
various imaging pipelines. Finally, Chapter 5 concludes the thesis with discussions
about current and possible future research in the field.
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2 BACKGROUND

This chapter includes a brief discussion of machine learning, deep neural networks,
and object detection to understand the work done in this thesis. The chapter covers
some common object detection networks structures, image labeling for deep learn-
ing detectors, and evaluation metrics and datasets used in this thesis.

2.1 Machine Learning

Machine learning (ML) is a field of computer science, a subfield of Artificial Intel-
ligence (AI), where the algorithm aims to learn a pattern from the training data to
predict information about unseen test data. In some cases, humans can manually
design the system to look for specific features to find the pattern. However, this task
gets complex exponentially when dealing with more challenging problems. Thus,
ML algorithms are evolved to find their own features without any human interfer-
ence.

With the integration of digital devices such as smartphones and wearable devices
in our daily lives, ML is being used in various places without realizing it. Some of
the common uses of ML algorithms can be seen in search engines, spam filtering
in emails, language translation services, voice assistance, recommendation system,
chatbot, etc. Moreover, ML algorithms can extract valuable insight and analyze the
data produced and collected from our everyday activities on digital devices and the
internet.

Based on the learning principles, ML algorithms are broadly classified into four
categories. A brief discussion on each type of learning is presented next.
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Supervised Learning

Supervised learning algorithms are trained with labeled data samples and used to cre-
ate an accurate prediction model under supervision. This model learns from a given
training set (input data) and predicts the correct label for testing set. Typical dataset
for training supervised learning algorithm consists of a set of input-output pairs.
For input variables (X = {x1, x2, .., xn}) and output variables (Y = {y1, y2, .., yn}), su-
pervised learning algorithm uses a mapping function y = f (x) to map the relation
between input-output pair. Supervised learning aims to approximate the mapping
function f (x) for any new input data x ′, and the model predicts output label y′ for
it.

Supervised learning is by far the most applied machine learning method in di-
verse tasks and applications. Classification and regression are the most common ex-
amples of supervised learning. In classification, the goal is to assign input points to
one of the class categories of input data, e.g., identifying cats and dogs from images,
identifying handwritten digits, and email spam filters. In regression, the goal is to
estimate a relationship between a dependent variable and one or more independent
variables by predicting output in a numerical quantity, often a continuous variable.
House price prediction based on house features, sales prediction based on sales data,
and stock price prediction are common regression examples. Classification and re-
gression differ only by their output; the former predicts categorical labels while the
latter predicts the numeric value. Some examples of supervised learning are linear
regression, logistic regression, decision trees, naive Bayes classifier, nearest neighbor
clustering, and support vector machines (SVM).

Unsupervised Learning

Unsupervised learning is learning without predefined labels or direct supervision.
Unsupervised learning aims to determine the hidden structure or pattern in a col-
lection of unlabeled data. Clustering is a typical example of unsupervised learning
where the data are partitioned into groups (clusters) based on similar-looking fea-
tures. Other examples are visualization, dimension reduction, and association rule
learning. Visualization helps to understand the data and underlying features by pre-
senting complex data into appealing 2D or 3D graphical formats. Dimension reduc-
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tion helps to reduce the correlated features from the data by merging into smaller
dimensions without losing valuable information. Association rule learning helps to
discover the interesting relation between variables in a large dataset.

Semi-supervised Learning

Semi-supervised learning is a combination of both supervised and unsupervised learn-
ing methods. In semi-supervised learning, an algorithm is trained on the partially
labeled or incompletely labeled dataset. Collecting a large-scale dataset and labeling
it for machine learning algorithms is time and resource-consuming. Meanwhile, ac-
quiring a partially labeled dataset is relatively easy. Semi-supervised learning can be
used as an alternative option in the case of incomplete annotation or noisy data. A
typical example of semi-supervised learning is a text document classifier, where the
algorithm learns from a small amount of labeled text data and can still classify a large
amount of unlabeled text documents.

Reinforcement Learning

Reinforcement learning is learning of what action to perform and how to map this ac-
tion to the situations to maximize the reward signal and complete the given task [84].
The learner is asked to perform a task without providing explicit instructions; in-
stead, it must discover its actions to yield maximum reward by trial and error. The
learner agent learns from its past experiences, must have a sense of the current en-
vironment state, and can take action accordingly to accomplish its goal. Although
supervised and unsupervised learning covered most types of learning, they are not
adequate for learning from interaction. In interactive problems, it is nontrivial to
collect correct and well-representing examples of desired behaviors. In these situ-
ations, the learner must learn to form its own experiences and keep improving its
performance. Reinforcement learning aims to maximize the reward function rather
than trying to find the underlying patterns. Reinforcement learning has been imple-
mented in many real-world applications, especially in autonomous driving, machine
vision, and robotics.
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2.2 Deep Learning

Deep learning (DL) is a machine learning technique constructed based on artificial
neural networks inspired by the structure and function of the brain. DL frame-
work consists of multiple layers of simple modules used for learning and computing
nonlinear input-output mapping. The multi-layer model architecture extracts the
higher-level representation of data and transforms it to multiple levels of abstrac-
tions. Typically, DL network consists of many intermediate layers called hidden
layers between the input and output layers.

Recently, learning algorithms are getting more accurate than traditional appro-
aches. They are capable of solving many challenging tasks that were considered
impossible to do with ML until ten years ago. DL algorithms have been applied
extensively in fields such as computer vision, speech recognition, natural language
processing, and medical diagnosis. DL started gaining attraction in computer vision
after Krizhevsky et al. [42] proposed a CNN-based image classifier with high perfor-
mance on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [77] in
2012.

In recent years, CNN-based algorithms have been widely used in the research
community leading to rapid growth in publications and a wide range of applica-
tions [7, 29, 109, 118]. A recent survey showed that deep learning skills dominate
the other skillsets for opening jobs in the AI field. The demand for these skills is
increasing further as more diverse research institutions and industries are getting in-
volved with it [109].

Traditional ML algorithms are suitable for structured and low dimensional data,
while DL algorithms are well served for large-scale, unstructured, high dimensional
data and perceptual problems. The non-linear mathematics of these problems led to
development of deeper models in DL. This complexity enables the efficient solving
of high-dimensional problems such as object recognition, natural language process-
ing, speech/text recognition, and more.

In the past, the challenges for using many-layered networks were computing re-
sources and enormous datasets required to train the model. Publicly available large-
scale benchmark datasets, powerful computing devices, general-purpose Graphics
Processing Units (GPU’s) and Tensor Processing Units (TPU’s), and broader re-
search interests played significant roles in wider use of DL methods.
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Common CNN Architectures

CNN, a powerful family of artificial neural networks, utilizes convolution operation
via several layers to efficiently extract the underlying features of input data. Modern
CNN architectures tend to use a large number of convolutional layers (deep net-
works) followed by one or more fully connected layers. Here we introduce some of
the most common CNN architectures selected for experiments in this thesis.

MobileNet

MobileNet is a lightweight deep neural network designed for efficient computing for
mobile vision applications et al. [32]. The idea behind the MobileNet architecture is
the division of standard convolutional filters into two filters. Standard convolutional
filter is divided into depthwise and pointwise convolutional filters where the total
computational complexity of standard convolution is higher than the combination
of the separable convolutions as shown in Figure 2.1. This division is optimized for
computation speed. The reduction in accuracy is relatively small in comparison to
the standard one.

X X
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weight layer
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y = F( X ) + X 
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+
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Figure 2.1 Illustration of (a) standard convolution filters, (b) depthwise convolution filters, (c) pointwise

convolution filters, (d) regular block in CNN, and (e) residual block of ResNet.
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Residual Networks

Residual networks (ResNet) [31] utilizes the idea of learning residuals instead of fea-
tures in the model. Accuracy degradation happens when the accuracy of a trained
model starts dropping after reaching a certain threshold due to overfitting the train-
ing data. ResNet was proposed to solve this issue by using the residual function in
place of traditional mapping between input and output. In simple terms, a resid-
ual function removes learned features from a few layers and connects directly to the
output, also known as skip connections. This skip connection benefits the learn-
ing process by skipping any particular layer that hurts the network performance.
The residual function can be defined as F (x) =H (x)− x, where F (x) represents the
output of multiple non-linear layers, H (x) represents the mapping function, and x
represents the identity function. The largest ResNet consists of 152 residual blocks,
while the smallest can be as small as 9 blocks.

Predict

Predict

Predict

Predict

Image pyramid Features pyramid

Figure 2.2 Illustration of a featurized image pyramid that uses image pyramid and features pyramid.

Feature Pyramid Network

Feature pyramids are a fundamental component in recognition systems for detect-
ing objects at different scales. However, they are avoided as they are computation
and memory intensive. Feature pyramid network (FPN) construct feature pyramids
with parallel connections to build high-level semantic feature maps at all scales as il-
lustrated in Figure 2.2.
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2.3 Object Detection

In computer vision, image classification is the task of labeling the image as a whole.
In addition to labeling, object localization finds the position, rectangle coordinates,
of the object. Object detection goes a step ahead of object localization to find all ob-
ject locations along with the labels. In object detection, the task is to predict a tight
bounding box around each object instance and its class label in a test image. Ob-
ject detection is one of the fundamental and the most challenging task in computer
vision [17, 21, 22, 23, 27, 50, 54, 72, 75]. The recognition of object instances is as-
sociated with tasks such as classification, localization, object detection, and instance
segmentation, as shown in Figure 2.3.

Cup

MouseMouse

Cup

Cup

Cup

Cup

(a) Classification (c) Object detection

(f) Panoptic segmentation(e) Instance segmentation(d) Semantic segmentation

Cup

(b) Classification & localization

Cup &
position

Figure 2.3 The collection of object recognition tasks in computer vision (a) classification, class label of

the object in an image, (b) object localization, location of one or more object(s) in an image

frame, (c) object detection, class and location of each object in an image, (d) semantic seg-

mentation, every pixel is assigned a label, (e) instance segmentation, precise pixels of each

object is labeled, and (f) panoptic segmentation, a combination of semantic segmentation

and instance segmentation.

The majority of the modern object detection models are based on supervised
learning, where predicting a class category belongs to the classification task and lo-
cating object and getting the coordinates belong to the regression task. Additionally,
there have been other learning approaches used for object detection, such as semi-
supervised and weakly-supervised. The focus of this thesis is mainly on data labeling
bottlenecks for implementing supervised object detection.

Commercial applications of object detection such as facial analysis [3, 7], au-
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tonomous driving [13, 99, 103], robotics [39], surveillance system [46, 106], and
agriculture [41] have seen an increasing trend of object detector usages. Visual recog-
nition applications are rapidly increasing with wide range of accessible datasets, more
computing power on devices, advanced imaging hardware and software, and afford-
able and scaleable cloud services [109].

There is a wide selection of open-sourced libraries and packages for object de-
tection training and deployment. Dlib [38], Detectron [28], OpenCV [62], Py-
torch [67], and Tensorflow [89] are commonly used platforms/libraries for modern
object detection training and deployment. Recently, researchers have been follow-
ing the trend of openly publishing their project codes and trained network weight
for reference.

History of Object Detectors

The common pattern in object detectors is as follows: a window classifier is trained
to detect a presence of a window containing an instance of the target object at training
time. The classifier is applied to score these windows on a test image at testing time.
The detection is computed by finding the local maximum score.

The very early methods for object detection include appearance-based methods
that extract the appearance of local object patches [59, 76, 92]. These methods typ-
ically work by extracting a set of interest points from the test image, then finding
local features around these points and comparing them with features extracted from
the training images using some distance function. Affine-invariant interest point de-
tectors [59, 92] have been extensively used in these schemes and are successful in
matching local object regions across images with diverse viewpoints.

After appearance-based methods, the sliding window paradigm was widely used
and had shown successful results for object detectors [17, 23, 94]. The core concept
of the sliding window methods lies in the position and scale variation of the images.
These methods search exhaustively in a dense grid of images and can find the object
at any position and scale in the image. A window classifier is trained to detect the
window that contains an instance of the target object at training time. At the test
time, every window on a dense grid is scored. The detections are the local maximum
of the score function.

Dalal and Triggs [17] introduced a very successful feature descriptor called His-
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togram of Gradients (HOG) for pedestrian detection. Their HOG person detector
uses a sliding window moving around the image by computing the HOG feature
descriptor at each position. These features are then used to train a Support Vector
Machine (SVM), which classifies inputs as person or not a person. They also intro-
duced the novel concept of hard negative mining for the training. At first, a model
is trained to classify negative windows on training images, the incorrectly classified
negative windows are collected and used to train the new model. This process is
repetitive till the model converges.

Deformable Part Model (DPM) [23] detector is another widely used object detec-
tor that uses multi-scale deformable part models. The DPM is designed on a pictorial
structures scheme, i.e., an object can be represented as a collection of parts arranged
in a deformable configuration.

Evaluating a large number of sliding windows in an image is computationally
heavy. Proposal-based object class detectors are introduced to reduce the number
of classifier windows needed to run in an image [8]. Unlike exhaustive search on
sliding window approaches, the proposal-based object detector first generates a small
number of windows for each image containing all objects of the image. The class-
specific window classifier is then evaluated only on this limited pool of proposed
windows. Objectiveness measure, a metric that quantifies how likely an object of
any class can be in a window, is commonly used as a location prior to the sliding
window detector reducing the number of windows needed to evaluate. Researchers
proposed many approaches to generate class-specific object proposals detectors [69,
93, 117]

Modern object detectors consist of a backbone that is typically state-of-the-art
image classification CNN e.g., VGG [81], ResNet [31], MobileNet [32, 79], Effi-
cientNet [87], etc., and additional layers to predict location and label from backbone
features. CNN based methods can be broadly divided into two sub-categories: two-
stage [26, 27, 30, 75] and one-stage [50, 54, 73, 74, 95]. These methods have been
proven effective with state-of-the-art performance on challenging public benchmark
datasets [20, 22, 51, 55].

In contrast to traditional detectors mentioned above, CNN-based object detec-
tors are trained end-to-end to extract the visual context of the image window by
learning feature representation with the window classifier instead of hand-crafted
features. Recent survey papers [53, 108, 118] nicely summarized the recent develop-
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ments in deep learning based object detectors.

Two Stage Detectors

In two-stage object detectors, the detection is performed in two major passes: at first,
a set of the region of interests (RoI), a region with a high probability of having an
object, is obtained by a selective search algorithm or a region proposal network as
illustrated in Figure 2.4. Then classification and regression sub-networks are used
for classifying and localizing objects presents in these region proposals.

ConvsConvs
Input image

Backbone Network

RoI Pooling 

class

location

Region Proposal Network

class

location

Convs

Convs
Input image

Backbone Network

RoI Pooling 

class

location

Figure 2.4 Overview of two-stage detector (top) and one-stage detector (bottom) architectures.

Region-based Convolutional Neural Networks (RCNN) families are popular two-
stage object detectors and have been widely used in object detection with state-of-the-
art performance on public benchmark datasets [26, 30, 75]. RCNN detectors give
better detection accuracy but are computationally heavier due to the high number
of candidate region proposals for each image at the first stage.
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RCNN

In 2014, Grishick et al. proposed a region-based convolutional neural network
(RCNN) for the object detection task [27]. The RCNN detector workflow is as
follows. At first, a selective search is applied to an input image to identifies class in-
dependent regions of interest ( 2k per image) that may contain target objects. The
extracted region candidates are wrapped in a fixed size. The pretrained CNN classi-
fication network is used to finetune these warped proposals and to extract features.
Next, the feature vectors are passed through binary SVMs which are trained for each
class independently. Finally, a regression network is trained to correct the predic-
tions of the bounding box location obtained at the first stage. Based on this RCNN
principle, many new variants have been proposed over time, surpassing the detection
performance with faster inference time [26, 30, 75].

Fast RCNN

Fast RCNN is the improved version of the RCNN detector that unified three in-
dependent models into a single joint framework for enhancing training by sharing
computations. The Fast RCNN detector workflow is as follows. At first, an input
image and a set of object proposals are given. The input image is processed with
several convolutions and max-pooling layers to extract the feature map. The RoI
pooling layer is applied to extract the feature vector from the feature map. Each
extracted feature vector is fed into a fully connected layer connected to two output
layers. One produces softmax probability (softmax classifier) and the other predicts
four numbers for bounding box positions (box regressor).

Faster RCNN

Faster RCNN is an improved version of Fast RCNN that speeds up the computa-
tion in the previous version by replacing the slow selective search algorithm for the
region proposal with a fast CNN network. An end-to-end region proposal network
(RPN) is used to simultaneously predict object bounds and objectness scores at each
position. The Fast RCNN network then utilizes these high-quality region propos-
als for detection. This change significantly reduced the computation and increased
the detection accuracy [75]. The Faster RCNN detector workflow is as follows. At
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first, the input image is passed through a CNN network to produce a feature map.
These extracted feature maps are sent to RPN and Fast RCNN networks. The RPN
predicts region proposals based on the extracted features. The Fast RCNN network
is trained on the region proposals generated by the recent RPN. Finally, the unique
layers of Fast RCNN are fine-tuned to predict the object’s class label and bounding
box location.

Mask RCNN

Mask RCNN [30] is the extension of the Faster RCNN detector with a pixel-level
image segmentation layer. Mask RCCN is designed on top of the Faster RCNN
with an added branch that predicts an object mask in parallel with the existing clas-
sification and localization branches. The additional mask branch is a fully connected
network applied to all regions of interest to predict segmentation masks for each ob-
ject. The loss function to train Mask RCNN is the combination of individual task
losses: loss of classification, localization, and segmentation mask as
(L= Lc l as s i f i cat i on + Lb ox + Lmas k ).

The architecture designs of RCNN object detectors mentioned above are illus-
trated in Figure 2.5.
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Figure 2.5 Overview of RCNN family detectors: (a) RCNN, (b) Fast-RCNN, (c) Faster-RCNN, and (d)

Mask RCNN.
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One Stage Detectors

One stage detector generates detection results as a single forward pass, eliminating
the need for a separate region proposal stage. A series of convolutional layers produce
a collection of bounding box coordinates and scores to make final detections. One-
stage detectors are relatively faster and slightly less accurate than two-stage detectors.
These detectors are suitable for efficient implementation and have been widely used
in applications. In our publications V, VI, and VII, we used one stage object detector
for different visual applications.

Single Shot Multibox Detector (SSD)

Single shot multibox detector (SSD) performs the object detection task with a sin-
gle pass feed-forward CNN [54]. This CNN will propose multiple bounding boxes
with specific sizes for objects in the image and class scores for each instance within
those boxes. A non-maximum suppression step is applied to eliminate boxes below
a certain detection threshold to produce the final detections. Unlike two-stage mod-
els, SSD does not generate region proposals or re-samples image segments, saving
computational time.

The input image is passed through a series of convolutional layers followed by
down-sampling layers as shown in Figure 2.6. The SSD detector workflow is as fol-
lows. First, multiple convolutional layers are applied on the input image, which
results in a multi-scale set of feature maps. Then a convolutional filter is applied to
each feature map to generate a set of bounding boxes (anchor boxes). After that, the
bounding box and the probability scores for each class is predicted simultaneously.
Finally, a non-maximum suppression is applied to remove non-relevant predicted
bounding boxes, resulting in a better match for the bounding boxes.

RetinaNet

RetinaNet is a family of one-stage object detectors that utilize Focal loss as their loss
function to deal with the foreground-background class imbalance problem posed in
one-stage detectors [50].

While in two-stage detectors, the RPN provides potential regions for the classifier
at the second stage to deal with the foreground-background imbalance problem, the
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Figure 2.6 SSD uses VGG-16 [81] model as the base (backbone) for extracting image features followed

by a series of several convolutional layers with descending size.

one-stage detectors do not have such potential inherently. However, utilizing focal
loss instead of cross-entropy in one-stage detectors will result in a higher accuracy
than the existing state-of-the-art two-stage detectors while maintaining the speed ad-
vantage of one-stage detectors. RetinaNet is based on a ResNet-101-FPN backbone
with two task-specific headers for classification and localization. As shown in Fig-
ure 2.7, this architecture utilizes previously mentioned anchors and feature pyra-
mids.

Predict

Predict

Predict

Figure 2.7 Feature pyramid network combines low-resolution features with high-resolution features via

top-down pathways and side-wise connections [50].

In addition to above mentioned detection networks there are other detectors
heavily used in both research community and in commercial applications [74, 99].
Other most recent state-of-the-art object detection frameworks includes Efficient-
Det [88], FCOS [90], and YOLOR [95]. Among newer neural network architec-
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tures, VGG [81], Inception [85], MobileNet V2 [79], and EfficientNet [87] are some
of the other popular networks used as backbone in object detection frameworks.

Challenges in Object Detection

Objects detection tasks can be very challenging depending on the factors affecting
the visual appearances of the objects. Objects in the image may contain various
viewpoints and pose, be truncated, partially occluded, noisy, blurry, and/or dark.
The challenges in object detection are the robustness of the object detectors against
such problems, the computational complexity of the network, the large size of the
CNN-based detectors, and collecting a large amount of labeled data with enough
representation for all objects [36, 118].

Robustness

Robustness in object detection refers to the difficulties of the detector in detect-
ing objects of different appearances. The appearance of the object instance, such as
intra-class and inter-class variations, makes the detection task even more challenging.
Intra-class variation refers to separate object instances from the same class category.
Inter-class variation refers to similar objects from multiple class categories. As shown
in Figure 2.8, a chair can be of different color, shape, size, and texture. Also, they
are collected with diverse backgrounds, lighting conditions, and view-angles.

Figure 2.8 An example of inter-class variation from the indoor dataset [4]. These are types of chairs

captured in diverse conditions such as background, lighting, and viewpoint.
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Large Network Size

Recently, the size of CNN-based detectors has been increasing, aiming for more ro-
bust detection on challenging tasks. Modern object detection networks consist of
billions of parameters, and training of these networks often takes weeks on clusters
of high-end GPUs and TPUs. Network speed versus accuracy, commonly known
as a latency-accuracy tradeoff, is a widely discussed topic. The rapid growth of
lightweight devices such as mobiles, edge devices, embedded and IoT devices, and
cloud computing platforms has shifted interest towards network latency. This re-
sulted in more publications on lightweight networks for different object recognition
tasks.

Large Amount of Labeled Data

Modern CNN-based object detectors are capable of solving challenging tasks with
millions of parameters. However, a huge amount of labeled samples are needed for
correctly training detection networks to obtain better results via generalization. The
necessity of large-scale diverse and clean datasets to train and validate the object de-
tector has been partly solved by the practice of publicly benchmarking the labeled
datasets. However, most of these datasets were collected from a specific environment
that might not serve all tasks perfectly. A common approach to solving the data re-
quirements is to apply transfer learning; train a detection network on the relevant
public benchmark dataset, and use that network weight to fine-tune the detection
network on custom data collected for the specific task. Our publications I, II, and
III present an effective way to collect and annotate custom data even with a single
human annotator.

2.4 Image Annotation

In a typical setting, training a CNN-based supervised object detector requires a large
amount of labeled samples for robust detection performance. The quantity and qual-
ity of the labeled dataset play a vital role in supervised learning. However, labeling
large enough data with quality labels is labor-intensive and expensive. The rapid
growth of the field resulted in various annotation tools and services including Labe-
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lImg 1, VGG Image Annotator [19], and Hasty 2. In a large-scale annotation cam-
paign, crowdsourcing platforms have been used, while in-house tools or services are
typically used for small-scale projects. In computer vision, image labeling is primar-
ily categorized into three categories based on the labels assigned; class level, instance
level, and pixel level, depending on object recognition tasks.

Annotation for Image Classification

The image classification aims to classify the whole image to a class label based on the
content. Unlike object detection, the classification algorithm is interested in only
image labels, and one or more suitable labels are assigned to each image. The image
annotation for the classification task is easier and faster than other object detection
and segmentation tasks.

Annotation for Bounding Box Detection

Bounding box annotation is the most common approach of image labeling for the
object detection task. All parts of the object of interest are covered with rectangle
boxes keeping the object inside the rectangle. The aim is to draw the rectangle as tight
as possible, with all object parts inside it. The box location is typically represented
as one corner (top-left or bottom right) and the object’s width and height. 2D and
3D bounding boxes have been popular in object detection. While the 2D bounding
box is easier to collect, the 3D is more challenging but informative for better visual
understanding in challenging scenes.

For image annotation, there are some guidelines available 3 to mitigate annotator
biases and ambiguity for quality annotation. Such guidelines can minimize subjec-
tivity ambiguity but they cannot guarantee an absolute perfect case due to unpre-
dictable circumstances such as tiredness of the annotator and external distractions.
Summary of the guideline followed in this thesis is presented in Table 2.1.

1 https://github.com/tzutalin/labelImg
2 https://hasty.ai/
3 http://host.robots.ox.ac.uk/pascal/VOC/voc2011/guidelines.html
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Table 2.1 Guidelines for annotator for the object detection data annotation

All objects within the defined categories minus:

- objects that are unclear

Acceptable - objects that are smaller that the threshold (at your discretion)

objects - objects that are heavily occluded (80-90%)

- reflection of objects on any surface

- a cluster of objects that are hard to separate instances from

Bounding Box Draw the bounding box around the visible part of the object.

Annotation for Image Segmentation

Image segmentation is considered more effective for extracting the visual context of
the image as it is based on pixel-level annotation. Segmentation is further classified
into three categories: instance, semantic, and panoptic segmentation. For image seg-
mentation, two conventions are followed: any countable entity is called thing, and
an uncountable amorphous region or similar appearance is called stuff. A visualiza-
tion of the different image segmentation variants is shown at the bottom row of the
Figure 2.3.

Annotation for Instance Segmentation

Instance segmentation is typically done with two major approaches: the top-down
approach and the bottom-up approach. In the top-down approach, the bounding box
is drawn around the object and then segment the instance mask in each bounding box
to distinguish the instance of the object. The top-down approach is also known as
the detect-then-segment approach. While in the bottom-up approach, the instance
pixels that are close together are combined and kept further away from the pixels of
different instances, creating an affinity relationship and grouping similar pixels to
outline instances.

Annotation for Semantic Segmentation

Semantic segmentation is a process of assigning every pixel of an image with a class
label. In the case of multiple object instances from a single class category, it treats
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them as a single entity in the case of multiple object instances. Semantic annotation
is comparatively easier than instance annotation as the aim is to label the semantic
category of the image.

Annotation for Panoptic Segmentation

Panoptic segmentation unified above mentioned two segmentation techniques to seg-
ment images. It semantically distinguishes all objects and identifies separate instances
of each category in an image. Among all these methods, panoptic segmentation
is considered the most effective technique for better visual understanding as it al-
lows both category-wise and instance-wise image segmentation. The annotation for
panoptic segmentation is challenging as it requires both instance (things) and seman-
tic (stuff ) information for each training sample. Unlike other annotation approaches,
panoptic segmentation does not support overlapping labels as it assigns a unique se-
mantic label and a unique instance id to each pixel of the image.

2.5 Evaluation Metrics

Unlike classification, object detectors assessment is complex due to the combination
of two tasks, classification and localization. The perfect match of bounding box
coordinates of the ground truth box and the predicted box is rare. Due to this, object
detection performance is measured based on the areas of overlap. The more the
predicted bounding box (Bp) overlaps with the ground truth bounding box (Bgt),
the better the model performance. An intersection over union (IoU) calculation is
simply dividing the area of overlap by the area of the union as shown in Eq. 2.1.

IoU=
Area of Overlap
Area of Union

=
area(Bp ∩Bgt)

area(Bp ∪Bgt)
∈ [0,1] (2.1)

Figure 2.9 demonstrates different scenarios for the predicted bounding box and
the ground truth bounding box. The IoU must be greater than the detection thresh-
old value to consider a prediction as correct. In object recognition tasks, 0.5 (IoU
@0.5) is commonly used as a threshold value for the correct detection [21, 54, 75].
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(a) Excellent (b) Good (c) Poor (d) Off detection

Figure 2.9 Examples of 4 different scenarios of object detection with ground truth label in red and pre-

dicted bounding box in green. In (a) the prediction is almost perfect, IoU approaching 1, in (b)

the prediction is good, IoU is more than 0.95, in (c) the prediction is not good as IoU is less

than 0.5, and in (d) the prediction is way off, IoU reaching 0.

Precision

Precision is the ratio of correctly detected samples among all the detection. In ob-
ject detection, the precision metric reports the percentage of found objects by the
detector that are actual targets. Precision considers all the detections made by the
detectors. Precision metric is defined as

precision=
# of correct detections

# of all detections

Recall

Recall is the ratio of correctly detected samples among all the relevant targets. The
recall is also known as sensitivity or true positive rate. Only the correct detections
predicted by the detectors are considered for the recall calculation. Recall metric is
defined as

recall=
# of correct detections

# of all objects

Average Precision

Average precision (AP) refers to the area under the precision-recall curve. The class-
wise AP’s is calculated first for each class separately and then average over all classes
to produce mean Average Precision (mAP). The mAP metric is widely used as a
standard evaluation metric for object recognition and detection tasks. Sensitivity of
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the detector can be adjusted using a detection threshold set by default at 0.5.

Mean Absolute Error

The Mean Absolute Error (MAE) metric computes the average error over all predic-
tions. MAE measures the magnitude irrespective of their direction. MAE is more
robust to outliers than a mean square error (MSE) as it does not use squaring that
amplifies the error. MAE is also known as L1 loss. MAE is used to know how close
is the prediction compared to the ground truth; a smaller value is better. We used
this metric to evaluate the errors (in years) at the age prediction stage of detected
faces in Publication VI.

Accuracy

Accuracy is the fraction of correctly classified instances among all instances. It de-
scribes how accurately the model performs on unseen data. The accuracy value lies
in the range of 0 to 100; a higher value is considered a better result. Accuracy is a
commonly used evaluation metric in machine learning.

FLOPS

Floating-point operations per second (FLOPS) explicitly measures the arithmetic
operations involving floating points numbers. We use FLOPS in our experiment to
compare the computational complexity of different networks.

Frames per second

Frames per second (FPS) is used to estimate the inference speed and network latency.
FPS calculates how many unique still frames are processed in a second. Decent frame
processing speed, F P S > 20, is crucial for applications aiming for real-time inference.
FPS measurement is typically used for a system consisting of user interaction and
visualization.

42



2.6 Workload Calculation

The amount of manual work required to annotate the dataset is based on the number
of object instances. In our experiments, the manual workload calculation is based on
the number of bounding boxes drawn from scratch, incorrect predictions for loca-
tions, and class labels. We did the simulation experiments on how the 2D bounding
box annotation could have been done efficiently with the proposed schemes in pub-
lications I, II, and III.

Manual Annotations

The workload calculation is based on the amount of manual work required to label
each instance i.e., to draw a bounding box for each object. The human annotator
labels each object in each image resulting in manual workload same as the number
of actual objects given as

# manual annotations= # of true objects in images.

Annotation Corrections

The correction work on the annotation proposals includes adding new labels and re-
moving unwanted labels. Since recall value represents the proportion of correct de-
tections over all available objects, it complements the required addition value. Thus,
the number of required additions can be defined as

# additions= (# of true objects)× (1− recall).

Similarly, precision value represents the proportion of correct detections among
all detections, it complements the required removal value. Thus, the number of
required removals can be defined as

# removals= (# of all detections)× (1− precision).

However, adding or removing a label do not cost the same amount of time. Typ-
ically, removing a bounding box is much faster than adding a new annotation from
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scratch. Therefore, the workload calculation of the total working time gives a clear
perspective.

time= ts (manual annotations)+ tc (additions+ removals) ,

where ts denotes the time required for a single object annotation from scratch, and
tc is the average time for a single object in the correction stage. In publication III,
we later redefined the total time calculation as

time= ts (manual annotations)+ ts (additions)+ 0.5× ts (removals) ,

Annotation Time

We aim to draw the bounding box as tight as possible while avoiding overlaps be-
tween boxes. Drawing a bounding box annotation in an image with a single object
takes less time than drawing in an image with many objects. We reported that draw-
ing a bounding box with a class label takes 10.15 seconds on average for the Indoor
dataset, while simply removing takes less than 5.20 seconds in Publication I. Similar
results have been reported in other works mentioning that correcting false negative
takes twice as long to correct false positive [104].
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2.7 Datasets

This section describes the datasets used in the thesis and publications. A summary
of the datasets used is presented in Table 2.2.

Table 2.2 Summary of the datasets used in this thesis. Object instances mentioned here are only 2D

bounding boxes from the datasets. The datasets used for other tasks are not included in this

table.

Dataset Source #Images #Instances Usage

FDDB Faces in the Wild 2845 5171 Face detection

KITTI Street View 1500 80000 Multi-purpose

Pascal VOC Collected online 17125 40000 Multi-purpose

OpenImages V4 Collected online 9 M 14.6 M Multi-purpose

Indoor∗ Indoor scenes 2213 4500 Object detection
∗ created by the author, see Publication I for more details.

FDDB

Face Detection Data Set and Benchmark (FDDB) [33] is a face detection dataset con-
taining human face regions. The dataset is designed to study the problem of uncon-
strained face detection. It contains 2845 images taken from the Faces in the Wild
dataset with the annotations of 5171 faces. The FDDB dataset contains both gray
scale and color facial images with a wide range of occlusions, different poses, and
out-of-focus faces.

KITTI

KITTI [25] is a challenging real-world computer vision benchmarks dataset. This
dataset includes 7481 training images and 7518 test images, consisting of 80256 la-
beled objects. The dataset aims to enhance a wide range of computer vision research;
it is collected from five scenarios: city, residential, road, campus, and person. We
use the train split from the object detection category consisting of 7481 images with
40570 object instances of 8 class categories, including vehicles and person involved
in different actions.
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Pascal VOC

Pascal VOC [21, 22] is one of the popular datasets widely used in the computer vi-
sion research community [23, 63, 64, 65, 75]. Pascal VOC is the pioneer dataset con-
tributing to the rapid growth of object detection research by organizing the yearly
competitions, Pascal Visual Object Classes Challenge, from 2005 to 2012. Over the
years, the dataset has been extended to include other vision tasks. Pascal VOC 2012
has annotations for object detection, semantic segmentation, and action recognition.
The first version started in 2005 with 4 class categories and extended to the current
version of 20 class categories in 2007. Since then, it consists of fully labeled in 20 ob-
ject classes, including animals, vehicles, and everyday household objects. We used all
data from 2007 and 2012 versions, 17125 images with 40K object instances, in pub-
lications II and IV. Publication III uses all 9963 images with 30638 object instances
from train validation (trainval) and test sets of the 2007 version. We performed two
sets of experiments in this dataset: the first sets with all class categories and later with
individual class categories.

OpenImages

OpenImages [44] is a relatively new large and challenging dataset for multiple com-
puter vision tasks. It contains image-level annotations, object bounding boxes, ob-
ject segmentation, visual relationships, and localized narratives. In this thesis, we
used OpenImages V4, which contains 9M images in total. The object detection
training set of V4 includes 14.6M bounding boxes in 1.7M images with 600 class
categories. On our experiments in Publication II and V, we used 10.5K images down-
loaded from the OpenImages dataset person class, excluding the occluded, truncated,
and groups of objects tags i.e., multiple objects inside a single bounding box. The lat-
est version, OpenImages V6 4, contains 16M bounding boxes on 1.9M images.

Indoor

Indoor dataset [4] is easy to use, small-sized dataset we collected from the university
indoor environment. The dataset consists of various backgrounds, lighting condi-
tions, high inter-class variances, scales, and occlusions. The dataset has 2213 im-

4 https://storage.googleapis.com/openimages/web/index.html
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ages and about 4595 object instances of 7 indoor scene classes extracted from a series
of HD videos preserving temporal order. The dataset consists of safety signs (exit,
fire extinguisher), furniture(trash bin, chair), and equipment (clock, printer, screen).
The number of an object per class category varies; popular class is chair class with
more than 1600 instances, and the least popular is printer class with less than 100
instances.

Other Datasets

In addition to the Face detection dataset, FDDB, the following datasets are used in
Publication VI. The Annotated Facial Landmarks in the Wild (AFLW) [58] is used
to train the facial landmark detection network. The ChaLearn Looking At People
(ChaLearn LAP) [20] is used on training the age estimation network. The GENKI-
4K [61] is used to train the emotion recognition network i.e., detecting smiles and
non-smiles from the detected face. Finally, the CelebFaces Attributes (CelebA) [55]
is used to train the similarity search network; to map the detected faces to similar-
looking celebrity faces.
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3 COMPUTER ASSISTED IMAGE

ANNOTATION FOR OBJECT DETECTION

This chapter summarizes our works on efficient annotation approaches for the qual-
ity training dataset. The challenge in getting the quality annotation for object de-
tector training and the impact of label noise on detector performance is discussed
shortly. We present our annotator-friendly machine-assisted approach for the faster,
less tedious, and cost-effective 2D bounding box annotation scheme for collecting
quality training datasets.

3.1 Label Noise in Object Detection

Object detection network training requires a large amount of example images that
are typically labeled by human annotators manually. As mentioned in Section 2.4,
drawing bounding boxes on image datasets is tedious, costly, and error-prone. In [83],
authors report the average time of 42 seconds to draw and verify a single quality
bounding box for the ImageNet dataset, a large-scale annotation campaign, by crowd-
sourcing on AMT. Moreover, additional time is required to prepare annotation guide-
lines, train the annotators, and manually approve the annotation. Due to the enor-
mous requirement of time and resources, crowdsourcing services have been typi-
cally used for the large-scale image annotation [22, 44, 51, 78]. Recently, automated
data generation has been proposed for collecting training datasets for different set-
tings [43, 91, 113]. Though crowdsourcing and auto labeling ease the data collection
for supervised learning, they often cause random labeling errors.

In a typical setting of the data annotation project, annotation involves soft skills
that usually do not require expert knowledge of ML engineers and data scientists.
Annotation is often done through practical experiences rather than formal training.
An instruction of predefined rules is provided to the annotator for the task. How-
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ever, even with the predefined rules, the annotation of large-scale datasets with many
human annotators is prone to noise. We consider two factors for the label noise: (1)
the involvement of many annotators from diverse backgrounds in the crowdsourcing
annotation leads to subjective bias from the human annotators, and (2) the tedious
and challenging annotation task in limited time naturally adds random noise as the
annotator tends to skip or mislabel some data.

A machine learning model is only as good as the data it is trained on. Highly im-
balanced datasets, small-sized datasets, noisy datasets, and poorly sampled datasets
are often cause of the poor generalization of machine learning models 1. The quality
of data is crucial as poorly labeled training data do not reflect the real-world circum-
stances and will likely result in a machine learning system that is ill-equipped to oper-
ate. The data quality requirement is even tighter in the case of modern deep learning
algorithms, where tuning hundreds of millions of parameters requires a large num-
ber of quality samples to get a good representation model.

In publication IV, we aim to study the sensitivity of object detection loss func-
tions towards label noise. To this end, we first categorize types of possible noise sce-
narios in the object detection dataset as shown in Figure 3.1. Missing labels is proba-
bly the most common type of noise in object detection, which was simulated in this
paper by removing random annotations from training dataset to explore the effect
on two different loss functions; cross-entropy and focal loss. We experimented with
varying amounts of noise in the datasets with a one-stage object detection network,
SSD head with MobileNet V1 backbone, and with different focal loss hyperparam-
eter values, 0, . . . , 8. Our extensive experiments demonstrated that focal loss suffers
more when facing noisy labels. However, it can be mitigated by careful selection of
hyperparameters, namely the gamma (γ ) value.

Related Works

Researchers have proposed a list of different types of noise for the image classification
task while studying the effect of each type [24]. Based on this work, we defined the
most common types of label noise in object detection as shown in Figure 3.1.

BundleNet utilizes sample correlation technique by separating samples based on

1 https://hbr.org/2018/04/if-your-data-is-bad-your-machine-learning-tools-ar
e-useless
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(a) Missing label (b) Extra label

(c) Wrong label (d) Partial label

Figure 3.1 Common types of label noise in object detection: (a) missing label, the other chair is not

labeled, (b) incorrect annotation, part of the window on the chair, (c) wrong classification label,

humans instead of chairs, and (d) partial label, inaccurately drawn bounding box resulting in

low IoU. Used with the permission from publication IV.

their class and treating them as independent inputs to improve the robustness of the
network against label noise [47]. CleanNet detects noise in the dataset, and provides
a clean dataset which can be utilized by another classifier for better performance
[45]. MentorNet uses a mentor network to supervise the training of the base net-
work called StudentNet for training deep CNNs on corrupted labels [35].

The robustness of two-stage object detectors under the presence of missing anno-
tations has been studied in [101]. The method uses soft sampling to re-weight the
gradients of RoI based on the overlaps with positive instances that provide smaller
weight to the uncertain background regions than hard negatives. The background re-
calibration loss method is inspired by the focal loss to handle the missing annotation
for the one-stage object detectors [110]. This method can automatically re-calibrate
the loss function based on the pre-defined IoU threshold and the input image.

Label noise is also considered as one of the critical factors for the safety of deep
learning algorithms [96, 98]. Zhang et al. review problems related to the dataset,
such as label noise, by surveying over recent works with the suggestion to use a ro-
bust loss function and re-weighting samples to mitigate this issue [112]. Researchers
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have suggested implementing a proper labeling guideline to mitigate the effect of la-
bel noise. However, the process of manually labeling large datasets will always be
prone to noise due to factors such as multiple human involvements, variations in
data, and the tedious nature of the task.

Recently, there have been increasing publications resolving label noise problems
with the newer type of training procedures and loss functions [14, 68]. Label noise
in ML training is gaining significant interest from the researchers resulting in publi-
cations covering different perspectives to mitigate the issue 2.

Results and Discussion

Our experiments used 5 different noise levels: 10%, 20%, 30%, 40% or 50%, of miss-
ing labels on training two loss functions for object detector training; cross-entropy
and focal loss.

The training datasets were initialized by randomly removing incremental amount
of labels from the dataset. Both networks were trained on the same dataset to keep
the comparison fair. Both models were trained simultaneously with a gamma value
of γ = 2 for focal loss as proposed in [50]. The mAP@.50 IoU (mean average pre-
cision with 0.5 IoU threshold) is used as a performance evaluation metric. As illus-
trated in Figure 3.2, for all datasets, the detector with focal loss performs worse on
all noise levels.

Next, we experimented with 0%, 10% and 50% of label noise with different values
for the focal loss gamma parameter, γ = 0,1,2, . . . , 8. As illustrated in Figure 3.3, for
all three datasets, a higher value of the gamma tends to perform better for the noisier
dataset. Our experiments with a one-stage object detector with two loss functions
demonstrate that focal loss is more sensitive to the label noise. We also observed that
the robustness of the detector can be improved with minimal effort by adopting a
higher value of gamma (γ ) parameter.

In contrast to the Wu et al. findings that suggested deep learning-based object
detectors are relatively robust to missing annotations [101], we demonstrated that
one-stage deep learning-based object detectors are sensitive to missing annotation.
However, our result suggested that for a more noisy level, using focal loss with larger
γ values can improve the robustness of the detector. In these cases, we believe that

2 https://github.com/subeeshvasu/Awesome-Learning-with-Label-Noise
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Figure 3.3 Results on three datasets with different gamma values on 0%, 10% and 50% noise levels.

the model focuses on the complex samples for training, i.e., the annotated samples
with low confidence and non-annotated samples with high confidence.
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3.2 Two-stage Approach for Bounding Box Annotation

In Section 3.1 we discussed the issue of label noise in training deep learning-based
object detectors. We believe the involvement of multiple annotators from diverse
backgrounds in the crowdsourcing annotation and labeling many images at a sin-
gle pass is a major cause of noise on the data annotation. In this section, we pro-
posed annotator-friendly methods to mitigate the possible noise by utilizing the in-
formation from the trained detectors. To this end, we propose a two-stage bounding
box annotation method where annotators simply annotate a subset of unlabeled im-
ages manually and utilize the knowledge learned from the object detection network
trained on that subset to label the remaining unlabeled subsets.

As data annotation is one of the challenging factors for deep learning, automat-
ing the image annotation helps to reduce the time and cost constraints to implement
deep neural network models in computer vision problems. Moreover, our method
utilizes the concept of human-machine collaboration for faster bounding box anno-
tation to train deep learning-based object detectors.

In recent years, the typical workflow in deep learning projects is to apply transfer
learning [86]where the knowledge learned from a generic task is transferred to train
a model for other specific tasks. In a typical setting, the network is first trained on
a large publicly available generic dataset such as COCO, Kitti, and OpenImages.
Then, the weights are finetuned on a smaller set of domain-specific data to enhance
the performance of the network.

There are a large number of tools and services available to perform data collection
and labeling for ML algorithms training. However, working with these tools and
third-party services is challenging; data quality is often an issue with high latency
and operation costs. In contrast, there is much more freedom and control when
using in-house data labeling services. Data quality can be maintained, the constant
update is relatively easy and cost-effective, and data privacy is owned with the cost
of setting up data annotation teams. For example, enormous data labeling for Tesla
slowed down their development process 3, so they opted for in-house data labeling
with more than 1000 human annotators.

3 https://www.tesla.com/AI
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Figure 3.4 Two-stage train annotate approach for faster bounding box annotation. Reproduced with the

permission from publication I.

Related Works

In recent years there has been growing interest in studies focusing on how to speed
up the image dataset annotation [40, 63, 64, 65, 66, 78, 83].

Su et al. [83] focused on the crowd-sourced annotation process in object detec-
tion. They divided the process into into three sub-tasks: (1) drawing the boxes, (2)
verifying the quality of boxes, and (3) verifying the coverage of boxes on a single
image.

Papadopoulos et al. proposed multiple approaches for efficient bounding box an-
notation. In Eye-tracking scheme [63], they track the human annotator eye move-
ments to extract the information of the size and position of the target object. In the
bounding box verification scheme [64], they use human annotators to verify the la-
bel proposed by the network with an accept/reject decision. In the click supervision
scheme [66], the human annotator is requested to mark the point in the tentative cen-
ter point of an object in an image. While in the extreme clicking scheme [65], the
annotator is requested to mark four extreme physical boundary points on the object:
the top, bottom, left, and right-most points.

Russakovsky et al. [78] proposed a method to integrate multiple humans with
computer vision for collecting large-scale datasets with minimal supervision. In-
telligent Annotation Dialogs by Konyushkova et al. [40] utilizes an automatically
selected action sequence (box verification and manual drawing of box) for a human
annotator to generate high-quality bounding boxes.
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Method

The components of our two-stage annotation workflow are illustrated in Figure 3.4.
The first step in our workflow is to splits the dataset into two subsets. We exper-
imented with the folds of 1% to 10% with 1% increases and 15% to 95% with 5%
increases for the first subset B1. The corresponding second subset B2 for each B1
is always the remaining percentage, so a total of 100 % of the data was used in the
experiment.

The second step is to request the human annotator to fully annotate all images
from the unlabeled subset B1. As the task is 2D object detection, a tight bounding
box with an object class label is drawn for each object instance in each image.

The third step is to train the object detector using the pretrained weight on the
recently labeled subset. Although any detector can be used, we experimented with
popular one-stage and two-stage detection networks. The detection network is fine-
tuned on manually labeled B1 using the pretrained weight from the COCO dataset.
More specifically, we trained on the Faster RCNN model with ResNet-101 backbone
network trained on the MS COCO dataset as our starting point.

After finetuning the object detection model, it is then used to predicts bounding
boxes and class labels for the rest of the unlabeled images in subset B2. Finally, the
proposed predictions are inspected and corrected by the annotator. The human is
asked to go through all the proposed labels, check and correct if necessary.

Results and Discussion

Figure 3.5(top) shows the relation between the required workload for fully annotat-
ing the dataset versus the amount of data used in B1. Note that the required workload
is below the estimated time to fully annotate the dataset without using the proposed
method in all cases. Judging by the results, there is a trade-off between the workload
of annotating data in B1 and the workload required to correct the proposed annota-
tions in B2. The results suggest that a good point lies in a relatively low percentage
for B1, around 4 – 8%, which causes the whole annotation process to be 9× faster
compared to the fully manual annotation on the Indoor data.

In our experiment with the Indoor dataset, we found out that, on average, man-
ual annotation takes about 10.15 seconds per bounding box, and correction (addition
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Figure 3.5 Amount of workload needed in different train-test split (top). The relation between the required

time for annotation versus the amount of manually labeled data in training set (bottom). Used

with the permission from publication I

and removal) takes about 5.20 seconds per bounding box. More details on the exper-
iment and the calculation method can be found in Publication I. We consider this
number for the calculation of total annotation time depreciated in the graph. The
total workload required by the proposed method is upto 90% less than manually la-
beling all images in the dataset. Keep in mind that the amount of workload might
differ for other datasets. As illustrated in Figure 3.5, knowing the perfect split for the
minimal human annotation efforts is of interest for the data annotation campaign.
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In addition to the faster bounding box annotation approach, we publish the fully
labeled Indoor dataset for registration-free use for the research community. We be-
lieve this dataset can be helpful for the quick experiment on training object detectors
as the training from scratch can be done in a few hours with decent computing re-
sources.

3.3 Iterative Approach for Bounding Box Annotation

In Section 3.2 we proposed a method for labeling object detection datasets by using
the trained detector on the subset of the manually labeled data. Extensive experi-
ments demonstrated the effectiveness of our approach, and it managed to save a large
amount of manual annotation effort. However, as discussed above, the drawback of
the proposed method is that saving manual annotation workload varies significantly
depending on the size of the two splits created prior to the manual labeling, thus mak-
ing it unsuitable for all types of data annotation campaigns. This section presents our
efficient annotation method that uses a small amount of images over many batches
and utilizes the human-in-the-loop principle to create bounding box annotation effi-
ciently. Moreover, this method overcomes the disadvantage of the two-stage method
as it eliminates the need to carefully sample images over two subsets, B1 and B2.

Similar to the aforementioned two-stage annotation approach, the iterative an-
notation approach utilizes the human-machine collaboration for efficient bounding
box annotation. The main difference is that the iterative human-in-the-loop annota-
tion approach does the training, label proposals, and correction in an iterative loop
until it reaches the desired performance or labels all data.

Related Works

Human-Machine collaboration for image Annotation have been actively researched
for the efficient data labeling for machine learning training [11, 57, 78, 100]. Rus-
sakovsky et al. [78] proposed a human-in-the-loop annotation method, where the
objects in the image is detected using state-of-the-art networks. Afterwards human
annotators are asked to detect any missing object on the same image. While it is a
time-consuming task, due to the requirement of finding all objects in every image it
was necessary.
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Lutnick et al. [56] proposed an iterative human-AI loop for efficient semantic
labeling on medical images. Their idea is similar to our proposed iterative annotation
scheme but applied for semantic annotation on medical images.

Other works on efficient image annotation using humans-in-the-loop includes se-
mantic annotation of objects in image and video datasets [1, 9, 52]. Polygon RNN
[12] and Polygon RNN++ [1] use recurrent neural network architecture to produce
polygonal annotations for objects which is then corrected interactively by human an-
notator. Curve-GCN [52] uses Graph Convolutions Network (GCN) to predict all
vertices of the object simultaneously. Berg et al. [9] suggested using a semi-automatic
method to annotate video data. This method utilizes a state-of-the-art object segmen-
tation to propose initial annotations for all frames in the video.

Method

The main components of our iterative annotation human-in-the-loop workflow are
illustrated in Figure 3.6. The proposed method uses an incremental learning ap-
proach. It starts by manually labeling a small batch of images, then trains a detec-
tion model with the data, uses the model to propose bounding boxes for the next
batch of unlabeled images, requests the human annotator to inspect and correct the
proposed labels, uses all the labeled data to train a new detector, and continues. This
process continues in a loop until all images are labeled, or the annotation budget is
finished. Here the involvement of human annotators is only labeling the first batch
and correcting the proposed bounding boxes. Algorithm 1 summarizes all steps of
the iterative training method. Next, we will describe each component of our ap-
proach.

The first step in our iterative annotation workflow is to split the dataset into small
subsets, B0, . . . ,BM . Then similar to our two-stage method mentioned above, fully
annotate all images in the first batch B0. After that, we train the object detector on
recently labeled B0. To get better performance for object detector, transfer learning
techniques with pretrained weights can be utilized. For extensive experiments, we
use both one-stage and two-stage detectors. Moreover, we trained on the SSD with
the MobileNet V1 backbone and faster RCNN with the ResNet50 backbone. The
next step is to use the trained detector to predict bounding boxes and class labels for
the next batch B1. Then, the human annotator will inspect the label proposals and
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Figure 3.6 Overview of our human machine collaborative approach for the iterative train-annotate ap-

proach (publication II). Human annotator and machine works together to create object detec-

tion dataset. Reproduced with the permission from publication II

Algorithm 1: Iterative annotation
Require: Set of unlabeled images split to M + 1 distinct batches B0, . . . ,BM

1: annotate images on batch B0 manually
2: train object detector with images from B0
3: for i ∈ 1,2, . . . , M do
4: propose labels for batch Bi using the current prediction model
5: do manual inspection and correction for the proposals
6: fine-tune the object detection model with batch Bi
7: end for

return fully labeled dataset

corrects them if required. Next, the recently labeled batch B1 is used to finetune the
object detector. Repeating the previous steps for B2 to BM the proposed method will
result in a fully labeled dataset. It is also possible to stop the loop when either the
annotation budget is finished or the desired detector performance is achieved.

Results and Discussion

We proposed an iterative human-in-the-loop annotation approach to minimize man-
ual labor for image annotation. The proposed method can produce high-quality
bounding box annotations on both small and medium-sized datasets. Empirical ex-
periments on three different datasets shows the effectiveness of the proposed method
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Table 3.1 Reduction of manual workload (%) with different strategies on Indoor, Pascal VOC 2012 and

OpenImages V4 (Person class) datasets.

Network - Approach Indoor Pascal VOC OpenImages

RCNN - Shuffled 75.86 18.40 45.62

RCNN - Sorted 56.97 20.93 60.05

RCNN - Original 35.78 25.23 45.73

SSD - Shuffled 47.38 3.46 20.28

SSD - Sorted 31.58 5.66 35.13

SSD - Original 19.24 7.97 20.04

in reducing the manual workload by up to 75%. Based on the experiments, the
dataset size, image source, and object class categories seem to affect the amount
of workload reduction. Moreover, the proposed method managed to perform ad-
equately on the existing annotation platforms.

Unlike the two-stage approach, the nature of the proposed method makes it easier
to split the first batch of data as there is no concern for choosing the correct hyperpa-
rameters. Also, the detector gets more accurate over the course of labeling, making
it progressively easier for the human annotator to inspect and correct the proposals.

However, from our experiments, we noticed that the reduction in annotation
workload heavily relies on how the images are chosen for the first few batches. In
our simulated experiment, we utilized the ground truth label information, such as
the number of objects in an image. As our dataset is fully labeled, obtaining such
information was relatively easy, but there might be no information available about
the unlabeled images in a real-world project.
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3.4 Sample Selection for Efficient Object Annotation

As previously mentioned in Section 3.3, we proposed a human-in-the-loop iterative
annotation method to reduce the workload for human annotators. However, in our
experiments, we found the sensitivity of the proposed method to the algorithm used
for sorting the data into batches. In this paper, we studied multiple approaches for
actively selecting image samples for each batch to enhance the quality of our pro-
posed method. The significant differences of our work compared to others are: (1) it
does not require explicit information from the unlabeled images, (2) all the sampling
task is done prior to the training phase, and (3) the entire image is used to extract
features.

Related Works

Utilizing sample selection techniques have proven to be effective in reducing the cost
of annotation in different tasks [18, 49, 105]. These methods works by iteratively
training a model with the labeled samples and finding the most informative unla-
beled samples to be labeled for the next batch. While the uncertainty-based metrics
for finding the informative samples shown promising results, they require a labeled
dataset for building the initial model, which is impractical in real-world cases where
the amount of labeled samples are limited.

Smailagic et al. [82] proposed active learning (AL) methods to create an optimized
labeled training set from unlabeled medical images. This method utilized the features
generated by a feature descriptor function to select the unlabeled samples with most
euclidean distance from the labeled samples. The drawback of this method is the
high computational cost on multi-class datasets.

Recently, self-training approaches have been proposed for image annotation where
a trained model predicts labels for a set of unlabeled images and involves humans in
the process of correcting predicted labels [40, 56].

Wong et al. utilized contextual sampling criteria to propose an assistive learning
feedback loop. In this method, the samples are selected based on both the uniqueness
and the average euclidean distance [97]. However, such information is not typically
available for real-world datasets.
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Method

The components of our sample selection workflow are illustrated in Figure 3.7. First,
a CNN network is used to extract features from all images, which is then used to
compute the pairwise euclidean distance of the entire dataset, stored in N×N matrix
(N is the number of images in the dataset). Unlabeled images are then sampled in
mini-batches based on two sorting schemes: (1) small distances together, i.e., the most
similar images compared to all previously selected images are kept in a batch and (2)
large distances together, i.e., the most distinct images compared to all previously
selected images are kept in a batch.

We also created a custom similarity network for the feature extraction. The sim-
ilarity network is based on the ResNet50 backbone trained on pairs of images hori-
zontally divided in half using triplet loss [80] as the loss function.

The human annotation effort is computed in terms of time (seconds) and anno-
tation effort calculation in terms of bounding boxes. As the addition and removal
task complexity differ in real annotation cases, we assumed that adding one bound-
ing box and class label during the correction stage is as costly as doing the complete
manual annotation done in the first batch of unlabeled images.

Unlabeled
images

Sampled batches 
Bn

B1

CNN network Feature
 extraction

Distance 
calculation

Image sampling

Figure 3.7 Overview of our sample selection for object detection data annotation approach. This ap-

proach is used in publication III with our iterative annotation approach proposed in publication

II. Reproduced with the permission from publication III
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Table 3.2 Reduction of manual annotation time WT (%) (higher the better) with different approaches.

The result is an average of five independent runs.

Dataset Approach
RCNN SSD

0.5 IoU 0.7 IoU 0.5 IoU

Shuffle 56.00 55.37 31.61

Sim (ImgNet) 56.05 54.71 32.97

Pascal Dis (ImgNet) 56.48 55.63 32.08

VOC Sim (SimNet) 55.27 53.65 30.53

Dis (SimNet) 56.82 56.02 32.08

Shuffle 50.82 49.53 32.21

Sim (ImgNet) 37.31 34.68 19.92

KITTI Dis (ImgNet) 51.49 50.59 33.61

Sim (SimNet) 46.67 43.34 28.64

Dis (SimNet) 49.81 47.16 28.89

Shuffle 81.20 80.37 65.98

Temporal 37.47 35.99 20.24

Sim (ImgNet) 59.12 59.47 43.35

Indoor Dis (ImgNet) 81.83 78.81 64.09

Sim (SimNet) 67.06 67.38 48.32

Dis (SimNet) 79.08 81.64 67.76

Results and Discussion

Image feature extraction is the first task of our proposed system. We used two CNN
networks for the feature extraction, ResNet50 trained on the ImageNet dataset and a
custom-built similarity network (SimNet) trained on each dataset to be labeled. We
used three schemes to sample images over batches: similar, dissimilar, and random
shuffle. In addition, we used temporal order if applicable to the dataset. We experi-
mented with SSD and faster RCNN detectors with a 0.5 IoU threshold value for the
correct detection. Some additional experiments were done with a 0.7 IoU value.

As shown in Table 3.1 the annotation workload for both Indoor and Pascal VOC
datasets have reduced with the sample selection approach presented in publication
III. As shown in the table, the reduction in the workload is higher with an IoU

64



value of 0.5 compared to the IoU value of 0.7 since the network will predict fewer
bounding boxes with the higher IoU threshold, thus requiring the human annotator
to draw more bounding boxes from scratch.

There are also other time-consuming tasks in the pipeline of the proposed ap-
proaches, such as the time required by the machine to extract the features, calculate
the Euclidean distances, select the samples, and train the detection network. How-
ever, these are outside of the scope of this work since the machine does not require
human intervention in these tasks.

Alternative Methods for Efficient Object Detection Training

In this thesis, we aimed for an efficient bounding box annotation approach for the
moderate size data annotation campaign for training deep learning-based supervised
object detectors that can be handled with fewer human annotators. Other alternative
methods for efficient object detection training include other types of object detectors
that do not require a large amount of the labeled dataset to train and alternative
approaches to collect training datasets.

Unsupervised [15, 16], semi-supervised [34, 115], and weakly supervised [10, 37,
116] object detection approaches can reduce the data annotation burden with con-
siderable detection accuracy utilizing sparse annotation [118].

On the other hand, weak annotation techniques are helpful to create a high-
quality training dataset with a modest annotation effort for a decent detection model
[65, 66]. Synthetic data generation is another helpful technique for generating noise-
free training datasets with less human annotation efforts [48, 113].
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4 EFFICIENT IMPLEMENTATION OF OBJECT

DETECTORS

Machine learning applications have been rapidly increasing in various fields such as
agriculture, face analysis, medical imaging, video surveillance, and robotics. While
the current state-of-the-art object detection models achieve high performance, their
computation and memory requirements are often the limiting factors for the real-
time implementation on resource-limited devices.

The accuracy of CNN-based detectors is directly related to the computational
resources available to them. Meanwhile, embedded devices are becoming popular
in commercial and industrial settings, allowing machine learning systems to thrive
in broader real-time projects and applications. Due to the limitation of resources in
these devices, efficient implementation of object detectors is essential for the further
expansion of these applications.

We designed and deployed object detection networks on imaging pipelines while
achieving decent detection speed for different applications. In particular, a face detec-
tion network is integrated into a facial analysis system, a person detection network is
deployed in a privacy-aware person tracking, and a custom object detection network
for a trajectory prediction system to detect moving objects. Moreover, we studied
the practical implementation of distributed computer vision systems adopting deep
neural object detectors for resource-limited devices.

Object Detection Development Workflow

The typical workflow in the deep learning object detection application is depicted
in Figure 4.1, details of each stage are as follows: The first step is defining the task
and deciding on the frameworks: Purpose of system targets for the detector, envi-
ronment of usage, limitation of devices, and platform or a framework of the system.

67



The second step is to collect and create datasets. Based on the task and the frame-
work, the collection and labeling of the dataset are done.

The third step is to start training the network either from scratch or by using
pretrained weight. To assess the quality of training, validation set can be used. The
training step is usually repeated multiple times to tune the hyperparameters till a
satisfying result is produced.

Finally, the best-performing model is chosen for testing and inference. Since the
deployment criterion varies depending on the target device, the model is frozen ac-
cordingly to meet the requirements.

Additionally, steps two to four must be repeated to expand or update the model
with new data, labels, features, etc.

1. Decide on framework 

2. Create a dataset 

3. Design a network 

4. Train a model

5. Validate 6. Create an inference
model

7. Deploy on a device 

Hyperparameters
tuning MonitoringLoss

caluclation

Training set

Testing set

Validation set

Figure 4.1 Typical workflow of deep learning-based object detection projects.

Object Detection on Low Resourced Devices

Object detection serves as a core part of the system for a wide range of applications
that aims to understand and recognize the visual context of the surrounding envi-
ronment. In a typical setup, modern object detectors cannot have real-time infer-
ence without GPU. However, in some circumstances, heavy computing devices are
not suitable for deployment due to the nature of the task and the location where the
system is installed. For example, surveillance systems on the street, animal move-
ment trackers in a remote park, and obstacle detectors on moving robots cannot use
heavy and powerful machines. The single-board embedded device such as Raspberry
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Pi, Jetson Nano, and Google Coral AI are popular choices for those scenarios, which
require a detector that can perform decently on these embedded devices. Thus, re-
searchers have a long-standing interest in efficient detection networks [32, 60, 95, 99,
102].

The common approaches utilized for the efficient object detection for the low-
resourced devices are:

• using an efficient combination of detector head and backbone network. For
example, the inference speed of SSD light with MobileNet V2 is higher than
the SSD with MobileNet V1.

• reducing the dimension of the training data. For example, reducing the input
image size for the network increases inference speed without compromising
detection accuracy as much.

• using a network pruning approach. For example, using a smaller depth multi-
plier (α < 1) for the MobileNet reduces the computation with a slight decrease
in overall detection accuracy.

4.1 Privacy-aware Person Detection System in Edge Device

The object detection system is widely used in the surveillance field. In human detec-
tion, data privacy has become a primary issue as there is a growing concern about the
ethics of AI. The concerns about collecting personal data, such as images and videos,
storing and handling them safely and securely added more challenges to using a sys-
tem that deals with these data. We aim to provide a privacy-preserving system for the
person counting on the premises, such as libraries, museums, and exhibition centers.

Deployment of CNN-based detectors on single board embedded systems is not
straightforward due to the heavy computation involved in these networks and the
lack of powerful computing resources on the edge devices. This work aims to deploy
a multitask computer vision system for person detection, re-identification, and track-
ing on a cluster of embedded devices aiming for smooth operations with added neural
network accelerators, Neural Compute Stick (NCS). To this end, we experimented
with multiple design perspectives and combinations of software and hardware to col-
lect only the feature matrices of the people in the field of view and distribute them
to the cloud server for further processing.
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Figure 4.2 Overview of our person tracking system (publication V). Each edge device consists of a cam-

era module, a Raspberry PI, and a NCS. Collected data are sent to the cloud server via

WLAN and cellular connections. Reproduced with the permission from publication VI

We presented a feasibility study of simultaneous object detection and feature gen-
eration with privacy-aware person tracking on the embedded devices. Our system
is deployed on a single board Raspberry Pi with a NCS, as depicted in the system
overview in Figure 4.2.

The contributions of this work are as follows:

• We present a privacy-aware person tracking system for cluster of edge devices.

• We study the design prospective for the optimal performance while maintain-
ing the smooth and safer operation.

We used models with pretrained weights on the COCO dataset and fine-tuned
them on person class from the OpenImage dataset. Multiple tests were conducted to
compare and analyze different network configurations. The configurations are in-
put image size (300x300, 200x200 and 100x100 pixels) and depth multiplier value (α
= 1, 0.75, 0.5, 0.25). Figure 4.3 shows the accuracy versus speed for these configura-
tions running on NCS. As shown in the figure, the configuration settings provide a
large selection of accuracy-speed trade-off options. Moreover, the results indicate the
small variation between different network architectures, with MobileNetV1 being
the fastest option. All tests were conducted on two settings for CPU: performance
mode (1400 MHz ) and power-save mode (600 MHz).

We study the design spectrum for choosing optimal architecture for desired tasks
while maintaining smooth and safe performance. Moreover, the results show the
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Figure 4.3 The effect of different depth multipliers, networks, input size, and CPU clock frequency is

experimented with different Single Shot Multibox Detector (SSD) models.

possibility of performing simultaneous tasks on low-cost hardware, improving pri-
vacy. The privacy is preserved by saving only the features generated by the network,
which are not enough for the reconstruction of the input image. With recent ad-
vancements in technology, small edge devices are getting more processing power.
Consider will increase the value of the proposed approach to design systems for a
broader range of real-world applications.
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4.2 Real-time Facial Attribute Recognition System

Face detection is one of the most explored fields in computer vision, with many
research works starting from the early 90s. Recent face recognition applications
utilized deep learning object detectors as their fundamental building blocks. Re-
searchers have been focusing primarily on the accuracy and speed of the single-task
networks. In publication V, we focused on the practical approach of developing a
multi-functional facial analysis system. The paper presents a real-time facial anal-
ysis demo running on a single desktop and evaluates many design options, such as
what neural network models to use for each facial analysis task. We study to solve
two research questions: (1) how to design a system with multiple tasks networks
for a complete real-time facial attribute recognition, and (2) how to achieve smooth
real-time performance with different design spectrums for the optimal design and
combination of tasks.

Multitask learning is getting popular and has been proven effective in many com-
puter vision problems [107, 111, 114]. Ranjan et al. [70] proposed a unified deep
multitask network for face detection, landmark localization, pose estimation, and
gender recognition. In [71], authors further added smile, age, and face recognition
tasks on multitask learning frameworks. Our multitask method presented in Fig-
ure 4.4 (right) is similar to this work. Our multitask network uses transfer learn-
ing to customize pretrained network weights for age, gender, and smile recognition
tasks. Users can freely select any pretrained network weight to fine-tune the multi-
task network for robust performance.

Moreover, we present a complete architecture consisting of relevant tasks and effi-
ciently design a unified system to achieve real-time performance on resource-limited
devices. To our best knowledge, there have not been articles describing system-level
functionality as a single system instead of focusing on each task.

In publication VI, we study the practical implementation of facial attributes recog-
nition as a single system. Moreover, we develop a complete facial analysis system
consisting of detection, alignment, age, gender and smile recognition and feature
matching tasks using the available stage-of-the-art of-the-shelf networks for each task.

The contributions of this work are as follows:

• We presented a detailed system-level architecture for estimating several attri-
butes from facial images and studied the design spectrum for real-time perfor-

72



(a) Software architecture (b) Multitask classification network
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Figure 4.4 Software architecture of the proposed facial recognition system in (a) and the structure of our

multitask classification network in (b). The network is able to classify age, gender, and smile

attributes for a given image by utilizing a common backbone network. Reproduced with the

permission from publication VI

mance on the CPU.

• We discovered that it is better to use the multitask network than single-task
networks. With the proposed multi-threaded architecture and multitask net-
work (depicted in Figure 4.4), smooth inference speed is achieved on both CPU
and GPU as illustrated in Table 4.1. Keep in mind the reported numbers are
for running a single network at a time on the platform. So, running all three
single-task network at the same time would result in a lower overall FPS for
all of them due to limited computational power.

• For the reference to the community, all relevant information, source codes,
and trained models are released publicly with detailed implementation instruc-
tions.

Table 4.2 shows the inference speed obtained by different combinations of face de-
tection and attribute recognition networks. We experimented with a faster RCNN
detector and a multitask network with MobileNet V1 backbone in the first row.
The SSD detector with MobileNet v1 backbone is used with three MobileNet net-
works for age, gender, and smile recognition in the second row. On the third row
same detection model was used with EfficientNet B0 multitask network. Finally, a
combination of the fastest models, SSDlite and MobileNet V1 multitask network, is
tested.

We present the design of a real-time facial analysis system. For a given real-time
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Table 4.1 Accuracies and inference speed at different stages in our system with single output net-

works and multitask networks. The value of depth multiplier α = 1.0 is used in all Mo-

bileNetV1 networks.

Stage Network Accuracy FPS(CPU) FPS(1050TI) FPS(1080TI)

Age

MobileNetV1
4.9 MAE 31.61 148.90 147.44

Gender

MobileNetV1
88.3% 31.48 150.45 149.75

Smile

MobileNetV1
87.2% 31.46 148.84 148.78

Multitask

MobileNetV1

5.67 MAE

84.2% Gender

83.6% Smile

29.80 147.06 147.20

Multitask

EfficientNetB0

5.35 MAE

87.5% Gender

86.0% Smile

25.61 143.35 144.24

Table 4.2 Inference speed of our system with different combinations of networks on two environments.

Average of three tests with video clips consisting of 1 – 12 faces in each frame.

Network combinations FPS(CPU) FPS(1050TI)

RCNN +multitask (MobileNet v1) 1.24 2.59

SSD + 3 x MobileNet v1 7.22 9.83

SSD +multitask (EfficientNet B0) 9.33 13.65

SSDlite +multitask (MobileNet v1) 15.20 21.48

video stream from a camera, the system performs the pipeline of face detection, align-
ment, gender and age estimation, smile recognition, and extracts neural network-
based face representations and matches against a gallery database by nearest neighbor
search. This system is an asynchronous design that consists of multiple threads/mod-
ules running on CPU and GPU. These modules are implemented using OpenCV and
employ off-the-shelf neural network models for face detection, facial attribute recog-
nition, and face verification, e.g., SSD, ResNet, MobileNet V1 and V2. The system
also experiments with many well-known neural network models and evaluates their
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performance on a celebrity search demo using the CelebA database with over 10K
identities. The paper presents detailed design of a real-time facial analysis system
(demo) running on a single desktop computer and evaluates many design options,
such as what neural network models to use for each facial analysis task.

4.3 Trajectory Prediction for Mobile Objects Using Object

Detection

The autonomous movement of a robot requires three main components: (1) a local-
ization system that allows the robot to determine its location either in a local frame
or a global frame, (2) a perception system that allows the robot to detect any obsta-
cles in its current path, and (3) a trajectory planning algorithm that allows the robot
to reach the destination with minimum cost while avoiding any collision

Designing a suitable perception system is challenging. The system needs a way
of detecting any obstacles in its field of view. Some standard tools used in such sys-
tems are laser-based (such as LIDAR), sonar-based (such as Radar), or camera-based.
Laser-based tools often suffer from the presence of sunlight due to their nature of
using infrared lights. On the other hand, sonar-based tools cannot pinpoint objects
due to the nature of wave propagation. Thus, camera-based methods have been get-
ting more attention recently. Object detecting is an AI method to detect objects of
interest in an image or a video. It can be used to find obstacles and track them in
real-time to help the trajectory planning algorithm.

We deployed an object detector on an embedded device to collect the information
from the real-world environment for trajectory prediction of moving objects. For
the data collection, a Raspberry Pi is installed with a camera module to collect full
HD videos over different times of the day during the summer months. Image frames
are extracted from these videos and labeled for object detection training using the
method presented in publication I. Both one-stage and two-stage detection networks
are fine-tuned on this dataset using the pretrained network from the COCO dataset.
We then deployed a one-stage object detector on a stationary Raspberry Pi equipped
with a camera module. The detection system is then set up to detect moving objects
in the test environment and collect the required data for trajectory prediction. As
the system uses a stationary monocular camera, the distance to the detected object
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is unknown. A linear transformation matrix is fitted on the actual coordinates of
some objects to be utilized for the distance estimation as mentioned in Publication
VII.

Moreover, we collected object positions relative to the camera fame and detection
timestamp from the trajectory prediction systems. A linear transformation is fitted
to map the camera points and the map coordinates by minimizing the euclidean
distance between the known map points and the relative position in the image. The
detected object is projected to the map by applying the transformation to the center
points between the two bottom corners of their bounding boxes. The trajectory
prediction library is then used to estimate the future path of the moving objects.

The trajectory prediction using a path library consists of several tasks. The vision-
based trajectory prediction system consists of several tasks. The tasks and the struc-
ture design of their connections are represented in Figure 4.5.
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Figure 4.5 Building blocks of our trajectory prediction system. Reproduced with the permission from

publication VII.

We study the operation of a situational awareness system where data is collected
from a deep neural network-based object detector deployed on low-resourced camera-
equipped Raspberry PI. The detection algorithm detects moving objects on the cam-
era feed and stores only the coordinates and timestamps of the detected objects.

The contributions of this work are as follows:

• We present a privacy-preserving instance-based trajectory prediction for mo-
bile objects based on the trajectory prediction algorithms.

• We use an inexpensive object detection network on a single board edge device
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to collect moving objects’ locations from the camera field of view.

We present a privacy-aware trajectory prediction method based on a path library
learned from the mobile objects inside the surveillance area. The method starts by
comparing the most recent path of the objects in the scene to each individual in-
stance in the library. Each path gets a weight based on a similarity metric, and the
future path is predicted by calculating a weighted average. Overall, our method uses
probabilistic reasoning based on joint probabilistic data association, Hungarian al-
gorithm, and Kalman filter to infer which detections from different time instances
came from the same object.
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5 CONCLUSIONS

Modern object detectors require a large number of labeled samples to tune millions
of parameters correctly, are computationally heavy, and usually require powerful
computing devices for training and inference. This dissertation considers two dis-
tinct aspects of training and deploying CNN-based object detectors: labor-intensive
image annotation and efficient deployment for applications. Object labeling has
been a well-known challenge for deep learning object detectors. In this thesis, we pro-
pose efficient methods for image data annotation for bounding box detection. The
computer-assisted data annotation approaches effectively utilize human-machine col-
laboration to reduce the required time and effort to improve the object labeling task.
The second part of the thesis includes efficient implementation methods for applying
object detection networks on imaging pipelines for diverse applications. Following
we provide the explicit answer to research questions:

Research Question 1: How sensitive existing object detectors are to label noise
and how to improve the robustness of the detectors?

We studied the robustness of the one-stage object detectors on missing labels. We
proposed a simple fix without much bell and whistle on detection network design.
Our experiments showed that the object detector performance on noisy training data
could be effectively increased with particular attention on selecting the loss function
and the hyper-parameters.

Research Question 2: How to use existing machine learning and human anno-
tator efficiently to label training data for supervised object detectors?

We proposed a two-stage scheme to create bounding box labels to train object de-
tectors. Instead of drawing bounding boxes from scratch for all images, the annotator
only needs to draw bounding boxes on some portion of the dataset while verifying
and correcting the rest of the label proposals. Additionally, a fully labeled object de-
tection dataset from indoor premises has been collected, labeled, and published for
registration-free use.
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Furthermore, we extended the above-mentioned two-stage scheme to an iterative
loop for detector training and labeling. The object detector training, label proposals,
inspection, and correction works are done in a close loop, taking a small batch of
unlabeled images per cycle. This scheme has the benefit of providing space for sample
selection over the small set of images; the inspection and correction work is relatively
more straightforward as there are fewer images to handle. The detector is getting
better in each iteration which typically proposes more accurate bounding boxes for
unlabeled images and simplifies the human annotator work.

Finally, we extended the iterative train-annotate loop with sample selection. Pre-
vious works have shown that training object detectors with the more informative
images to be labeled significantly impact the detection performance and the over-
all image labeling task. To this end, we studied the sample selection and proposed
a similarity-based approach for efficient sample selection for bounding box annota-
tions for object detector training.

Research Question 3: How to integrate object detection networks into an image-
processing pipeline for the resource-limited platforms and put them into production
at scale?

We studied the practical issues of deploying deep learning-based object detectors
on computer vision applications. We deployed object detectors efficiently on the
resource constraint devices while achieving smooth operation in multi-function ap-
plications. Multiple object detection networks were studied and deployed on less
powerful single board edge devices for human tracking systems to predict future
paths of moving objects in indoor and outdoor premises. Furthermore, we devel-
oped a real-time facial attribute recognition system in a multi-threaded multitask
approach. It was tested on well-known neural network backbones. We evaluated
their performance on face detection, age, gender, and smile recognition and similar-
ity search based on the nearest neighbor using the CelebA database with over 10K
identities.

Overall, we have discovered that one of the main issues with training CNN-based
object detectors is the quality of annotated data and the existence of label noise. We
proposed a method for iterative annotation of datasets to reduce the cost and mental
pressure on the annotator. This in turn will result in a cleaner dataset as the annota-
tor does not have to spend as much energy and money to get the data ready.

We also discovered the lack of efficient implementation approaches for object de-
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tectors on low-resource edge devices. These devices are typically used as a means of
rapid prototyping and production at scale, which means a proper implementation
approach would result in a better quality of the end product. We designed a multi-
task network suitable for such devices and illustrated its effectiveness over single task
networks.

Future Work

The use of AI is rapidly increasing within sub-fields and inter-disciplinary fields alike.
This thesis has discussed the two challenges of the deep learning object detectors,
annotation of training datasets and efficient implementation on embedded systems.
These challenges have been studied for some time now, and progress is being made
with every new research outcome. In this part, we would like to present some ideas
that might be worth investigating for future work.

The commercial and non-commercial tools and service providers for the data la-
beling are commonly available in the market. However, there is always some con-
cern about the cost, data sharing, and privacy of data annotation with third-party
services. While the can use the method proposed in this thesis to preserve the pri-
vacy of the user data, it does not incoherently provide that functionality. It may be
worth exploring whether one can build an annotation tool that provides some level
of privacy.

While publication IV tackled the idea of a noise-robust network, it only covered a
specific type of noise and proposed a simple fix by tuning the hyperparameters. Due
to the importance of robustness and its relation to safety, it is worth investigating
other types of noise and finding a more sophisticated approach to counter their effect
while preserving the performance.
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Abstract—This paper proposes an approach for rapid bound-
ing box annotation for object detection datasets. The procedure
consists of two stages: The first step is to annotate a part of the
dataset manually, and the second step proposes annotations for
the remaining samples using a model trained with the first stage
annotations. We experimentally study which first/second stage
split minimizes to total workload. In addition, we introduce a
new fully labeled object detection dataset collected from indoor
scenes. Compared to other indoor datasets, our collection has
more class categories, different backgrounds, lighting condi-
tions, occlusion and high intra-class differences. We train deep
learning based object detectors with a number of state-of-the-
art models and compare them in terms of speed and accuracy.
The fully annotated dataset is released freely available for the
research community.

Index Terms—Bounding box annotation, object detection,
deep learning, indoor dataset

I. INTRODUCTION

Object detection from images is a well-known area of
research in machine learning and computer vision. Today,
object detection algorithms have matured enough to solve
real-world problems. Object detection is a central component
in face detection, object counting, visual search, landmark
recognition, satellite image analysis, autonomous driving,
drone and agriculture production assessment [1–3]. Object
detection is known to be a challenging task in computer
vision as a large number of labeled datasets is needed for
learning and generalization performance of the detection
model.

The collection of a large scale dataset representative
enough is a challenge and the key question in order to train
detectors robust to variations in object appearance. More-
over, the annotation of large collections of images is both
labor-intensive and error-prone. Traditionally, the annotation
problem is solved by brute force, i.e., by crowdsourcing
a large group of annotators on a web platform such as
the Amazon Mechanical Turk. Examples of some popular
large-scale datasets for object detection with labeled data are
ImageNet [4], MS COCO [5], and PASCAL VOC [6]. There
are also public datasets for specific domains, such as face
detection [7], character recognition [8], landmark recognition
and detection [9], MCIndoor20000 [10] and Freiburg grocery
dataset [11].

As machine learning methods and platforms develop into a
more mature state, the focus is turning towards applications.
In a small scale application project, the collection of data can
not be scaled up by using thousands of annotators. Instead,
there is a need for agile and rapid annotation procedures

Fig. 1. Examples of object instances from TUT indoor dataset.

that enable the deployment of machine learning and object
detection in small projects, as well. Like most machine
learning topics, the most time-consuming task of object
detection is also the annotation of each object area in the
image dataset. For example, annotating the bounding boxes
of a single image from the 14 million sample Imagenet
[4] dataset takes 42 seconds per bounding-box by crowd-
sourcing using the Mechanical Turk annotation tools [12].

There have been many studies focusing on how to speed
up the image dataset annotation such as box verification
series [13], eye-tracking [14] and learning intelligent dialogs
[15]. Moreover, semantic annotation of objects in image
datasets has been widely discussed in recent years: Polygon
RNN++ [16] and Extreme clicking [17] are recent proposals
for efficient object segmentation on image datasets. How-
ever, bounding box annotation is by far the most common
task in practical and industrial applications, and despite the
aforementioned sophisticated approaches, their use is still not
very common as easy-to-adopt robust used-friendly tools are
missing.

In this work, we study a simple and practical heuristic
to annotate the object bounding boxes of an image dataset.
Our two-stage approach splits the data into two folds; the
first fold is manually annotated from scratch, after which an
object detector is trained for generating proposal annotations
for the second fold. Thus, the total workload consists of the
first stage annotations plus the corrections required to the



Fig. 2. Example of object instances from single class label (Chair). Intra-
class difference between the object instances are high in TUT indoor dataset.

second fold semi-automatically annotated proposals, and a
natural question is to find the optimal split between the folds
in order to minimize manual work.

The proposed method significantly reduces the workload
to create big enough environment specific object detection
dataset. In addition to the technique to fasten the bounding
box annotation, we present fully annotated multiclass object
detection dataset from indoor scenes, for which we have
applied the proposed annotation procedure. Compared to
other indoor datasets, our collection has more class cate-
gories, different backgrounds, lighting conditions, occlusion
and high intra-class differences. Examples of objects in the
dataset are shown in Figure 1.

The remainder of the paper is structured as follow: Section
II will describe the dataset. Section III will describe the
methods used to fasten the bounding box annotation on image
dataset. Section IV will show the experiments and results
obtained with them and comments on findings, and Section V
will present the conclusion and future work.

II. DATASET

We have collected an indoor scene dataset to experiment
the feasibility of our method. The dataset is created from
sequences of videos that were recorded from different indoor
premises of Tampere University of Technology (TUT). The
TUT indoor dataset is a fully-labeled image dataset to facil-
itate the board use of image recognition and object detection
in indoor scenarios. In addition to the labeled images, we
provide the sequence of recorded videos from multiple places
inside the university. Our recorded HD videos together with
the fully annotated dataset are freely available here 1.

The TUT indoor dataset consists of 2213 image frames
containing seven classes. In contrast to existing indoor
datasets, our dataset includes a variety of background, light-
ing conditions, occlusion and high inter-class differences. As
shown in Figure 2, the interclass variation is high inside
each class category. The variability in terms of background,
illumination, blurring, occlusion, pose and scale are main
features of TUT indoor dataset.

1https://sites.google.com/view/bishwoadhikari/dataset
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Fig. 3. Distribution of the class categories in the TUT indoor dataset. There
are altogether 4595 instances from 7 categories.

The size of each frame extracted from the HD video
sequences is 1280×720 captured using a high-quality camera
with optical image stabilization. There are altogether 2213
frames having 4595 object instances from 7 class categories.
Each frame consists of several object instances from several
class categories. The distribution of object categories is
shown in Figure 3. The highest number of object instances are
from Fire extinguisher class followed by Chair class having
more than 1600 instances. While the least populated class
category is Printer containing less than 100 object instances.
The maximum number of object instances from a single class
is 1684 and the minimum is 81 instances.

The number of image frames in this dataset can be in-
creased by a factor of 3-4 by using common image data aug-
mentation techniques such as adding noise, blurring, flipping
and rotation. As the quality of object detection model and
proposal bounding box annotation are directly related to the
trained model and images to be annotated, one can improve
the performance by improving the quality of bounding box
annotation at first place and increasing the quantity of labeled
dataset to train the object detection models.

III. PROPOSED METHOD FOR SEMI-AUTOMATIC
ANNOTATION

In this section, we describe our method for the semi-
automatic annotation workflow. The motivation behind the
workflow is to minimize the total amount of manual work.
The basic idea is to train a model on a small subset of the
data, and use that model to predict annotations in the larger
set, thus allowing the human annotator to only correct the
incorrect predictions in most of the images. More specifically,
the workflow consists of six steps as illustrated in Figure 4.

A. Annotation Procedure

First, the unlabeled dataset is split into two parts. The first
(usually smaller) part is first manually annotated by a human
from scratch. Then the first part is used to train an object
detector, which is then used to predict annotations for the
remaining part of the data. The predicted data is manually

https://sites.google.com/view/bishwoadhikari/dataset
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Fig. 4. The workflow of our semi-automatic bounding box image annotation method. The dataset is split into two parts. The first part is manually annotated
and used to train a model, which is then used to predict labels on the rest of the dataset. After manually correcting the predicted labels, the final fully
annotated dataset is combined from the manually annotated and corrected subsets.

corrected by a human, after which both parts of the split
data are combined to form a fully labeled dataset. Note that
two actions out of the outlined six are performed manually
by a human, while the other actions can be fully automated.
Although the approach is probably invented several times
and in practical use already, a systematic evaluation of how
this should be done has been dismissed until now. More
specifically, we are interested in the proportions the two folds
should have in order to minimize manual work and annotation
time.

Splitting the dataset—The first step in the workflow is
to split the dataset to the train and test subsets. The split is
performed within the individual video sequence of the TUT
indoor dataset, so train and test subsets contain a similar ratio
of images from each video sequence. The splitting within the
sequences was done in the order of video progression, not
randomly, so for instance the first image in every sequence
was included in the train set of all the different folds. We
experimented with train set folds of 1 % to 10 % with 1
% increases, and 15 % to 95 % with 5 % increases. The
corresponding test set for each train set was always the
remaining percentage, so a total of 100 % of the data was
used in the experiment. Note that only a subset of the results
are shown in the tables.

Manual annotation of the train set—The second step is
to fully annotate the unlabeled fold 1 dataset. This is done by
a human. We used a basic bounding box annotation method
with no extra speed up procedures.

Training the detector—The third step is to train the
detector. Although any detector can be used, we focus on
the recent deep learning based object detection models,
which we fine-tune using the manually annotated dataset.
More specifically, we choose the Faster RCNN model using
ResNet-101 network trained on the MS COCO dataset as our
starting point. The pretrained models for object detection can
be found on the TensorFlow Object Detection model zoo 2.

2https://github.com/tensorflow/models/blob/master/research/object
detection/g3doc/detection model zoo.md

Predicting annotations for the rest of the data—After
fine-tuning the object detection model, it is used to predict
the bounding boxes for the rest of the unlabeled dataset, the
unlabeled fold 2.

Manually correcting the inferred proposals—The inferred
predictions are manually corrected by a human. The human
needs to go through all the proposed labels, see if they
make sense, and correct if necessary. Wrongly drawn boxes
are removed, wrongly labeled classes are corrected and new
boxes are drawn, if needed. We used the same annotation
tool as when fully annotating.

Combining the final labeled dataset—The fully annotated
train fold and the fully corrected test fold are finally com-
bined as the labeled dataset.

B. Estimating the Workload

The total amount of manual work consists of three kinds
of manual operations:

1) Annotation of bounding boxes in the first fold,
2) Removal of false detection (false positives) in the

second fold,
3) Addition of missed detections (false negatives) in the

second fold.

We choose to define the false negatives and false positives by
the amount of overlap between the true and predicted bound-
ing box: We assume the user would correct the annotation
if the intersection-over-union (IoU) overlap between the true
object location and the predicted bounding box is less than
50 %.

Additionally, in the case of partial overlap less than 50 %,
we model the user operation as removal of the incorrect box
and addition of the box at the correct location. Alternatively,
one might consider an additional user action: moving and/or
resizing the box. However, this requires often more work
(and mental attention) than simple removal and addition.
Moreover, many annotation tools have not even implemented
the box adjustment operation.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md


The workload required for the second fold corrections can
be estimated from the precision and recall values of the first
stage object detector. Precision is defined as

precision =
# of correct detections

# of all detections
,

and recall as

recall =
# of correct detections

# of all objects
.

Using these two metrics, we can estimate what would be the
workload for the tasks 1-3 above, respectively.

First stage annotations—In the first stage, the user simply
marks each object in each first fold image. Therefore, the
number of manual operations is simply

# initial annotations = # of true objects in fold 1.

Second stage additions—The recall value summarizes the
proportion of true objects in the second stage fold that are
correctly found by the detector. The complement of recall
is then the proportion of objects not found by the detector.
Thus, the number of additions the user would have to perform
is given as

# additions = (# of true objects)× (1− recall).

Second stage removals—On the other hand, the user has
to remove all false detections, i.e., detections at places with
no true object. The precision value describes the proportion
of detections that are in fact true objects. The complement
of precision is then the proportion of detections that do
not correspond to a true object, and needs to be manually
removed. Thus, the number of removals the user would have
to perform is given as

# removals = (# of all detections)× (1− precision).

The total work is the sum of these three steps:

operations = initial annotations + additions + removals.

However, we will see that the amount of time required for the
different tasks varies a lot. In particular, the box removal is
very fast, while the annotations from scratch take more time.
Therefore, we also define the total working time required:

time = t1 (initial annotations) + t2 (additions + removals) ,

where t1 denotes the time required for a single 1st stage
annotation, and t2 is the average time for a single 2nd stage
correction.

IV. EXPERIMENTAL RESULTS

Our interest is to estimate the workload needed to cre-
ate a fully annotated environment specific multiclass object
detection dataset. However, as we are also introducing a
new dataset not previously studied, we will first assess its
difficulty by training state-of-the-art object detectors and
evaluate their accuracy. Understanding the accuracies of
different models will also help to evaluate the impact of
choosing a poor object detector for the second stage proposal
generation. After that, we will study the annotation workload

TABLE I
PERFORMANCE EVALUATION OF FINE-TUNED TENSORFLOW OBJECT

DETECTION API MODELS AND RETINANET MODELS USING TUT INDOOR
DATASET.

Model mAP % Speed (FPS)

TensorFlow SSD MobileNet 97.73 27.41
TensorFlow Faster RCNN Resnet50 96.54 11.80

TensorFlow Faster RCNN Resnet101 95.06 9.69

RetinaNet, backbone = Resnet50 96.60 13.00

RetinaNet, backbone = Resnet101 95.93 9.64

RetinaNet, backbone = VGG16 95.67 9.79

RetinaNet, backbone = VGG19 94.57 8.66

TABLE II
THE TOTAL MANUAL ANNOTATION WORKLOAD AT DIFFERENT DATASET

SPLITTING RATIOS. A BIGGER TRAINING SET RESULTS IN BETTER
INFERENCE PERFORMANCE, AS INDICATED BY THE MAP. FOR OUR

DATASET, THE BEST WORKLOAD IS FOUND WHEN THE TRAINING SET
SIZE IS BETWEEN ABOUT 4% - 10%.

Split Workload COCO mAP % @ IoU 0.5

Train 1 %, Test 99 % 1642 56.88
Train 2 %, Test 98 % 1118 67.45
Train 3 %, Test 97 % 970 75.99
Train 4 %, Test 96 % 915 77.75
Train 5 %, Test 95 % 943 80.18
Train 6 %, Test 94 % 863 81.63
Train 7 %, Test 93 % 938 82.56
Train 8 %, Test 92 % 979 85.46
Train 9 %, Test 91 % 931 79.96
Train 10 %, Test 90 % 963 82.72
Train 20 %, Test 80 % 1265 88.80
Train 40 %, Test 60 % 2016 95.42
Train 60 %, Test 40 % 2878 96.76
Train 80 %, Test 20 % 3704 96.65

that would be required to annotate the data using different
strategies.3

Accuracy on the TUT indoor dataset—For this study, we
use three recent object detection pipelines. First one is the
Regions-CNN (R-CNN) framework proposed by Ren et al.
in 2015 [18], which uses a two-stage structure: first stage
network creates object proposals, which the second stage
network then classifies into different categories. The second
approach is the Single Shot Detector (SSD) framework
proposed in 2016 by Liu et al. [19]. Instead of the two-
stage structure, SSD uses only single feedforward network to
predict object locations (regression) and categories (classifi-
cation) is a single network. Finally, we consider the RetinaNet
structure proposed by Lin et al. in 2017 [20]. The RetinaNet
extends the SSD approach by defining a novel loss function
in order to focus the attention to the most difficult cases
instead of the easy ones.

For all cases, we start training from MS COCO trained
network and fine-tune using our own data. For the R-CNN
and SSD structures we use the TensorFlow object detec-

3To clarify: the dataset is fully annotated, but we will compare different
strategies how this could have been done faster.



tion framework [21] and for RetinaNet we use the Keras-
RetinaNet library4.

The accuracies of the experimented models are shown
in Table I. In this experiment, 80 % of the total dataset
is used for training the model and the rest is used for
evaluating the performance of the detector. The mean average
precision (mAP) calculation in our experiment follows the
MS COCO [5] evaluation procedure, i.e., we use a fixed
set of 101 detection thresholds t = 0, 0.01, . . . , 1.0 with
no interpolation and average the precision metrics over all
thresholds. We consider matches only for the IoU value of
0.5 and over, and not averaged over several IoUs as in the
typical COCO evaluation metric.

According to the results of Table I, the simplest SSD
network seems to have both the highest accuracy and highest
computational speed. This is somewhat surprising as two-
stage detectors (R-CNN) tend to have higher accuracy than
the single-stage detectors [22]. On the other hand, this is
good news since there is no need to consider the tradeoff
between the speed and accuracy.

Workload minimization—The workload calculation based
on different train-test splits is summarized in Table II. In
this case, we use the Faster RCNN with ResNet101 for
generating the second stage proposals. We decide to use
this network instead of the fastest and more accurate SSD
network because the SSD performance might be slightly
anomalous and specific to our dataset only. Moreover, the
performance differences are minor, so essentially any of
structure would produce more or less similar results. In each
case, we train altogether 50000 epochs.

The total manual workload to create a fully annotated
dataset is the sum of manual workload for annotating the
first dataset split and the workload needed for the correction.
To minimize the workload, the initial annotation workload
should be as low as possible, and the quality of the model as
high as possible. The optimal minimized workload is found
when these two conflicting requirements are both satisfied
well enough.

To make the workload figures more intuitive, we also
consider the time spent in the manual stages of the annotation
process, which are based on the workload figures. From our
timing experiment, we found that manual annotation takes
about 10.15 seconds per bounding box and correction (ad-
dition and removal) takes about 5.20 seconds per bounding
box. (In the timing experiment we used 80% of total dataset
on training the model and remaining 20% to predict the
bounding boxes). We are using these approximate times to
estimate the time needed to draw all together 4595 bounding
boxes in all image frames in TUT indoor dataset.

The calculation of the total time for the annotation is:

Total time for annotation = WM × 10.15 +WC × 5.20

Where, WM is number of boxes required to annotate in the
first fold of the dataset and WC is workload for the correction
of proposed bounding boxes in fold 2.

4https://github.com/fizyr/keras-retinanet

Figure 5 summarizes the results of work required to
annotate the whole dataset. On the left, we show the number
of bounding boxes to annotate in the two stages, as a function
of the proportion of first/second stage folds. One can see
that with very small first stage fold, the first stage becomes
very easy to annotate, but the second stage proposals become
unreliable and more work is needed on the second stage.
On the other hand, if excessive amounts of training data
is allocated to the first stage, then the total workload is
dominated by the first stage, while the seconds stage requires
virtually no corrections. The sweet spot is at a relatively low
percentage: The best strategy is to annotate only 4–8% from
scratch and use the trained model for the rest.

In the right panel of Figure 5 we show the time used for the
total annotation in different split proportions, i.e., we multiply
the number of boxes with their estimated execution times.
This has the effect of moving the sweet spot even further to
the left, with the minimum at 4%.

In all splits, our method decreases the manual workload to
annotate the full dataset significantly. Based on our measured
annotation time, the total time needed to annotate the full
TUT indoor dataset manually from scratch would be 4595×
10.15 = 46639.25 seconds ≈ 13 hours. Using the proposed
two-stage approach the required time decreases to less than
two hours of manual labor.Also, the total work time starts
to increase quite linearly with train set splits higher than
10%. Note that the time estimations include only the manual
labor done by humans, and do not include the automated
computing time between the manual phases of the task.

V. CONCLUSIONS

In this paper, we introduced the efficient way to annotate
the object detection dataset using fine-tuned object detection
model. We introduced a fully labeled TUT indoor dataset
for object detection. Our dataset have 2213 image frames
extracted from 6 different sequences of recorded videos
containing 7 classes of common indoor objects. We tested
the relevance of the dataset with current state-of-the-art
object detection frameworks. The real-world indoor dataset
is valuable resource for indoor object detection and handy
for the fast experiment on object detection algorithms.

The main contribution of the paper is a two-stage proce-
dure for rapid annotation of bounding boxes, together with a
systematic assessment of the time savings introduced by the
approach. It was found that the proposed two-stage method
reduces manual work by almost 90 % and is cost efficient
for the implementation of supervised object annotation cam-
paigns.

We experimented that manual annotation takes about 10.15
seconds per bounding box while the correction takes about
5.20 seconds per box. Note that this calculation might differ
in different scenarios such as different object types, changes
in number of classes and annotation tools. It is found that
the workload to annotate TUT indoor dataset is minimum
when using 4–8% of the total dataset to fine-tuned the object
detection model.

https://github.com/fizyr/keras-retinanet
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Fig. 5. Amount of workload needed in different train-test split (left). The proportion of annotation time needed to annotate full dataset using different
portion of manually annotated data to fine-tuned the object detection model (right).

For future work, we plan to experiment more with other
datasets to see how the procedure generalizes to larger
number of classes, for instance. Secondly, instead of two
stages, we plan to generalize the approach to more stages,
incrementally improving the proposal model accuracy at each
stage.
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Abstract—Manual annotation of bounding boxes for object
detection in digital images is tedious, and time and resource
consuming. In this paper, we propose a semi-automatic method
for efficient bounding box annotation. The method trains the
object detector iteratively on small batches of labeled images and
learns to propose bounding boxes for the next batch, after which
the human annotator only needs to correct possible errors. We
propose an experimental setup for simulating the human actions
and use it for comparing different iteration strategies, such as
the order in which the data is presented to the annotator. We
experiment on our method with three datasets and show that it
can reduce the human annotation effort significantly, saving up
to 75% of total manual annotation work.

I. INTRODUCTION

Object detection is one of the core research fields in ma-
chine learning and computer vision. Recently, object detection
algorithms have matured enough to solve real-world vision
problems. It serves as the key component in application
fields such as face detection [1], pedestrian detection [2],
surveillance systems [3], autonomous vehicles [4], [5], etc. The
supervised learning principle is widely used in current object
detection systems, where a human labeled dataset is used for
training the detection model. The performance of supervised
machine learning models relies heavily on the amount and
quality of annotated training data. However, the challenge in
supervised object detection is collecting large, high-quality
labeled datasets with the aim of having a well-performing
object detection model.

Recently, both the scale and the variety of public datasets
for object detection has increased. Among the most popular
ones are PASCAL VOC [6], MS COCO [7], OpenImages [8],
and Kitti [4] and they are widely used as benchmark datasets
in the field of object detection. The labor-intensive and tedious
job of object annotation for these large datasets has often
been solved by crowdsourcing [9] a large number of human
annotators on web platforms such as Amazon Mechanical
Turk. However, crowdsourcing may not be a feasible option
for annotating small and medium-sized datasets, when the data
is confidential in nature, or simply when annotation resources
are limited. Hence, there is demand for resource-efficient, user-
friendly annotation tools to prepare labeled dataset for machine
learning.

Researchers have been mainly focusing on two ap-
proaches to reduce the cost of bounding box annotation,

weakly-supervised and active learning methods. The weakly-
supervised approach uses images and corresponding object
labels and lets the network draw bounding boxes. On the other
hand the active learning approach trains the model and requests
human to draw bounding boxes on a subset of images actively
selected by the learner itself. These approaches still require a
significant amount of human annotator time for drawing high-
quality bounding boxes.

In this paper, we present a simple and practical heuristic to
annotate the bounding boxes on image datasets. The iterative
annotation approach takes advantage of the trained model to
propose labels for a batch of unlabeled images leaving the
annotator only for correction work. Thus reducing the work-
load of annotation. Compared to other approaches, the iterative
approach alternating between training-prediction-annotation
balances in the work between machine and annotator for
training and correction.

Although commercial and open source tools that learn while
annotating do exist (e.g., hasty.ai [10] and ilastic [11]), there
is only a limited amount of academic research on the topic.
Moreover, our particular focus is not on tool development, but
rather a systematic study investigating different strategies for
an annotation campaign; in particular the order in which the
images are presented to the annotator. To this aim, we describe
an easy-to-use measure of workload based on precision and
recall metrics of the learnt machine learning model.

Our proposed strategy significantly reduces the workload to
create environment specific object detection datasets. Iterative
training strategy is handy for a data annotation campaign,
reduces tedious manual work by assisting annotators in real-
time. A single annotator can efficiently annotate whole dataset
utilizing a partly trained detector with our iterative training
– labels proposal method. We experiment with the continual
learning [12] effect, an ability of network to learn consecutive
tasks without forgetting how to perform on previously trained
task, on object detection models in an iterative loop. Addi-
tionally, the catastrophic-forgetting [12] behaviour of object
detection models are experimented with multiple approaches.
The term catastrophic forgetting resembles neural networks
tendency of forgetting knowledge from the former data after
learning from the new data.

The rest of this paper is structured as follows. We review the
related literature on object annotation in Section II. This is fol-
lowed by a detailed discussion of the individual components of
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Fig. 1. Our purposed system for iterative bounding box annotation. The object detection model is trained on a small batch of manually annotated images.
The trained model is used to predict labels on an unlabeled batch, followed by manual correction. After the first round of train-infer-correction, detector is
trained on the recently labeled batch. This process continues in a loop until all unlabeled batches are labeled.

the proposed iterative annotation method in Section III. Next,
we present our experimental setup with a brief description
of the dataset and pre-processing approaches together with
the discussion of experimental results in Section IV. Finally,
in Section V, we conclude our work and consider potential
research directions for the future.

II. RELATED WORK

Object annotation in digital images has been widely studied
since the first object detection methods were proposed in
computer vision. There have been many studies focusing on
speeding up the image dataset annotation for object detection
task. In [13], [14], [15], Papadopoulos et al. proposed multiple
approaches for bounding box annotation. In their bounding box
verification approach [13], annotator only needs to verify the
label proposed by the network with an accept/reject decision
by human. In the click supervision approach [14], the human
annotator marks the point in the center of object in an image;
and in the extreme clicking approach [15], annotator clicks on
four physical points on the object: the top, bottom, left- and
right-most points.

Among these works, the box verification approach [13] is
the most similar to the proposed one. However, the proposed
approach is different from all of these methods in that (1) we
treat the object detector as a whole instead of splitting the task
into object proposal and classification stages; (2) our human
involvement is different (i.e., bounding box correction instead
of verification); (3) we evaluate the performance in terms of
total workload; and (4) we also study the order in which the
examples are presented to the annotator directing the research
towards active learning.

Konyushkova et al. proposed learning intelligent dialogs
[16] that takes advantage of a trained network to a draw
bounding box on image. It requires human annotator to verify
the bounding box proposed by the detector in all images.
Again, our human interaction model is more straightforward

(correction instead if yes/no verification), which in fact sim-
plifies the task and the total workload (as most proposals need
no action).

In our previous paper [17], we used a two-stage semi-
automatic approach to speed up bounding box annotation
on labeling small training dataset and correction of network
proposals. The proposed approach is related, but we extend
the two-stage approach into an iterative training loop with
unlimited number of training iterations rather than just two.

There are commercial annotations tools available, such
as hasty.ai [10] and ilastic [11]. Although these tools exist
already, the semi-automatic annotation approach specifically in
bounding box annotation has not been studied in the literature.
To the best of our knowledge, this is the first systematic study
of how different strategies could work in manual annotations
workload reduction.

III. METHOD

Our focus is in the iterative annotation framework illustrated
in Figure 1. This annotation framework uses an incremental
learning approach on a small batch of manually labeled
images, trains a detection model, uses freshly trained model
to propose bounding boxes on a batch of unlabeled images,
and requests the annotator do the correction on possible
incorrect bounding boxes or labels proposals. The involvement
of human annotators is only in the correction stage, hence,
decrease the tedious task of manual annotation. Algorithm 1
summaries all steps of the iterative training method. Next, we
will describe each component of our method.

A. Manual Annotation

The first step is to fully annotate the first batch of (say, 50)
images from the unlabeled dataset. This stage is fully manual
and requires human involvement to draw bounding boxes and
provide class label on images. We use a basic bounding box
annotation tools with no extra speed up procedures. The ways



Algorithm 1: Iterative annotation
Require: Set of unlabeled images split to M + 1 distinct

annotation batches B0, . . . , BM+1

1: annotate images in batch B0 manually
2: train object detection model with images from B0

3: for i ∈ 1, 2, . . . ,M do
4: propose annotations for batch Bi using the current

prediction model
5: do manual correction for the proposals
6: fine-tune the object detection model with batch Bi

7: end for
return fully labeled dataset

of selecting images batch for manual annotation are described
later in Section IV-C.

B. Object Detection Model Training

The second step is to train the object detection model.
Although any detector can be used, we focus on the recent
deep learning-based object detection models. The common
practice is to use a pre-trained network and fine-tune on a
new dataset [18]. We choose two pre-trained networks trained
on the MS COCO [7] dataset and fine-tune on other widely
used datasets. Details of our training strategies are explained
in Section IV.

C. Bounding Box Proposals

After fine-tuning the object detection model with the batches
annotated so far, it is used to predict bounding boxes for the
next batch of unlabeled images. The most recently trained
detection model proposes bounding boxes and class labels on
the next unlabeled batch of images.

D. Manual Correction

The proposed annotations are inspected and manually cor-
rected by a human annotator. The human annotator needs
to go through all the proposed labels and bounding boxes.
Incorrectly predicted boxes are removed, wrongly labeled
classes are corrected and new boxes are drawn, if needed.
As the model is presented more samples during the iterations,
the human workload should decrease, and the user only needs
to accept the boxes in most cases.

E. Estimating the Workload

Our goal is to estimate the human workload in a simulated
setting, attempting to find out how much time a human would
spend on a full annotation campaign. Namely, we can compute
the number of corrections required from the user with the
commonly used precision and recall metrics. More specifically,
the datasets are fully annotated, but we will process them
iteratively to measure how much work a human would have
done at each stage; and to compare different strategies how
this could have been done faster.

The amount of overlap between the ground truth label
and the predicted bounding box is used to define the false

positives and false negatives. We assume the user would
correct the annotation if the intersection-over-union (IoU)
overlap between the true object location and the predicted
bounding box is less than 50%, which is commonly used in
performance evaluation in object detection.

The formula to calculate the amount of corrections to
bounding boxes and class labels is adopted from Adhikari et al.
[17]. The number of additions the user would have to perform
for the next batch B of images is given as

# additions = (# of true objects)× (1− recall),

with the recall metric computed from ground truth annotations
for B. Moreover, the number of removals the user would have
to perform (for false positives) is given as

# removals = (# of all detections)× (1− precision).

with the precision computed from ground truth annotations for
B. Finally, the total correction work is the sum of these two
steps:

# corrections = # additions + # removals.

In an ideal case, when the detection model is good enough,
the correction work on proposed bounding boxes should take
significantly less time than drawing new boxes [17]. Addition-
ally, in the case of partial overlap less than 50%, we model the
user operation as removal of the incorrect box and addition of
the box at the correct location.

F. Labeled Dataset

After every correction stage, the fully labeled batch is
gathered and use for training the detection model for the next
iteration. The cycle of training detection model, bounding
box inference and correcting on proposed annotations loop
continues until all unlabeled images are fully labeled. Hence,
the loop produces a fully labeled image dataset for object
detection in iterative loop with reduced workload for human
annotator.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the efficiency of the proposed
approach. More specifically, we experiment on the iterative an-
notation with a number of detection architectures and datasets;
both described below.

A. Models

For detection architectures, we study the following two
commonly used configurations. Both networks were trained
starting with weights pre-trained with MS COCO dataset [7].

Faster RCNN—The faster region convolutional neural net-
work (Faster RCNN) framework proposed by Ren et al. [19]
is a two-stage detector, where the first stage network creates
object proposals, followed by the second stage network classi-
fying the proposals into different categories. For the backbone,
we use the 50-layer variant of the residual convolutional
network (Resnet50) [20].



SSD—A commonly used lightweight detection architecture,
the single shot detector (SSD) framework was proposed by
Liu et al. [21]. Since the detections are produced directly in
a single forward pass of the network, it is often the model
of choice for resource limited inference scenarios. For the
backbone, we use the Mobilenet V2 [22].

These particular models were selected since Faster RCNN
is typically more accurate in detection, while the SSD is faster
in inference. As detection model complexity plays crucial role
in training, it is always worth to put some effort on model
selection for the particular use case. Moreover, the idea is to
experiment various strategies to find out an optimal strategy
for high quality bounding box annotation efficiently in iterative
approach.

B. Datasets

We selected three datasets for our experiments. The inten-
tion is to include both large scale datasets (OpenImages) as
well as small scale sets (Indoor). The large datasets represent
the upper bound in the size of an annotation campaign, while
the small scale is the common setup occurring in practice.

PASCAL VOC—PASCAL VOC dataset [6] is a popular
benchmark dataset for object detection. The dataset consists
of 17k images having 40k object instances from 20 class cate-
gories, including person, bus, car, and motorbike. Two sets of
independent experiments were conducted in this dataset: first
with all classes and second with individual class categories.
In the latter case, we used the top ten object categories from
VOC 2012 dataset, listed in Table III.

OpenImages—OpenImages [8] is yet another very large
dataset for object detection, classification and instance seg-
mentation. The OpenImages V4 contains 9.2M images, 15.4M
bounding boxes for 600 object classes. In our experiment,
we used a subset of the Open Image Dataset: 10.5k images
are selected from the person class; filtering the occluded,
truncated, and groups of objects with a single label (multiple
objects inside a single bounding box), as these annotations
tend to be very noisy.

Indoor—Indoor dataset [17] is a moderate size dataset
collected from university indoor premises. The fully annotated
object detection dataset consists of about 2,200 images and
about 5,000 object instances. Images were extracted from a
series of videos. Therefore, this dataset is also associated with
a temporal order of samples, which we will exploit later.

Table I summarizes the characteristics of these three
datasets. Note that although all datasets used in our experi-
ments are fully labeled, we investigate how their relabeling
could benefit from training in the annotation loop. The scope
of this research is to experiment how bounding box annotation
cloud be done faster with minimal human involvement in an
iterative-train loop.

C. Order of annotation

For each iteration, we use a batch size of 50 images in all
our experiments. The input image size of 1024x600 pixels is
used to train all RCNN models and the input size of 300x300

TABLE I
COMPARISON OF INDOOR [17], PASCAL VOC 2012 [6] AND

OPENIMAGES [8] DATASETS. SOURCE, SIZE, ANNOTATION FEATURES AND
USAGES ARE PRESENTED IN ROWS RESPECTIVELY.

Indoor PASCAL VOC OpenImages

Indoor videos Online (Flickr) Online (Flickr)

2.2k images
4.5k instances
7 classes

17.1k images
40k instances
20 classes

9.2 M images
15.4M instances
600 classes

Fully labelled by
one annotator;
annotations are
of high quality

Fully labelled by
multiple annotators;
annotations are of
good quality

Partial labelled
multiple annotators &
machine generated labels;
annotations contain noise

object detection
classification,
detection,
segmentation

classification,
detection,
visual relationship

TABLE II
REDUCTION OF MANUAL WORKLOAD (%) WITH DIFFERENT STRATEGIES

ON INDOOR, PASCAL VOC 2012 AND OPENIMAGES DATASETS.
NUMBERS IN BOLD REPRESENT THE BEST PERFORMING APPROACH ON

EACH SECTION.

Network - Approach Indoor PASCAL VOC OpenImages
Person

RCNN - Shuffled 75.86 18.40 45.62
RCNN - Sorted 56.97 20.93 60.05
RCNN - Original 35.78 25.23 45.73

SSD - Shuffled 47.38 3.46 20.28
SSD - Sorted 31.58 5.66 35.13
SSD - Original 19.24 7.97 20.04

pixels is used to train all SSD models. The following three
annotation orders are experimented on the above mentioned
datasets.

Shuffled—All images on the dataset are shuffled in random
order and divided into small batches of 50 images. All these
small batches have randomly selected images from the whole
dataset. The human annotator manually annotates the first
batch, then fine-tune the detection model on that batch, and
remaining batches are used for annotation proposal in an
iterative loop.

Sorted—In this approach images from the dataset are sorted
in the decreasing order of number of objects per image. Images
having more objects (in both single and multiclass cases) are
presented first and so on. In this setup, the first batch of
50 images contains comparatively more objects than the last
batch. Hence, it takes more time to annotate the first batch
than in any other setups.

Original—In our next approach, images are presented in
the original order defined either by the filename (PASCAL
VOC and OpenImages) or temporal order in a video (Indoor)
or some other inherent way of ordering the examples. This is
likely to differ from the shuffled order only for temporal se-
quences such as video, but we also experiment with this order
with the non-temporal datasets for the sake of completeness.



Fig. 2. An example of the effect of the order of iterative annotation. The figures show the cumulative number of ground truth boxes, boxes predicted by the
RCNN model, and the manual corrections required on the OpenImages/Person dataset. Images are annotated in a random order (left) and in an order sorted
by the # of boxes per image (right). The reduction in workload is significantly better in the sorted order (right).

TABLE III
COMPARISON OF THE MANUAL WORKLOAD REDUCTION (%) ON INDIVIDUAL CLASS CATEGORIES FROM PASCAL VOC 2012 DATASET.

Airplane Bird Boat Bottle Car Cat Chair Dog Person Plant Average

RCNN - Shuffled 56.14 50.30 35.70 44.49 51.96 55.34 29.31 57.87 44.61 38.72 46.44
RCNN - Sorted 62.07 60.43 35.65 46.68 56.27 59.53 32.44 63.28 61.24 32.75 51.03
RCNN - Original 53.87 50.41 32.50 41.54 55.14 61.58 29.30 61.38 57.16 34.64 47.75

D. Results

An example of the progression of our method experimented
on OpenImages person class using the RCNN detection model
is shown in Figure 2. The amount of ground truth, model
prediction, and manual correction in terms of numbers of
bounding boxes as a function of the number of images are
presented with shuffled and sorted approaches.

The left graph shows the experimental result based on the
shuffled order of images from the dataset, and the right graph
shows the experimental result based on the sorted order. The
manual workload is less in the sorted order approach; only
13,414 manual corrections would be needed instead of 33,573
ground truth bounding boxes. In the case of the random
shuffle approach, 19,938 manual corrections would be required
instead of 36,659 ground truth bounding boxes.

The higher the gap between ground truth and manual
correction, the better the annotation performance in terms of
manual workload reduction. The first stage manually annotated
bounding boxes from the first batch (B0) of images are
not included in these graphs. For the sorted approach, the
annotation workload for the very first batch is usually more
than other approaches.

The reductions of manual workload required to correct
the proposed bounding boxes in experimented approaches are
shown in Table II. The prediction performances of the two-
stage RCNN model are comparatively better than those of

the single-stage SSD model. The RCNN model capacity and
higher input resolution for training images result in good
proposals for bounding boxes and class labels. However, the
two-stage models are computationally expensive compared
to single-stage detection models like SSD. Moreover, the
results follow the same pattern for both methods in all of our
experimented approaches. The minimum amount of manual
workload reduction noted is 3.46 % with the SSD model on
the VOC multiclass dataset with the shuffling approach. On
the other hand, the maximum amount of reduction recorded
is 75.86% with the RCNN model on the Indoor dataset with
the shuffling approach.

Interestingly, it is seen that shuffling images helps to im-
prove the overall performance of the detection model only
in the case where images are continuous frames of video
(Indoor). As shown in Table II, with the RCNN model, 75.86%
of manual work required to draw bounding boxes can be
reduced by randomly shuffling the images from the indoor
dataset. However, in the shuffling approach, there is a high
probability of having every next image from the sequence in
different batches. The catastrophic forgetting effect seems to
be least in this approach hence, providing accurate proposals
for bounding boxes and class labels. Moreover, the results
on OpenImages and VOC datasets show that the shuffled
approach is the worst performing among the compared ap-
proaches.



For multi-class datasets, the annotations can be done one
class at a time (iterating over all images for each class) or
all classes simultaneously. Therefore, we experimented with
the ten most populated classes of the VOC dataset with
the RCNN detection model, with a single category fully
annotated iteratively at a time. The results are shown in Table
III. Interestingly, the workload reduction is doubled when
annotations are done one class at a time (average reduction up
to 51.03%) compared to the multi-class iterative annotation
(reduction 25.23%). In terms of individual categories, the
reduction ranges from 32.4% (chair) to 62.1% (airplane).
The likely reason for the improved performance is that the
detection model does not have to learn away from the other
categories and can focus on learning a single class at a time.
Obviously, this approach requires that images are initially
sorted by category: Otherwise we would unnecessarily present,
e.g., non-airplane images while annotating the airplane class.

Additionally, it is found that the sorted approach is optimal
for the manual workload reduction in most of the single class
categories. On the OpenImages person class, as shown in Table
II, the workload reduction with the sorted approach is higher
than other setups. The reduction in manual workload with
RCNN model is 60.05% and with SSD model is 35.13%. Most
of the larger reductions in Table III come from the sorted setup.

On the other hand, by splitting images into different batches
based on the filename or temporal order gives the best result
for the multiclass dataset. The original order approach gives
best performance for VOC multiclass and second best perfor-
mance for VOC and OpenImages single class datasets.

TABLE IV
COMPARISON OF THE MANUAL WORKLOAD REDUCTION (%) WITH

ITERATIVE ANNOTATION AND TWO-STAGE METHOD ON INDOOR DATASET
[17]. ALL EXPERIMENTS ARE DONE WITH FASTER RCNN RESNET101

AND 0.5 IOU THRESHOLD IS USED.

Approach Reduction (%)

Two-stage (5%) [17] 79.47
Two-stage (6%) [17] 81.21
Two-stage (8%) [17] 78.68
Two-stage (10%) [17] 79.03
Two-stage (20%) [17] 72.46
Ours (iterative) 79.56
Ours (cumulative) 80.56

We performed some more experiments on the Indoor dataset
to have a comparison with the previous method [17]. In [17],
a two-stage approach was used, with first fold annotated fully
manually, and the second part using the proposals of a model
trained with the first fold. The proportion of samples in the
first and second folds is a tuning parameter.

Table IV shows the results of the two-stage approach [17]
for selected split ratios; with 6% for the first fold and 94% for
the second fold reducing the workload the most (81.21%).
Using the fully iterative approach of this paper results in
a comparable accuracy (79.56%), but does not require the
selection of the split ratio.

However, the sweet spot of 6% is the only split ratio exceed-
ing the workload reduction of the proposed iterative approach.

In fact, it is impossible to know the optimal split ratio a priori
for an unlabeled dataset; for example, the 5% – 95% split
is already almost 2% worse. Thus, our iterative method is
economical compared to the earlier two-stage approach.

In addition to the iterative approach, we experimented on
a modified version of the proposed method. Namely, instead
of training on the most recent batch, one can train with all
previously annotated batches at each iteration. This cumulative
approach was tested on the Indoor dataset and the results
are shown on the last line of Table IV. It turns out that
the cumulative approach is better compared to the iterative
approach; however, its training becomes significantly slower
due to larger amount of training data.

In general, the two-stage approach with other amounts of
manually labeled images has less workload reduction than
our iterative approach trained with the same approach and
same model. The significant benefit iterative approach over
this is that the model is improving over time; object proposals
are getting better, hence require less correction work. Also,
labeling a small batch of images is more relaxed and less
error-prone compared to mass annotation.

V. CONCLUSION

This paper presented an iterative human-in-the-loop an-
notation method to minimize human involvement in image
annotation campaigns for the task of object detection. The
proposed method utilizes human-machine collaboration result-
ing in high-quality bounding box annotations on small and
medium-sized datasets. Extensive experiments on the proposed
method on three datasets show that our iterative annotation is
able to reduce the manual workload by up to 75%. However,
the reduction of manual annotation workload appears to be
dependent on the dataset size, image source, and object
class categories. We also noted an adequate performance of
proposed approaches on the already existing platform for the
bounding box annotation campaign.

Our implementation uses a commonly used threshold value
0.5 IoU threshold threshold for detection performance mea-
surement and accepting the label proposals. In our future
work, we will consider the effect of requiring a higher IoU
for the annotation results (> 0.5 IoU). In fact, we already
experimented with a 0.8 IoU threshold, and discovered that the
manual workload reduction is even higher since less manual
correction work is needed on the good quality proposals.
It would also be interesting to experiment on the effect of
an IoU threshold on the network proposals and its tradeoff
between correction workload. The resource constraints and
latency of the detection model could be studied in the future
with parameters such as batch size, training step, and input
size of images for the model training.

Furthermore, it would be nice to experiment on an active
learning pipeline that could reduce human workload even more
by automatically selecting informative images for labeling on
earlier iterations.
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ABSTRACT

Supervised object detection has been proven to be successful
in many benchmark datasets achieving human-level per-
formances. However, acquiring a large amount of labeled
image samples for supervised detection training is tedious,
time-consuming, and costly. In this paper, we propose an
efficient image selection approach that samples the most
informative images from the unlabeled dataset and utilizes
human-machine collaboration in an iterative train-annotate
loop. Image features are extracted by the CNN network fol-
lowed by the similarity score calculation, Euclidean distance.
Unlabeled images are then sampled into different approaches
based on the similarity score. The proposed approach is
straightforward, simple and sampling takes place prior to
the network training. Experiments on datasets show that our
method can reduce up to 80% of manual annotation work-
load, compared to full manual labeling setting, and performs
better than random sampling.

Index Terms— Object Detection, Image Annotation,
Sample Selection, Bounding Box

1. INTRODUCTION

Object detection is one of the fundamental and widely stud-
ied problems in computer vision. The success of convolu-
tional neural networks (CNN) and deep learning has trans-
formed the domain of object detection. These approaches
outperform earlier techniques by a large margin, but still be-
hind the human-level understanding. Recently, object detec-
tion has been mature enough to be used in applications in var-
ious domains such as agriculture [1], medical imaging [2],
robotics [3], and remote sensing [4].

Supervised object detection is the most widely used ap-
proach but requires a large amount of labeled examples for
the training, with the labels usually assigned by human an-
notators. In object detection, the datasets consist of images,
and each image can have multiple annotations; the acquisition
of a large number of high-quality datasets is tedious, time-
consuming, costly, and often requires expertise (e.g. medi-
cal images). Object detection breakthroughs in various fields
have been facilitated by a large number of annotated bench-
mark datasets available from multiple domains [5, 6, 7]. Ob-
ject detection tasks can be very specific to a certain environ-

ment and condition, thus relying only on public datasets often
does not generalize well.

Several existing works have been reported on methods
for data-efficient object detection training including transfer
learning [8], semi-supervised learning [9], and weakly super-
vised learning [10]. However, most of these methods still
require a certain amount of domain-specific labeled training
data. Crowd-sourcing [11] have been increasingly popular
due to the progress in third-party services such as Amazon
Mechanical Turk (AMT) for data annotation. As there is no
standard to measure the quality of the annotations, the anno-
tated datasets via these platforms often have noisy labels i.e.,
missing labels, inaccurate labels, and only part of the object
is being labeled. Moreover, not all projects can opt for these
solutions due to the privacy concern and cost of high-quality
annotation from expert annotators. Active learning [12] is an-
other popular technique that aims to reduce the training time
by actively querying for the labels of unlabeled instances. Re-
cently, active learning techniques have been commonly used
for the image classification task but not commonly available
for the object detection task. Hence, there is a need for faster
and efficient methods for labeling image examples for object
detection model training.

In this work, we focus on reducing manual annotation
workload using active image sampling. Our method selects
and sorts informative images into mini-batches that will lead
to less annotation work; utilizing the human-machine col-
laboration in the continuous train-annotate loop. We use a
distance-based image sampling based on the entire image-to-
image pairwise Euclidean distance. We propose two sampling
approaches that can reduce the overall annotation workload.
Secondly, we utilize a self-supervised network for the feature
extraction. Experiments on three datasets show that the pro-
posed method significantly reduces the annotation workload
compared to the full human-level manual annotation. The
saving in annotation cost is up to 80% in the best case and
above 50% on average.

The rest of the paper is structured as follows. The litera-
ture review of related works is presented in Section 2. In sec-
tion 3, we present a detailed description of our method and its
components. In Section 4, details about the experimental se-
tups, dataset, and results are presented and discussed. Finally,
we conclude this paper with our findings in Section 5.
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Fig. 1. Proposed efficient annotation scheme. The sample selection is done before the object detection model training. The
train-annotation loop (inside red) continues till all unlabeled batches are taken and labeled.

2. RELATED WORK

2.1. Active Learning

Active learning [12] aims to reduce the labeling cost by select-
ing the most useful samples from the unlabeled dataset and re-
quest for the labels to maximize a model performance while
trained with these labels. Active learning has been proven to
be effective in reducing annotation cost on image classifica-
tion task [13].

For object detection, uncertainty-based sampling is com-
monly used as a measure of informativeness [14, 15]. The key
principle of this approach is to train a learner, calculate the de-
gree of uncertainty, and then query an unlabeled instance with
the least confidence. The drawback of uncertainty-based ap-
proaches is that they rely on a labeled dataset to build an ini-
tial model to select the query instance, and the performance
is often unstable when there are only a few labeled samples
available. Querying every unlabeled sample using a CNN net-
work is computationally expensive. In [16], a feature descrip-
tor function was proposed to generate features for all images
and the most distant sample is selected based on the euclidean
distance measure from these features. This is feasible for a
single-class dataset but requires heavy computation since ev-
ery sampling instance requires a new round of training and
evaluation with the CNN model.

Our method takes all unlabeled images for the sampling
prior to network training, representing all samples from the
unlabeled dataset. Furthermore, it does not rely on the predic-
tion of classification scores, hence it is efficient and straight-
forward. The proposed sample selection method is close
to [16] but in this work we sampled all images based on the
distance metric before the network training, resulting in a
computationally efficient workflow.

2.2. Self-training

Many previous works have used a trained model to predict
labels for a set of unlabeled images and involve humans in
the process of correcting predicted labels [2, 17, 18, 19, 20].
In [18], a two-stage method proposed for speeding up bound-
ing box annotation; model training on a small set of a labeled
dataset, inference labels for the unlabeled set followed by
manual correction on network proposals. In [20], an iterative
train-annotate loop is proposed for efficient image annotation
in a small batch of images at a time. This method explicitly
used the information from ground truth for the selection of
images on three approaches. In [19], assistive learning feed-
back loop is proposed that utilizes the contextual sampling
criteria; uniqueness, and average euclidean distance of the
images. However, in reality, often such information is not
available for the unlabeled dataset. In this work, we do not
need such information from unlabeled samples.

The major difference from all these works is that (1) our
method does not require explicit information from the un-
labeled images; (2) all the sampling task is done before the
training phase; (3) we use an entire image for the sample se-
lection based on the extracted features; and (4) human anno-
tator has a rather easy task of labels inspection and/or correc-
tion that does not need prior machine learning skills. Among
these works, the iterative annotation approach [20] is the most
similar to the proposed one.

3. METHOD

The proposed method applies CNN based feature extractor to
sample the images in mini-batches based on the distance met-
ric i.e., most similar or most distant images together. Human
annotator labels first batch (B1), trains object detection model



(M1) on this batch B1. The freshly trained model M1 is used
to predict bounding boxes and class labels on the unlabeled
batch (B2). The predicted bounding boxes and labels are then
inspected and corrected by a human annotator resulting in a
fully labeled batch B2. The next iteration starts with training
model M2 on a combination of labeled B1 and B2 and pre-
dicts labels for the batch B3. The train-prediction-correction
loop continues till the last batch Bn of unlabeled images is la-
beled. A human annotator is required for the manual labeling
of B1 and in the inspection and correction stage, inside the
loop, as shown in Figure 1.

3.1. Feature Extraction

The first step in the proposed method is to extract image fea-
tures from all images in the unlabeled dataset. For the feature
extraction, we experiment with two networks; ResNet50 [21]
network trained on ImageNet [22] (ImgNet) and similar-
ity network (SimNet) trained on images from the unlabeled
dataset. Moreover, any CNN network can be utilized as a
feature extraction network. SimNet uses ResNet50 as a back-
bone and structured lifted loss [23] as loss function. Images
from the unlabeled dataset are horizontally split into pairs,
and the SimNet is trained on these pairs for 25 epochs. Ex-
periments showed that features extracted from this network
perform better in sample selection i.e., mapping similar and
dissimilar samples.

3.2. Image Sampling

The extracted image features are used to compute the pairwise
Euclidean distances of each pair. The images are then sam-
pled based on the distance measure and sorted into batches,
later used in the iterative train-annotate loop. We have ex-
perimented with three strategies for batch selection; similar
(images with the least distance are placed together), dissimi-
lar (images with the maximum distance are placed together),
and random sampling (images are randomly sampled into
batches). Additionally, we experiment on temporal order if
applicable to the dataset.

We start with randomly selecting few images as a query
list. On a dissimilar approach, an image that has the largest
distance compared to all images in the query list is appended
to the query list one at a time, the process continues till all im-
ages are added to the list, resulting in distinct images together.
While, on a similar approach, an image that has the least dis-
tance compared to all images in the query list is added to the
list one at a time till all images are ordered in the list, resulting
in similar images together.

3.3. Training, Inference and Correction

At first, the detection network is trained on the manually la-
beled first batch B1. After the first round, it is trained on all
labeled sets available at that time. The process continues till

all unlabeled samples are being used in the proposal stage or
the desired amount of data is labeled. The number of iter-
ations and other hyperparameters can be decided depending
on the available annotation budget.

The freshly trained model is used to infer bounding box
and class labels on the batch of unlabeled images. After this,
the task of inspection and correction on these proposals is as-
signed to a human annotator. This task includes adding miss-
ing bounding boxes and labels, correcting incorrectly drawn
boxes and labels, and removing extra boxes and labels. As
the model gets better, the more tedious task is done by the
machine, thus simplifying the task of a human annotator.

3.4. Workload Calculation

We follow the previous works [18, 20, 14] in formulating the
annotation workload calculation. However, unlike [20], the
annotation costs include the workload required to label im-
ages from the first batch B1, and costs are assumed to be
different for different actions during the correction stage.

The annotation workload in terms of bounding boxes is
given as

Workload (WB) = # corrections + # of object in B1

where # corrections represents the sum of additions (An) and
removals (Rn) from the manual correction stage. Simply
counting the number of added and removed bounding boxes.

On average, these addition and removal actions, required
at the correction stage, have different levels of complexity.
Hence, the number of objects (bounding boxes) does not pro-
vide a realistic estimate of the entire dataset labeling cost.
Therefore, we formulate the labeling cost in terms of time
(sec.) as

Workload (WT ) = B1n × T +An × T +Rn × T/2

where B1n, An, and Rn are the number of bounding boxes in
B1 (labeled by the annotator at the beginning), manual addi-
tions and removals respectively. While T is the time to anno-
tate one object from scratch.

In [18], the annotation workload calculation uses only the
manual correction stage. However, in practice, taking into ac-
count all manual work required from all stages would give a
better estimation of the annotation workload. The time esti-
mation to draw bounding boxes is conservative and there have
been various estimations presented in [17, 18, 19]. In our
work, we calculate the annotation cost reduction (%) com-
pared to what it would have taken in a full manual annotation.

4. EXPERIMENTS

4.1. Datasets

PASCAL VOC — PASCAL VOC [5] is one of the popular
datasets in vision research. The object detection version con-
sists of fully labeled in 20 object classes including animals,



vehicles, and common household objects. In our experiments,
we use all 9963 images with 30638 object instances from both
trainval and test sets of the 2007 version. In this dataset, we
performed two sets of experiments: first with all class cate-
gories and second with individual class categories.

KITTI — KITTI [6] object detection and object orien-
tation estimation benchmark consist of 7481 training images
and 7518 test images, comprising a total of 80256 labeled ob-
jects. The dataset is collected in five scenarios: city, residen-
tial, road, campus, and person. We use the train split from ob-
ject detection category consisting of 7481 images with 40570
object instances of 8 class categories including vehicles (car,
van, tram, truck), and person involved in different actions
(pedestrian, sitting, cyclist).

Indoor — Indoor dataset [18] is a moderate size dataset
collected from indoor premises. This dataset has 2213 images
and about 4595 object instances of 7 indoor scene classes.
The dataset consists of safety signs (exit, fire extinguisher),
furniture(trash bin, chair), and equipment (clock, printer,
screen). Images were extracted from a series of videos pre-
serving temporal order.

4.2. Implementation Details

For object detection, we experiment on two commonly
used detection networks: single-stage SSD [24] with Mo-
bileNetV2 [25] backbone and two-stage Faster RCNN [26]
with ResNet50 backbone. Both networks are fine-tuned with
pre-trained weight from COCO dataset [7]. We select these
networks following their popularity and speed vs accuracy
trade-off reported in the literature. The SSD network is
lighter and faster but less accurate than the alternatives. How-
ever, it is a common choice for resource-limited scenarios.
On the other hand, Faster RCNN is more complex, compu-
tationally heavy but optimal for the high-quality annotation
proposals. We resized images to 300×300 pixels for the SSD
network and 600×1024 pixels for the Faster RCNN network,
as reported on their original papers.

Fig. 2. Example samples selected using the dissimilar ap-
proach. Images from PASCAL VOC, KITTI, and Indoor
datasets from top to bottom rows, respectively.

We mainly experiment on three different sampling strate-
gies: similar, dissimilar, and random shuffle, mentioned

in 3.2. An additional experiment is done with temporal sam-
pling on the Indoor dataset. In Figure 2, we show images
sampled by our dissimilar approach in three datasets.

Table 1. Reduction of manual annotation time WT (%),
higher the better, with different approaches. The result is an
average of five independent runs. The best for each dataset
per column is in bold font.

Dataset Approach RCNN SSD
0.5 IoU 0.7 IoU 0.5 IoU

Shuffle 56.00 55.37 31.61
Sim (ImgNet) 56.05 54.71 32.97

Pascal Dis (ImgNet) 56.48 55.63 32.08
VOC Sim (SimNet) 55.27 53.65 30.53

Dis (SimNet) 56.82 56.02 32.08
Shuffle 50.82 49.53 32.21

Sim (ImgNet) 37.31 34.68 19.92
KITTI Dis (ImgNet) 51.49 50.59 33.61

Sim (SimNet) 46.67 43.34 28.64
Dis (SimNet) 49.81 47.16 28.89

Shuffle 81.20 80.37 65.98
Temporal 37.47 35.99 20.24

Sim (ImgNet) 59.12 59.47 43.35
Indoor Dis (ImgNet) 81.83 78.81 64.09

Sim (SimNet) 67.06 67.38 48.32
Dis (SimNet) 79.08 81.64 67.76

Table 2. Reduction of manual workload (%) in terms of
bounding boxes WB with different approaches. The result is
an average of five independent runs. The best for each dataset
per column is in bold font.

Dataset Approach RCNN SSD
0.5 IoU 0.7 IoU 0.5 IoU

Shuffle 43.69 47.11 26.17
Sim (ImgNet) 43.64 47.18 27.50

Pascal Dis (ImgNet) 43.12 47.39 26.46
VOC Sim (SimNet) 43.40 46.22 26.15

Dis (SimNet) 43.66 48.22 2.15
Shuffle 45.93 45.59 27.90

Sim (ImgNet) 28.08 28.12 14.49
KITTI Dis (ImgNet) 44.39 46.33 29.37

Sim (SimNet) 39.24 38.49 23.89
Dis (SimNet) 42.58 42.57 25.03

Shuffle 77.11 78.19 60.83
Temporal 34.77 34.29 17.60

Sim (ImgNet) 56.10 57.25 39.43
Indoor Dis (ImgNet) 78.10 76.51 58.57

Sim (SimNet) 63.17 65.07 43.25
Dis (SimNet) 74.08 78.43 63.70

4.3. Results

We compare the performance of the proposed sampling ap-
proaches for labeling the full dataset in a simulated envi-



Table 3. Annotation workload reduction(%) in time (WT ) and bounding boxes (WB) on individual class categories of the
PASCAL VOC 2007 dataset. The best result per category is in bold font.

Approach Plane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Bike Person Plant Sheep Sofa Train TV Average

Dis SimNet (WT ) 41.12 57.00 44.12 24.39 40.97 41.30 67.30 58.82 48.25 41.38 37.35 62.68 58.80 58.98 74.59 38.78 28.39 45.13 52.69 44.71 48.34
Dis SimNet (WB) 30.21 47.71 34.97 18.71 36.94 29.18 59.15 46.11 37.91 36.05 11.49 49.71 51.06 49.01 66.54 29.91 25.30 17.54 41.58 36.53 37.78

Shuffle (WT ) 46.80 53.22 46.93 23.51 45.66 40.58 68.74 60.80 47.71 40.95 41.70 64.27 54.74 51.91 75.54 37.83 29.21 45.49 49.44 47.94 48.65
Shuffle (WB) 39.40 45.10 39.57 16.68 40.58 27.85 59.65 47.43 37.24 37.51 25.78 50.37 45.07 44.79 67.53 29.98 26.65 22.17 36.98 38.59 38.95

ronment. The amount of workload reductions for different
datasets with different sampling approaches and two detection
networks is shown in Table 1. Additionally, we experimented
on two IoU thresholds; 0.5 and 0.7 which are commonly
used as performance measurement in object detection. In all
experiments, our sampling approaches perform better in sav-
ing manual annotation time. The Faster RCNN model with
dissimilar sampling performs better in most cases. The dif-
ference between the two IoU thresholds is surprisingly small.
We believe this is due to our calculation strategy. In an ideal
case, with 0.5 IoU, the network proposes too many labels
which the annotator needs to remove in the correction stage.
While with 0.7 IoU, the network purposes fewer tight boxes
where the annotator needs to add some labels manually, at the
correction stage.

In [20], the workload reduction is calculated in terms of
the bounding boxes. We show the saving in terms of bounding
boxes in Table 2. However, we believe that saving in terms
of time would be more practical. Next, we experiment on
all categories of PASCAL VOC 2007 taking one class at a
time, shown in Table 3. We trained a Faster RCNN network
with two approaches: random shuffle and dissimilar sampling
order based on our similarity network.
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Fig. 3. Relationship between mean average precision (mAP)
and amount of labeled dataset. Faster RCNN network is
trained on PASCAL VOC 2007 all with three sampling ap-
proaches and tested with PASCAL VOC 2012 trainval.

Next, we experiment with the relationship between the
amount of sampled data with the model performance on the
PASCAL VOC 2012 trainval set. The result in Figure 3 in-
dicates that the proposed methods improve the performance
of the object detector when there are fewer labeled samples
available for training. As the amount of labeled data increases
the performance of the model given all three approaches con-
verges.

4.4. Discussion

The reduction in workload varies among datasets. We believe
this is due to the nature of datasets (e.g. type, size, and ground
truth). For the Indoor dataset, which is extracted from video
sequences and sparsely labeled, the saving is higher. For the
KITTI dataset which is densely labeled, the saving is lower
due to dense annotations. While in the PASCAL VOC dataset,
which is collected from the web, manual workload reduction
with our method is moderate. Since the dataset is already so
diverse, there is less to achieve with sample selection.

Furthermore, the results obtained on a single class states
that the annotation workload reduction with our method is
higher for difficult classes. We get better results on classes
such as potted plant, chair, and boat that are considered to be
hard [27]. These difficult classes usually appear in complex
contexts with many objects, occlusion, and varying illumina-
tion. In the case of a large-scale dataset even 1% of workload
reduction has a significant impact. For example, in the PAS-
CAL VOC, 1% of 30680 is 306 object instances. According
to [11], labeling this many objects takes about 3 hours.

The quality of labels obtained from the self-training
method is equally important as the labeling cost. Since a
human annotator is used to inspect and correct each object
proposal in our method, the quality of the labeled dataset is
good compared to other semi-supervised approaches. Ex-
periment results with different IoU thresholds show that the
proposed method is effective to get tighter bounding boxes,
with 0.7 IoU threshold, the workload reduction in annotation
time is higher than that of 0.5. This concludes that the pro-
posed method is feasible for efficient sample selection for the
cost-effective annotation campaign.

5. CONCLUSION

We proposed a similarity-based self-trained approach for effi-
cient labeling of object detection datasets. The proposed ap-
proach can produce high-quality annotation with a reasonable
annotation budget. Most of the tedious work is done by the
machine while the human annotator mostly takes care of cor-
rection work which is often easier than labeling images from
scratch. Extensive experiments on three datasets showed that
a large amount of manual annotation work can be saved if
some focus is paid on sample selection prior to the network
training. In the future, we would like to apply this method
to more challenging video datasets annotation and semantic
annotation.
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Abstract. Label noise is a primary point of interest for safety concerns
in previous works as it affects the robustness of a machine learning system
by a considerable amount. This paper studies the sensitivity of object
detection loss functions to label noise in bounding box detection tasks.
Although label noise has been widely studied in the classification context,
less attention is paid to its effect on object detection. We characterize
different types of label noise and concentrate on the most common type
of annotation error, which is missing labels. We simulate missing labels
by deliberately removing bounding boxes at training time and study its
effect on different deep learning object detection architectures and their
loss functions. Our primary focus is on comparing two particular loss
functions: cross-entropy loss and focal loss. We also experiment on the
effect of different focal loss hyperparameter values with varying amounts
of noise in the datasets and discover that even up to 50% missing la-
bels can be tolerated with an appropriate selection of hyperparameters.
The results suggest that focal loss is more sensitive to label noise, but
increasing the gamma value can boost its robustness.

Keywords: Safe AI · Deep Neural Networks · Label Noise · Image La-
beling

1 Introduction

The growing success of deep neural network algorithms in solving challenging
tasks resulted in a surge of interest from the safety-critical applications domain.
As stated by recent works, one of the major issues of using such an algorithm in
line with safety standards is the effects of label noise on the output [1–3].

Earlier object detection pipelines consisted of manually engineered feature
extraction together with relatively simple classifiers [4,5]. These systems required
a human to label the different objects for training, and the labeling was done



on the crop level. Although this approach had its challenges, such as mining
negative examples, its behavior is still reasonably well understood due to relying
on a straightforward method.

More recently, the success of convolutional neural networks (CNN) and deep
learning [6] has transformed the domain of object detection. These approaches
outperform traditional techniques by a large margin but are also more data-
hungry at the same time [7–9]. The tedious task of manual labeling of enormous
datasets means there will be faults in the process inevitably.

Popular large object detection datasets include MS COCO [10], PASCAL
VOC [11], and OpenImages [12], containing millions of examples with quality
annotations. The ground truth human annotations are gathered by crowdsourc-
ing, and elaborate reward and evaluation schemes guarantee high quality for
the annotations. However, apart from these large annotation campaigns, many
players, companies, and research groups routinely collect smaller datasets within
their application domains. In such cases, the quality of annotations is often com-
promised due to limited resources. Moreover, even standard benchmark sets are
not error-free, and the influence of erroneous annotations on the system’s safety
requires further study.

The presence of noise in the training dataset can have a severe impact on
the system’s performance. For example, in the video surveillance system, a good
detector would retain the same confidence, box coordinates, and class label over
time. On the other hand, a bad one will be flickering, where the confidence
fluctuates, the coordinates change, and even the class is mislabeled from frame
to frame.

Figure 1 shows the four most common annotation error categories found
in object detection datasets. These categories are (a) missing annotations (false
negatives), (b) extra annotations (false positives), (c) inaccurate bounding boxes
(which would result in low intersection over union (IoU)), and (d) incorrect class
labels. In our experience, the most common error type is the first one, where the
human annotator misses some target objects due to occlusions, small size, a
large number of objects, or simply unclear annotation instructions. The second
most frequent annotation error type is inaccurate bounding boxes, a very natural
error for a human, as it takes more time and effort to pay attention to detail in
every case. The two other types in Figure 1, completely incorrect annotations
and wrong labels, are probably easier for humans to avoid.

The loss functions being a significant differentiator in modern single-stage
detection pipelines and current challenges for annotation quality, inspired us to
study the effect of label noise in object detection with two popular loss functions.
Notably, in this paper, we focus on examining how cross-entropy loss (CE) and
focal loss functions (FL) handle noise in the form of missing labels. We focus on
these losses since the focal loss is commonly used but may suffer from missing
annotations because it puts higher weight on complex samples (hard negatives
and hard positives). Missing bounding boxes in the annotation appear as hard
negatives from the training point of view, and we wish to study their influence
on the resulting accuracy. The main contributions of this paper are:



• We characterize different types of noise present in object detection datasets.
• We provide empirical observations on training single-stage object detectors

with different loss functions and different hyperparameter settings.
• We suggest possible measures to boost the robustness of the object detector

with minimal changes in the network.

Fig. 1. Common types of label noise in object detection. (a) Missing label, the other
chair is not labeled. (b) Incorrect annotation. (c) Inaccurately drawn box, resulting
in low IoU. (d) Wrong classification label, humans instead of chairs. Image from the
Indoor dataset [13].

The remainder of this paper is structured as follows. Section 2 briefly summa-
rizes the related works followed by the review of object detection loss functions
in Section 3. In Section 4, we experimented with multiple scenarios on our hy-
pothesis and analyzed the obtained results. Finally, we conclude this paper with
our findings and future direction in Section 5.

2 Related Works

Willers [1] and Wozniak [2] both provide a list of safety concerns or goals related
to deep learning algorithms. In their works, label noise is mentioned as one of the
primary faults that can affect safety. It is suggested to have a labeling guideline to



mitigate the effect of this fault. However, even with a guideline, manually labeling
a large dataset is prone to noise, as discussed before. Thus, a proper approach
is required to deal with noisy datasets in deep learning systems. Zhang [14]
reviews problems related to the dataset, such as label noise, by surveying over
recent works. According to his work, using a robust loss function and reweighting
samples can help mitigate this issue.

Our topic of label noise in object detection is closely related to the topic of
label noise in image classification, which has been studied more: For image clas-
sification, Frenay and Verleysen [15] have proposed a taxonomy of different types
of noise, studied their consequences, and reviewed multiple techniques to clean
noise and have the algorithms be more noise-tolerant. Li et al. have proposed
BundleNet exploiting sample correlations by creating bundles of samples class-
by-class and treating them as independent inputs, which acts as a noise-robust
regularization mechanism [16]. Lee et al. have proposed CleanNet to detect noise
in the dataset and be used in tandem with a classifier network for better noise
tolerance [17].

Noise in object detection is different from classification because an image can
have any natural number of objects present, anywhere in the image. A label in
object detection is a box with a position, a size, and a class, which adds more
possibilities for noise. It is easier for a human annotator to identify that an
object in a picture is indeed a banana than correctly labeling dozens of bananas
in one image of a cafeteria. The tedious task of doing so might result in the human
annotator skipping some labels. Skipping a label causes label noise in the form of
a missing label. Moreover, the task is often ambiguous when dealing with objects
in a real-world image. Partially occluded objects, reflective surfaces, distance
to the camera, and overcrowded images become relevant consideration points
when labeling for object detection. These problems make the human annotator’s
role more prominent because more mental decisions are required. It also means
that there will be more variation in the annotations, as different humans make
different decisions.

Su et al. [18] have studied the overall process of annotation for object detec-
tion in a crowd-sourced manner. They first divided the task into three different
sub-tasks: (1.) draw a box, (2.) verify the quality of a drawn box, and (3.) verify
a box coverage on a single image. Different people do all these sub-tasks via
Amazon Mechanical Turk (AMT). They concluded that this method produces
good quality annotations.

Russakovsky et al. [19] have studied the human-in-the-loop annotation pro-
cess, where state-of-the-art object detection models are used to detect many of
the objects in the image. Then humans are used for detecting all the objects
that the models are unable to detect. This method is needed as no current ob-
ject detection system is perfect, yet, and their goal is to have every object in the
image annotated adequately. A properly annotated object should have a tightly
fitted box and not an arbitrary margin of non-object space in the annotation.
They conclude that their method of using humans and computer vision together
was better than using either alone.



3 Object Detection Loss Functions

Single-shot detection (SSD) [8] uses both regression loss for bounding box re-
gression and cross-entropy loss for classification. The cross-entropy loss for a
sample with ground truth one-hot-encoded labels y = (y1, y2, . . . , yC) and pre-
dicted class confidences ŷ = (ŷ1, ŷ2, . . . , ŷC) in a C-class classification problem
is defined as

CE(y, ŷ) = −
C∑
c=1

yc log(ŷc). (1)

The focal loss was extended by Lin et al. [20] to handle difficult samples
better. They show that this improvement can result in better accuracy com-
pared to the cross-entropy loss. The focal loss was designed to emphasize hard
positives. It is similar to cross-entropy loss but has a parameterized penalty fac-
tor γ > 0 weighing the influence of each sample based on its detection score.
More specifically, the focal loss for the C-class classification with ground truth
y = (y1, y2, . . . , yC) and predictions ŷ = (ŷ1, ŷ2, . . . , ŷC) is defined as

FL(y, ŷ) = −
C∑
c=1

αc(1− ŷc)γyc log(ŷc), (2)

with the balancing factor αc [20], which is equal to 0.75 for all c ∈ {1, . . . , C} in
all our experiments.

prob

loss

−(1− x)0log(x)

−(1− x)8log(x)

Fig. 2. Visualization of the focal loss function with different values for parameter γ =
0, 1, 2, . . . , 8. The probability of being the ground truth is on the horizontal axis, and
the loss is on the vertical axis. The higher the gamma value, the sharper the focus on
harder cases. With gamma equaling zero, the focal loss is the same as cross-entropy
loss.

In other words, the FL loss differs from the CE loss by the weight term (1−ŷc),
whose effect is to assign a higher weight for samples with low confidence (small



ŷc). γ affects the overall loss by lowering it; primarily well-classified samples
with high confidence yc for the most likely class c will have a negligible loss.
At the same time, more attention is paid to learning the more complicated
cases. Figure 2 demonstrates this scaling and aptly visualizes how the different γ
parameters change the ferocity of the focus on more complicated cases. However,
this loss weighting may have an adverse effect in the presence of label noise. The
missing annotations are viewed as hard positives (non-annotated targets found
by the model with a nonzero likelihood).

4 Experiments and Results

It was observed that sometimes in custom datasets, the focal loss seemed to
produce results that were not as good as the research suggested. The intuition
was formed that the weighting of complex cases, as performed by the focal loss
function, would be more sensitive to label noise. The reason is that if a label is
erroneous, to begin with, it is impossible to get right, so focusing on such a label
leads the model astray and misuses the model capacity.

The experiments consider two questions: (1) how does label noise affect the
two losses, and (2) how do models trained with different γ values tolerate label
noise. For both experiments, we study the performance with three datasets:
first with a small high-quality Indoor dataset, the second uses a large classical
PASCAL VOC dataset, which does contain some annotation errors natively, and
finally, with a single class FDDB dataset. Table 1 contains the characteristics of
these datasets.

In all our experiments, the single-stage object detection (SSD) with Mo-
bileNet v1 [21] backbone network is fine-tuned from MS COCO pre-trained
model for 100K training steps. We experimented only with the missing labels cat-
egory. So, the training dataset has a percentage of randomly missing annotation
boxes.

Table 1. Comparison of Indoor [13], PASCAL VOC 2012 [11] and FDDB [22] datasets
based on source, size, quality of annotation, and usages.

Indoor PASCAL VOC FDDB

Sample Source Indoor scenes Collected online Faces in the Wild
Image Count 2213 17125 2845
Amount of Instances 4500 40000 5171
Number of Classes 7 20 1
Usage Object detection Multi-purpose Face detection



4.1 Noise robustness of the two losses: CE vs. FL

In this experiment, we use six different noise levels: 0%, 10%, 20%, 30%, 40% or
50%, of missing labels. The dropping of the labels was done randomly, but both
networks were using the same training datasets. Also, the noisy datasets are con-
structed incrementally, i.e.,, the 20% noise had all the labels of the 10% dataset
dropped (+10% more), and so forth. The model with both the CE loss and the
FL loss with hyperparameter γ = 2 (as proposed in the original paper [20]) is
fine-tuned for 100K steps, and mAP@.50IoU (mean average precision with 0.5
IoU threshold) is used as a performance evaluation metric.

Indoor dataset— In the first set of experiments, we start training SSD
using pre-trained weight from the MS COCO dataset, where some classes overlap
between the datasets (chair, TV set, . . . ), while others do not (fire extinguisher).
The resulting accuracies are presented in Figure 3a; mAP@0.50 with the CE loss
and the FL loss. Moreover, we show the relative drop in mAP with respect to
noiseless labels in Figure 4. It seems that the accuracy resulting from the FL
loss objective function outperforms the CE loss for 10% – 20% noise levels. The
FL loss is more robust till the 30% noise level and maintains a higher mAP than
the CE loss. However, with the higher amount of label noise (> 30%), FL loss
accuracy plunged rapidly, falling behind the CE loss. For the extremely noisy
(i.e., 50%) training dataset, accuracy from FL loss is 2% lower than that of CE
loss.
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Fig. 3. Relationship between mAP (%) and different amount of noise levels on PASCAL
VOC, and FDBB datasets.

PASCAL VOC dataset— Next, we studied the noise sensitivity on the
PASCAL VOC [11] dataset. The network using the FL loss function performs
better than the alternative, but the accuracy with FL loss decreases more when
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Fig. 4. Relative decrease in mAP (%) with respect to the noise levels in Indoor, PAS-
CAL VOC, and FDDB datasets.

the noise level increases compared to CE loss. Without added noise, FL loss gives
10% higher mAP than CE loss. While the FL loss outperforms the CE loss in
detection performance, it has a higher rate of mAP decrease than the CE loss.
The difference in detection performance gets smaller by increasing label noise.
The drop in mAP from no added noise to 50% label noise is 20.12% in with FL
loss and 12.10% with CE loss.

FDDB dataset— Next, we studied the noise sensitivity on the high-quality
moderate-sized single class dataset, Face Detection Data Set and Benchmark
(FDDB)[22]. As shown in Figure 2c, the network using the FL loss function per-
forms better till the 30% noise label. Adding more noise to the training dataset
causes the accuracy to drop. The performance difference is smaller for lower
noise levels and gets more significant for the noisy cases. The drop in AP from
no added noise to 50% label noise is 18.28% in the FL loss case and 8.03% CE
loss case.

Overall, the two losses seem to have similar behavior with these datasets.
Compared to the FL loss, the CE loss is more robust to increased noise levels.
However, with the VOC dataset, even though the FL loss suffers more for extreme
cases, the overall performance remains higher than the CE loss at all points
shown in Figure 2b.

We speculate that the Indoor and FDDB are relatively easy compared to
VOC, containing fewer small (difficult) bounding boxes. Thus, as long as most
bounding boxes are in place, the FL loss equally weights the true targets and the
hard negatives produced by the missing labels. The more varied and challenging



nature of the PASCAL VOC dataset causes different noise tolerance behaviors
than the smaller datasets.

4.2 Effect of the gamma parameter (γ)

In our second set of experiments, we compare the robustness of the FL loss for
different values of the γ parameter. This time we only ran for three noise levels:
0%, 10%, and 50%. The gamma values tested were γ = 1, 2, . . . , 8. All the other
settings were kept the same as in the previous experiment.

Indoor dataset— The first experiment in this set uses the Indoor dataset;
results on this dataset are presented in Figure 5a. In this dataset, the 10% noise
detection performance is very close to the 0% noise. More interestingly, with
extremely high label noise (50%), the gamma value has a significant impact.
With γ = 0, the accuracy on the clean dataset (0% missing labels) is 18.52%
more than the extremely noisy dataset (50% missing labels). With γ = 8, the
clean dataset mAP is only 5.2% higher than the noisy dataset. The mAP curve
indicates that a higher γ value does not affect the clean dataset while it boosts
the performance in the presence of label noise.
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Fig. 5. Results on Indoor, PASCAL VOC and FDDB datasets with different gamma
values on 0%, 10% and 50% noise levels.

PASCAL VOC dataset— Next, we experiment on PASCAL VOC with
different γ values. The higher values of gamma can be used to offset the effect
of missing labels partially. Like the previous experiment, γ values in the range
4 – 6 have better performance.



FDDB dataset— Experiments result on FDDB with different γ values
is shown in Figure 5c. Results coincide with our previous experiments. With
γ = 0, the difference in performance between clean and extremely noisy datasets
is 18.90%. However, this difference gets smaller by increasing the γ value. With
γ = 8, a clean dataset is only 2% more accurate than a heavily noised dataset.

Generally, with an extreme amount of label noise, increasing the γ value
improves the detection results. Still, the exact γ value and the detection perfor-
mance are dependent on the dataset. This could indicate that maybe the sharp
concentration introduced by the higher γ values can offset the missing labels
in relatively easy datasets. Experiments on these datasets suggest that the ro-
bustness to label noise increases for larger γ values. In these cases, the model
essentially learns from the complex samples only (annotated targets detected
with low confidence and non-annotated targets detected with high confidence).

This is illustrated in Figure 6, which shows the FL loss curves for both
negative and positive examples. Due to the large γ value, the intermediate values
(ŷ ∈ [0.3, 0.7]) behave as a don’t care region, and the model does not learn from
samples falling into this zone. Since all learning is based on complex samples
(similarly to the support vector machine), it will be enough to push all objects
with annotations to the ”don’t care” region. On the other hand, all negative
samples (including missing annotations) can safely reside in this zone, and the
model essentially learns to ignore those.
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Fig. 6. Focal loss with γ = 8 for negative and positive samples with respect to model
prediction confidence.



5 Conclusion

In this work, we characterized different types of label noise present in object de-
tection datasets and explored the sensitivity of loss functions to them. With label
noise being a crucial factor in ensuring the safety of the machine learning algo-
rithm, we made sure to include experiments with large-scale real-world datasets.
More specifically, we experimented on three datasets with varying amounts of
label noise with cross-entropy and focal loss. Experiments suggest that focal loss
suffers more with high amounts of noise, falling behind the cross-entropy loss.
The second aspect studied is the effect of the hyperparameter γ on the sensitivity
to label noise. It was discovered that larger values of γ improve the robustness
to label noise such that extreme gamma values make the model indifferent to
the noise level.

For future work, it would be beneficial to run more varied experiments to
see how the label noise tolerance differs when training the network from scratch
and its effect on system safety. Another point to consider would be running ex-
periments with improved loss functions that are better suited for noisy datasets.
It is also possible to quantify the risk associated with mislabeling by taking a
statistical approach.

All relevant information, data, and codes are published open-access at https:
//github.com/adhikaribishwo/label_noise_on_object_detection.
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ABSTRACT

This work studies the practical implementation of a dis-
tributed computer vision system for people tracking. A par-
ticular focus is on improved data privacy when compared
to the traditional surveillance approaches. This is achieved
by extracting a feature vector from each detected person by
a neural network in real-time in the edge device and trans-
mitting only the feature vector to the cloud, eliminating
privacy-sensitive image data transmission and storage. The
proposed solution is implemented in a network of Raspberry
Pi single-board computers and Intel R© Neural Compute Stick
accelerators. The system is tested in an environment where
multiple edge devices are sending data to the cloud server for
further analysis. In this context, we consider the spectrum
of design and implementation aspects of real-time execu-
tion of multiple neural networks in a capacity limited edge
computing environment.

Index Terms— Computer Vision, Object Detection, Re-
Identification, Neural Network, Edge Computing

1. INTRODUCTION

Computer vision is widely used for various surveillance tasks.
In classical approaches, video streams are transmitted to a
centralized location where data is stored for further analy-
sis. Despite the precautions done to protect the data privacy
in such systems, there is always a theoretical possibility that
unauthorized persons could obtain access to the video data
during the transmission or storage. Such concerns are also
noticed by legislators, for example, in the European Union
the General Data Protection Regulation (GDPR) has become
enforceable at the beginning of 25 May 2018 and it sets strict
demands for collecting personal information, including video
surveillance data. This creates a demand for solutions that are
able to benefit from recent advances in computer vision while
taking into account personal privacy.

In this work, we propose a technical solution that serves
various data analysis needs without compromising the privacy
of the individuals. The solution is based on intelligent camera
devices that process the data on edge, locating people with a

This work was financially supported by Business Finland project
408/31/2018 MIDAS

neural network-based object detector and using another neu-
ral network for extracting abstract features of each individual.
The detected objects’ locations and corresponding features
are sent to the server that collects the data feed from multiple
cameras and stores them for further examination. The ben-
efit of the proposed method is that features generated by the
neural networks will make it possible to combine information
from multiple cameras and time instances for analysis. How-
ever, it is not feasible to reconstruct the original picture from
the feature vector, thus identifying the person as a named in-
dividual will be inherently extremely hard if one has access
only to feature vector data.

The described approach assumes that there is enough
computational power in the camera-equipped edge device
so that we perform required processing with an adequate
frame-rate in order to provide enough data for the analysis
performed on the cloud. In this work, we study the practi-
cal implementation aspects of an edge device for such tasks.
We analyze the computational cost of different deep neural
network-based object detection and feature extraction algo-
rithms on the edge device.

The rest of this paper is organized as follows: After a brief
review of related work in the next section, we start with an
overview of the used hardware and software solution in Sec-
tion 3. The structures of used neural networks and their per-
formance is studied in Section 4 and Section 5. Finally, we
analyze the performance of the total system in Section 6 and
conclude with concise summaries in Section 7.

2. RELATED WORK

Low-cost edge devices with neural network accelerators have
been used for traditional surveillance applications in previous
work. For example, Lage et al. study the use of object detec-
tion neural networks with Raspberry Pi and Neural Compute
Stick [1]. Similarly, Dey et al. experiment with the imple-
mentation of pre-trained classification networks for the appli-
cation of a robot vehicle navigation, and investigate the parti-
tion approaches of the processing between an edge device and
a server [2]. These types of studies do not analyze the imple-
mentation of both object detection and feature generation in
the same edge device. Furthermore, they do not concern the
privacy issues involved with the transmission or storage of
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Fig. 1. System Overview. Key components of each edge de-
vice are camera module, Raspberry PI and Neural Compute
Stick (NCS). Data are sent to the cloud server via WLAN and
cellular connections.

sensitive image data.
Privacy challenges of machine learning based data analyt-

ics have been discussed in, e.g. [3] by Zhao et al.. Authors
argue in favour of the approach in which the analysis is done
on the edge device, reducing the exposure of the personal data
to the cloud servers. While we agree with these statements,
we add that when analysis requires composing information
from multiple edge devices together, sending data to some
centralized location cannot be avoided. In order to protect
privacy, approaches, like described in our work, are required.
Sophisticated Model Inversions Attack (MIA) techniques, as
demonstrated by Fredrikson et al. in [4], are still a potential
threat. However, in our approach as the feature calculation is
done completely on the edge there is no need to expose the
feature generation model to the cloud environment, making
the practical implementation of any MIA strategy very hard.

3. SYSTEM DESCRIPTION

For the experiments, we did design and deploy the edge de-
vice fleet and the cloud server system as illustrated in Figure
1. Edge devices transfer data via WLAN and cellular modem
to the cloud. On the server-side, data from multiple cameras
are stored and analyzed according to the needs of the use case.
For example, the feature vector data can be used for cluster-
ing all observations representing the same person. When ana-
lyzing timestamp and position information within a particular
cluster, information about the duration of the visit and per-
son’s movements in observed locations can be retrieved.

In the physical set-up targeted in this work, devices need
to be affordable, small, and easy to install at the location of
use. Also, passive cooling is used since we want to avoid
any disturbance caused by noise from the fan. Used hard-
ware with the enclosure and typical installation position can
be seen in Figure 2. The main components of the devices are
Raspberry Pi 3 Model B+ single-board computers, equipped
with 8 Mpix Raspberry Camera module V2 and Intel R© Neu-
ral Compute Stick 2 (NCS) accelerator.

NCS is a fanless add-on accelerator that is connected to

Fig. 2. Hardware enclosure and typical installation position.

the host system via the USB interface. It is built around the
MyriadTMX Vision Processing system on chip (SoC) [5]. The
chip contains 16 vision processing units (VPU) that are uti-
lized for the acceleration of neural network processing. Pro-
gramming happens with the OpenVINO [6] toolkit that offers
SW tools to convert neural network models trained with pop-
ular frameworks to a format suitable for the NCS.

In our implementation, object detection is performed by
neural network running on the NCS. The feature vector rep-
resenting the detected person is computed by another neural
network, either on ARM CPU of Raspberry or on the NCS.
The Deep Neural Networks module of the OpenCV library
[7] is utilized for fast inference on CPU.

4. OBJECT DETECTION

As the first step, the system needs to find bounding boxes
associated with all persons in the camera view. For object
detection, two commonly used neural network solutions are
the Single Stage Detection (SSD) [8] and the Regions-CNN
(RCNN) [9]. These two structures represent two widely used
types of architectures, where the two-stage R-CNN is tradi-
tionally perceived as more accurate, especially with small tar-
gets. On the other hand, the single-stage SSD type networks
are simpler, reach faster execution time, and still reach a rea-
sonable accuracy when the targets are not exceptionally small.
SSD can use different backbone networks for feature extrac-
tion, and the choice of backbone is an important design pa-
rameter balancing the trade-off between accuracy and speed.

When choosing which object detection architecture to use,
we did initial speed tests comparing SSD and Faster-RCNN
networks on the target architecture. Due to the limited com-
putational budget, we select SSD framework for further study.
We do analyze more in details the performance of 3 differ-
ent SSD architecture variants: SSD with MobileNetV1 [10]
and MobileNetV2 backbones and lighter version of SSD, i.e.,
SSDLite, with MobileNetV2 backbone[11].

As a starting point, we use pre-trained weights from
models trained on MS COCO dataset [12], obtained from
TensorFlow model zoo [13]. Fine-training of networks was
done with person class images from OpenImages dataset [14].
We downloaded 76k(76561) images from the train and 1.8k
(1874) images from the validation repository of OpenImages
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Fig. 3. Comparison of different SSD implementations run-
ning on NCS. Each solid line shows the effect of different
depth multipliers (1.0, 0.75, 0.5, 0.25), while input size and
network architecture do remain constant. The impact of CPU
clock frequency (due image prepossessing on CPU and USB
transfer speed) is seen in upper and lower graphs.

dataset person class, filtering occluded, truncated, depicted,
and images taken from inside. The aim is to create a rep-
resentative network capable of detecting persons in a wide
range of different scenarios.

Multiple network configurations are analyzed. We test
networks with input sizes of 300x300, 200x200 and 100x100.
We also experiment with four values for depth multiplier (α
= 1, 0.75, 0.5, 0.25), which impacts the number of channels
used in layers of SSD. Figure 3 shows the performance of
different architectures running on NCS. It is observed that the
choice of input resolution and depth multiplier are giving a
large set of trade-off options between accuracy and compu-
tational costs. Differences between network architectures are
smaller, but it is noted that MobileNetV1 is faster at the ex-
pense of somewhat lower accuracy. We do consider two op-
erating points for CPU: 1400 MHz ”performance” and 600
MHz ”power-save” mode. CPU frequency impacts the total
performance of the detection via USB transfer speed and CPU
computations used for image pre-processing, such as scaling.

5. FEATURE EXTRACTION FOR PEOPLE
TRACKING

As we want to associate detected people across multiple cam-
eras and moments time, we choose a person re-identification

Images

Backbone

Global Average Pooling

Batch Normalization

Fully-Connected
Cross-Entropy Loss

Triplet Loss

Inference

Fig. 4. The pipeline of the person re-identification algorithm
in [15]. Two loss objectives are simultaneously optimized
in the training procedure: triplet loss and cross-entropy loss.
Subsequently, the output of the batch normalization layer is
selected as the embedded features.

neural network as a means to provide features that are sent
to the server. We adopt the person re-identification algo-
rithm [15] trained on the Market-1501 [16] dataset.

Figure 4 illustrates the pipeline of the aforementioned
method. A backbone model such as MobileNet [10] or
ResNet50 [17] computes the feature maps of the input im-
ages. The backbone model is initialized with pre-trained
weights on the ImageNet [18] dataset. Afterward, the global
average pooling layer calculates the mean value of each chan-
nel. The output is processed by a batch normalization layer
followed by a fully-connected layer that produces the prob-
abilities of each identity. The triplet loss function [19] is
applied to the output of the global average pooling layer,
while the categorical cross-entropy loss function takes the
output of the fully-connected layer. In the inference stage,
the output of the batch normalization layer represents the em-
bedded features of the images, and the cosine distance metric
is employed to calculate the distance between the feature
vectors of two images. Several strategies are implemented
to prevent the overfitting issue, namely, random erasing data
augmentation [20], label-smoothing regularization [21] and
`2 regularization.

For our experiments, we choose a re-identification net-
work with MobileNetV2 [11] backbone as its computational
complexity is suitable for real-time implementation in the
edge device. We study the effect of 4 different input sizes
(160x160, 128x128, 96x96) and 4 different depth multiplier
(1.4, 1.0, 0.75, 0.5) for the accuracy and processing speed.
Results are shown in Figure 5 that illustrates the speed vs.
accuracy of different network configurations in relation to the
underlying processing system (CPU or NCS) and clock speed
(1400Mhz or 600Mhz).

Implementation options are giving a wide range of trade-



0 10 20 30 40 50 60

0.5

0.6

0.7
CPU

A
cc

ur
ac

y
[m

A
P]

160x160
128x128

96x96
600Mhz

1400Mhz

20 30 40 50 60 70 80

0.5

0.6

0.7
NCS

speed [objects/s]

A
cc

ur
ac

y
[m

A
P]

Fig. 5. Comparison between the implementations of the re-
identification. Each solid line shows how different depth mul-
tipliers (1.4, 1.0, 0.75, 0.5) do impact to the performance,
while resolution remains fixed. Upper graph shows perfor-
mance on CPU and lower on NCS.

offs between speed and accuracy. The depth multiplier has
a significant impact on both variables. With larger networks,
the relative difference between CPU and NCS implementa-
tions is bigger compared to networks with low resolution and
small depth multiplier, this indicates that if high accuracy is
needed NCS is preferred, but in use case requiring less accu-
racy CPU is also a viable option.

6. SYSTEM PERFORMANCE

The performance of the system depends on the combined ex-
ecution time of object detection and re-identification. As seen
in previous chapters, choices with hyper-parameters are giv-
ing different trade-offs between accuracy and speed. The final
choice is dictated by the use case. For example, when track-
ing people over a large number of cameras, high accuracy re-
identification network is needed. On the other hand, in the set-
up where there is a need to perform a single-camera tracking-
by-detection scheme, a simpler feature generation network is
sufficient, but a higher frame-rate for object detection is pre-
ferred. Likewise, for example, the object detection accuracy
requirements are impacted by the assumed distance from per-
son to the camera. At small distances, where object occupies
a large area from the image, lower input resolution might be
sufficient.

In our implementation, the total computing load is divided
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Fig. 6. Examples of the total system performance with differ-
ent implementations of object detection and re-identification
networks. All networks are running on NCS. Solid marker in-
dicates 1400Mhz CPU frequency and open marker 600Mhz.

between ARM CPU and NCS. While NCS can do only neu-
ral network acceleration, CPU needs also take care of part of
the pre-processing of the images and serving them over the
USB to NCS. In addition to that, it needs to run the applica-
tion tasks such as communication with the cloud server. In
a such set-up, we advise running all networks in a dedicated
accelerator.

Figure 6 illustrates measured system performance in con-
ditions in which all networks are running on NCS. The graph
shows various configurations: ’Accurate’, where the SSD and
re-identification networks with the highest mAP value are
running together, ’Fast’, in which fastest networks are exe-
cuted and finally two trade-off configurations combining fast
detector and with accurate re-identification and vice versa.
The object count dominates the total processing time and
restricts the available maximum frame-rate.

7. CONCLUSIONS

Our experiments demonstrate the feasibility of performing si-
multaneous object detection and feature generation using low-
cost off-the-shelf hardware, enabling person tracking with im-
proved privacy. We show that there is a large design spectrum
for choosing optimal architecture for such tasks and invite fur-
ther research efforts for privacy-aware computer vision. As
technology advances rapidly, it is anticipated that even more
processing power will be available for small edge devices.
This makes the approach described in this work attractive for
a wide range of real-world use cases.
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Abstract—Facial analysis is an active research area in computer
vision, with many practical applications. Most of the existing
studies focus on addressing one specific task and maximizing its
performance. For a complete facial analysis system, one needs
to solve these tasks efficiently to ensure a smooth experience.
In this work, we present a system-level design of a real-time
facial analysis system. With a collection of deep neural networks
for object detection, classification, and regression, the system
recognizes age, gender, facial expression, and facial similarity for
each person that appears in the camera view. We investigate
the parallelization and interplay of individual tasks. Results
on common off-the-shelf architecture show that the system’s
accuracy is comparable to the state-of-the-art methods, and the
recognition speed satisfies real-time requirements. Moreover, we
propose a multitask network for jointly predicting the first three
attributes, i.e., age, gender, and facial expression. Source code
and trained models are available at https://github.com/mahehu/
TUT-live-age-estimator.

Index Terms—face detection, face recognition, facial similarity,
real-time system

I. INTRODUCTION

Human facial analysis is one of the widely studied topic in
computer vision that includes face verification [1], [2], head
pose estimation [3], [4], facial expression recognition [5], [6]
and age estimation [7], to name a few sub-domains. While
computer programs have traditionally been unable to analyze
facial images, humans are very good at spotting even the
smallest differences. With the surge of deep learning techniques,
algorithms have surpassed human accuracy in most of the above
tasks. More recently, deep learning has opened new avenues
for applications of real-time facial analysis, such as facial
identification [1], [2] and security surveillance [8].

In the field of facial image analysis, the majority of works
focus on improving the accuracy of a specific task. Less
attention is paid to investigate the computational complexity [9]–
[11], in particular at the system level, where the architect needs
to pay attention to the functionality of the entire system as well
as that of the individual components; simultaneously optimizing
for prediction accuracy, inference speed, memory footprint,
parallelization as well as user experience (i.e., the system
should at least appear smooth although some components
might operate at below real-time speed).

The straightforward approach would sequentially first detect
all faces, then estimate their age, gender, facial expression,
and facial similarity; show the result on the screen and start
over with the detection. However, the refresh rate on screen
would be dictated by the sum of execution times of individual
components. On the other hand, users are less sensitive to a
slow refresh rate of age estimates than the slow refresh rate

Fig. 1. Our real-time facial recognition system in action. It detects human
faces on a frame captured by a webcam, recognizes age, gender, and emotion
in real-time. Additionally, it shows the most similar appearing face obtained
from the similarity search network.

of the display itself. Therefore, the system has to prioritize
the tasks differently while maximizing the performance and
minimizing idle times.

Our system consists of a screen, a camera, and a computer,
and it estimates the age, gender, and facial expression of all
faces seen by the camera. In addition to these functions, the
most similar-looking face from a database of celebrity faces
is shown next to the detected face. Apart from serving as an
illustrative example of modern human-level machine learning
for the general public, the system also highlights several
common aspects in real-time machine learning systems. The
subtasks needed to achieve these recognition results represent
a wide variety of tasks, including (a) face detection, (b)
age estimation, (c) gender prediction, (d) facial expression
prediction, and (e) image retrieval. Moreover, all these tasks
should operate in unison, such that each task will receive
enough resources from a limited pool.

Overall, we make the following contributions:
• We present a detailed system-level architecture for esti-

mating several attributes from facial images.
• We show the real-time performance of each component

of the proposed architecture and its smooth functionality
even on a moderate-resourced computing platform.

• We release source code and trained models, with detailed
instructions for deployment.

The structure of the rest of the paper is as follows. In
Section II we describe the system level multi-threaded ar-
chitecture for real-time processing. This is followed by a
detailed description of individual components of the system
in Section III. Next, we report the experimental setups

https://github.com/mahehu/TUT-live-age-estimator
https://github.com/mahehu/TUT-live-age-estimator
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Fig. 2. Sequence diagram of the proposed real-time facial analysis system in (a) and software architecture of our system in (b).

together with datasets and performance measurement metrics in
Section IV. We present experimental results of each recognition
component in Section V and finally, we discuss the benefits
of demonstrating the potential of modern machine learning to
both the general public and experts in the field.

II. SYSTEM LEVEL FUNCTIONALITY

The challenge in real-time operation is that there are multiple
components in the system, and each uses a different amount of
execution time. The system should be designed such that the
operation appears smooth, which means that the most visible
tasks should be given higher priority in scheduling.

The implementation is multi-threaded, as illustrated in Fig. 2.
Each thread operates asynchronously, with recognition threads
polling for new frames to process whenever they are idle. The
system is controlled by the controller & visualization thread,
which receives new frames from the camera via the dedicated
grabber thread. The controller thread also stores the frames in a
buffer with each frame associated with flags, whether they have
been processed by each of the threads. Finally, it visualizes
by showing the live video as well as overlay the most recent
recognition results to the user in real-time. The asynchronous
threading structure also allows execution on dedicated platforms
(e.g., detection running on the CPU and recognition on the
GPU). Also, it enables straightforward process prioritization
by launching multiple recognition threads for the same task.

A. Frame Capture

The recognition process starts from the grabber thread,
which is connected to a camera. The thread receives video
frames from the camera for feeding them into a memory buffer
located inside the controller thread. At grab time, each frame
is wrapped inside a class object, which holds the necessary
metadata: a time-stamp and flags indicating whether each of
the processing stages (face detection, attributes recognition,
and similarity search) has been applied on the frame.

B. Face Detection

The first processing step in the pipeline is to find all faces
in the input frame. The detection is executed in a dedicated
thread, which operates asynchronously, continuously requesting
new non-processed frames from the controller thread. The
detection algorithm is discussed in detail in Section III-A.
Finally, the coordinates of the bounding boxes of all found
faces are sent to the controller thread. The controller thread
stores the locations and matches each new face with all face
objects from the previous frames using straightforward centroid
tracking. Tracking allows the system to temporally average the
estimates (age, gender, and smile) for each face over a number
of recent frames to improve the resulting accuracy.

C. Facial Attributes Recognition

The recognition thread is responsible for assessing the age,
gender, facial expression, and facial similarity of each face
crop found from the image. Like the detection thread, the
recognition thread also operates in an asynchronous mode,
requesting new non-processed (but face-detected) frames from
the controller thread. When a new frame is received, the thread
first aligns the face with a face template. After alignment, we
pass each aligned face to separate networks: age, gender, and
expression recognizer or a multitask and a similarity search.

Typically, the networks executed on the face crops are slower
than the detection network. On the other hand, the amount of
time grows linearly with the number of detected faces in the
scene. Therefore, in order for the system to appear fast and
responsive, these tasks should run in the background and only
refresh when each task finishes. More specifically, we refresh
the camera view and face detection in real-time but update the
recognition results at less than the real-time rate. Moreover,
the recognition thread prioritizes the facial expression task
over others because age, gender, and facial similarity can be
assumed to be constant, while users expect a quick response
to their expressions.



The system is implemented using the TensorFlow and
OpenCV libraries. The proposed facial analysis architecture
can run on various hardware configurations, exploiting either
CPU or GPU hardware. As shown in Section V, common
desktop hardware reaches real-time speed both on CPU and
GPU. However, if the camera resolution, detector type, or input
resolution are changed, then a GPU can be used instead.

III. SYSTEM COMPONENTS

A. Face Detection

Face detection is the first step for facial recognition systems,
where the location of the face is extracted from the given
image. We design a neural network based face detector
trained using benchmark face datasets. The detectors are not
initialized from scratch but fine-tuned from existing pre-trained
weights. We experimented with several models from two neural
network based detection model categories: single-stage and
two-stage detection networks. The single-stage Single Shot
Detector(SSD) [12] requires only a single pass through the
network with the image as the input and target bounding
boxes with respective confidences as the outputs. The two-
stage Regions Convolutional Neural Network (RCNN) [13]
operates in two stages: a region proposal network proposes
candidate object locations, followed by a classifier that classifies
the proposals to target categories.

These two structures represent two widely used architectures,
where the two-stage RCNN is traditionally perceived as more
accurate, especially with small targets. On the other hand, the
SSD type networks are simpler, reach faster execution time,
and still achieve a reasonable accuracy when the targets are
not exceptionally small. However, recent improvements [14],
[15] in single-stage detectors have brought single-stage and
two-stage architectures closer to each other, both in terms of
accuracy and execution speed.

SSD model together with feature extractor networks such
as MobileNetV1 [9] and MobileNetV2 [10] are popular
for faster and light-weight object detection. MobileNetV1
introduced a parameter α called width multiplier to build
a smaller and computationally efficient model. This width
multiplier has the effect of reducing computational cost and
the number of parameters quadratically by roughly α2 times.
MobileNetV2 introduced a mobile-friendly variant SSDLite
that replaces regular convolutions with separable convolutions
in the SSD prediction layers, reducing both parameter count
and computational cost.

B. Alignment

We align the faces in two stages. The first stage locates
a set of facial keypoints from the face crop: eyes, nose, and
the corners of the mouth. In the second stage, we find an
affine mapping between these five keypoint locations and
the corresponding template of five keypoints. This improves
accuracy since the recognizers always see the eyes, mouth,
and other facial elements in fixed locations, and require less
effort in understanding the context where facial features are
located. This also enables the use of smaller networks, which

Fig. 3. An example of five-point facial keypoint on a cropped face region
(left) and keypoint template (right). Symmetric keypoints are in blue dots, and
the 5 referenced true keypoints are highlighted with orange color.

compensate for the added computation due to the alignment
procedure.

Keypoint Detection—The intention of aligning the faces to
fixed coordinates is that this should improve the prediction
accuracy. To this aim, we first find the keypoints for each
face detected by the detector. We use five facial keypoints for
normalizing the face location: eyes, nose, and the corners of
the mouth, as illustrates in Fig. 3. Among the accurate and
lightweight keypoint detection techniques, we consider regres-
sion forests of Kazemi et al. [16] and a convolutional neural
network, where both receive the face crop as input and output
the predicted x-y-coordinates of the five keypoints. We design
the convolutional network according to the keypoint location
branch of the O-Net [17]; consisting of four convolutional
layers and two fully connected layers. The facial keypoint
detector is trained from scratch on AFLW dataset [18].

Affine Mapping—The detected keypoints are aligned to a
set of template keypoints. The template is obtained from the
keypoints of a randomly selected sample face from the dataset.
However, we normalize the template such that the keypoints
are horizontally symmetric with respect to the centerline of the
face. This is done in order to allow training set augmentation by
adding horizontal flips of each training face. More specifically,
we manually marked symmetric pairs of keypoints and averaged
their vertical coordinates and distances from the horizontal
center location as illustrated in Fig. 3. Finally, the resulting
set of coordinates was scaled to fit the network input size of
224× 224 pixels, leaving 10% margin at the bottom edge and
20% margin at the other edges.
Face Alignment—Instead of the simple approach of using the
full affine transformation with least squares fit, we choose to
use a more restricted similarity transformation allowing only
rotation, scale, and translation, but not shearing. This is due to
the possible distortion of the facial shape and the subsequent
degradation of the estimation performances.

The similarity transformation H that maps 2D coordinate
points u ∈ R2 7→ v ∈ R2 with translation t = (tx, ty)

T ,
scaling s ∈ R+ and rotation matrix R with rotation angle
θ ∈ [−π, π] is given by

v = Hx =

[
sR t
0T 1

]
u =

s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

u (1)



Estimation of the transformation parameters— R, t and s— can
be obtained from the vector cross product of point correspon-
dences in homogeneous coordinates [19]. Given x-y-coordinates
of detected keypoints ui = (xi, yi, 1)

T and corresponding
template locations vi = (x′i, y

′
i, 1)

T for i = 1, 2, . . . , P (with
at least P = 2 correspondences), the least squares solution for
H can be obtained from the equation

vi ×Hui = 0. (2)

Substituting Eq. (1) into Eq. (2), the system is further simplified
to [20]

[
−yi −xi 0 1
xi −yi 1 0

]
s cos θ
s sin θ
tx
ty

 =

[
−y′i
x′i

]
, (3)

which can be solved by the singular value decomposition [19].
Finally, we construct the similarity matrix H by inserting the
four solved scalar unknowns into it.

C. Age Estimation

Age estimation is commonly treated as a regression problem.
However, in our system, we treated this as a classification task
as our system predicts ages among 101 classes. The network
is initialized using ImageNet [21] pre-trained weights and
fine-tuned in two stages: first with the large but noisy 500K
IMDB-WIKI dataset [22] and then using the small but accurate
CVPR2016 LAP challenge dataset [23].

D. Gender and Expression Recognition

The gender recognition network is trained from scratch in
two stages: first with the 500K IMDB-WIKI dataset and then
fine-tuned with the CVPR2016 LAP challenge dataset, same
as in the age recognition step.

In our system, we focused only on smile recognition, a binary
classification task, detecting smile and non-smile. The smile
recognition network is initialized with ImageNet pre-trained
weights and fine-tuned with Genki4k dataset [24].

E. Facial Similarity Search

In addition to the age, gender, and facial expression, the
fourth analysis task integrated into the system is the facial
similarity search. It is currently implemented for demonstrating
celebrity search, i.e., the program holds a database of celebrity
faces and displays the one whose face has the most similar
appearance to the person in front of the demo system. Alterna-
tively, this functionality could be altered to keep track of users
using a dynamic database (persons are added to the database
every time they are seen) instead of a fixed database (a static
collection of celebrities).

The facial similarity search is implemented in two stages:
(1) the first stage computes a feature vector from the facial
crop using a convolutional network, and (2) the second stage
performs the nearest neighbor search among the database of
precomputed feature vectors from celebrity faces. We use the
FAISS implementation from Facebook [25], since it is widely
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Fig. 4. The architecture of our multitask classification network. The network
is able to classify age, gender, and smile attributes for a given image.

adopted, provides an interface in Python, and satisfies the
real-time speed requirement even with large databases.

We adopt a person re-identification framework [26] to find
the most similar face from a collection of celebrity faces. The
backbone models are initialized with ImageNet pre-trained
weights, and a global average pooling layer is appended to
squeeze the spatial dimensions. Several data augmentation
policies are applied to make the model more robust, including
random flipping, cropping, and random erasing [27]. At the
early stage of the training, the learning rate starts from a
relatively low value and increases gradually. Additionally, the
learning rate gets reduced to one-tenth once the performance
on the validation split plateaus.

F. Multitask Network

We experimented with a single multitask network architec-
ture shown in Fig. 4 for age, gender, and smile predictions.
The multitask network utilizes a transfer learning approach;
backbone network (ImageNet trained) weight is used to fine-
tune on the age, gender, and smile training data. The backbone
network can be any neural network for the classification task.
The last layer of the network is removed, the global average
pooling layer is added, and the output from the pooling layer
is split into three branches. The fully connected layers, each of
dimension 512 is added and SoftMax of different dimensions
is applied for task-specific output branches.

Our multitask network inference time is almost identical to
individual classification networks; hence this network is about
three times faster than the individual networks for age, gender,
and smiles recognition tasks, as reported in Table V.

IV. EXPERIMENTS

A. Datasets

AFLW— The Annotated Facial Landmarks in the Wild
(AFLW) [18] is a large-scale dataset of (25K) face images
collected from Flickr. It has 21 landmarks annotations per face.
We use this dataset to train 5 – keypoint set detection.
CelebA— The CelebFaces Attributes (CelebA) [28] is a large-
scale face attributes dataset containing more than 200K celebrity
images from 10,177 identities. It has 5 landmark locations and
40 binary attribute labels per facial image.



TABLE I
COMPARISON OF DIFFERENT DETECTION MODELS FOR FACE

DETECTION WITH DIFFERENT INPUT SIZES.

Resolution AP AP FPS FPS FPS
0.5:0.95 @0.5 TF-CPU TF-GPU OpenCV

Faster RCNN ResNet101
300x300 0.747 0.945 1.84 7.62 1.09
240x180 0.707 0.914 1.93 8.18 1.20
200x200 0.693 0.907 1.98 8.30 1.21

SSD MobileNetV1 α = 1
300x300 0.744 0.945 32.52 87.29 39.36
240x180 0.684 0.868 51.60 105.46 70.09
200x200 0.683 0.839 49.96 107.54 71.42

SSD MobileNetV1 α = 0.25
300x300 0.695 0.909 60.50 148.77 140.95
240x180 0.647 0.895 81.29 156.62 239.59
200x200 0.650 0.887 78.21 158.20 249.72

SSDLITE MobileNetV2 α = 1
300x300 0.764 0.952 28.46 79.94 36.47
240x180 0.728 0.936 41.18 106.98 63.29
200x200 0.730 0.934 40.50 109.47 64.79

SSDLITE MobileNetV2 α = 0.25
300x300 0.733 0.936 43.09 118.29 70.58
240x180 0.704 0.925 60.43 129.25 125.55
200x200 0.679 0.913 64.01 131.77 131.22

ChaLearn LAP— We use the CVPR2016 competition variant,
consisting of 7,591 facial images with human-annotated ap-
parent ages and standard deviations taken in non–controlled
environments with diverse backgrounds.
Genki-4k— The MPLab Genki-4k [24] contains 4,000 images
with two class expressions (smile or non-smile) labeled by
human and head-pose labels of the faces determined by
automatic face detector.

B. Evaluation Metrics

AP—The Average Precision (AP) metric computes the average
precision overall detection thresholds. The sensitivity of the
detector can be adjusted using a detection threshold set by
default at 0.5. As the sensitivity of detection may be adjusted
at the inference process, we also average the class-wise AP’s
over all classes to produce the mean AP (mAP).
MAE—The Mean Absolute Error (MAE) metric computes the
average error overall prediction. We used MAE to measure the
error (in years) at the age prediction stage.
Accuracy—Accuracy is the fraction of correctly classified
instances among the total number of instances.
CMC rank-k accuracy—Given a query sample, the accuracy
is set to 1 if the top-k gallery samples contain samples that
have the same identity as the query sample, and 0 otherwise.
The CMC rank-k accuracy is obtained by averaging the results
of all query samples.

V. RESULTS AND DISCUSSION

A. Face Detection

For face detection, we use faster RCNN, with ResNet101
backbone and variants of SSD, with MobileNet backbones with
three different input sizes. The network inference speed is tested

TABLE II
KEYPOINT DETECTION

PERFORMANCE.

Error FPS
rate(%) CPU

Dlib 2.89 17.49
CNN 1.04 18.25

TABLE III
PERFORMANCE IN FACIAL SIMILARITY

USING THREE BACKBONES.

Network mAP rank-1 rank-5

MobileNet 0.782 0.940 0.970
VGG16 0.813 0.952 0.973
ResNet50 0.822 0.953 0.973

on Tensorflow CPU and GPU, and OpenCV environments,
illustrated in Table I. The faster RCNN ResNet101 network
in all experiments gives slightly higher AP than SSD models.
However, the computation complexity of RCNN models is high,
i.e., lower FPS compared to one-stage networks. Experiments
show that with α = 0.25, detection performance is about 3%
less accurate while increasing inference speed about 1.5 times.

For all experimented networks, optimal detection perfor-
mance is obtained by larger input size (i.e., 300 × 300),
while best FPS is obtained with smaller input size (i.e.,
200× 200). With a smaller square input size, using OpenCV
at inference always guarantees the best inference speed. If
detection accuracy is not the top priority, using a small value
of the α, smaller input size, and lighter model is suitable for
faster and memory-efficient detection.

We measured the performance of two keypoint detection
methods on the AFLW dataset. During the training, keypoint
detection models were optimized based on the detected facial
area with ground-truth keypoint labels.

Experiments on O-Net [17] based CNN alignment gives
better alignment accuracy and inference speed as shown in
Table II.

B. Facial Similarity

Our facial similarity system aims at finding the most similar
face, and the rank-1 accuracy is a preferable evaluation metric.
Table III shows the mAP, rank-1 accuracy, and rank-5 accuracy
of facial similarity models trained with categorical cross-
entropy loss on the aligned images from the CelebA dataset.
The rank-1 accuracy of MobileNet reaches 94.0% which
is slightly inferior to VGG16 and ResNet50, while using
MobileNet is computationally lightweight.

C. Age, Gender and Expression Recognition

Table IV shows the accuracies of the different tasks included
in our system. The speed test of each task on two different
environments indicates that in the same environment, there
is no significant difference between the network in terms of
inference speed. However, the multitask network appears better
considering the total inference time for three tasks.

The experimental results on our multitask network for age
estimation, gender, and smile recognition with different back-
bone networks are reported in Table V. The best performing
multitask network gives 5.35 years age MAE which is slightly
higher than the best performing individual age network. Also,
gender and smile accuracies obtained from the best performing
multitask network are slightly less accurate than the individual
networks. EfficientNet [11] networks give better age MAE and



TABLE IV
ACCURACIES AND INFERENCE SPEED AT DIFFERENT STAGES IN OUR

SYSTEM. THE DEPTH MULTIPLIER α = 1.0 IS USED IN ALL
MOBILENETV1 NETWORKS.

Stage
Network Accuracy FPS

CPU
FPS

1050 TI
FPS

1080 TI

Age
MobileNetV1 4.9 MAE 31.61 148.90 147.44

Gender
MobileNetV1 88.3% 31.48 150.45 149.75

Smile
MobileNetV1 87.2% 31.46 148.84 148.78

Multitask
MobileNetV1

5.67 MAE
84.2% Gender
83.6% Smile

29.80 147.06 147.20

Multitask
EfficientNetB0

5.35 MAE
87.5% Gender
86.0% Smile

25.61 143.35 144.24

TABLE V
PERFORMANCE COMPARISON OF THE MULTITASKING
NETWORK WITH DIFFERENT BACKBONE NETWORKS.

Network Age Gender Smile FPS
MAE Acc(%) Acc(%) CPU

VGG16 7.20 84.0 84.1 27.75
ResNet50 6.42 82.1 81.2 27.06
ResNet18 6.02 82.4 82.8 29.63
MobileNetV1 5.67 84.2 83.6 29.80
EfficientNet B0 5.35 87.5 86.0 25.61
EfficientNet B1 5.07 87.8 86.8 22.72
EfficientNet B7 4.37 89.5 87.3 14.63

recognition accuracies, but they are computationally expensive.
As our computational budget is limited, and we cannot use a
combination of many networks.

We can set up a system with a combination of a lighter
detection model and a faster multitask network if the network
accuracies are not the top priority. This way, real-time inference
speed can be achieved on the CPU while slightly compromising
each task’s accuracy.

VI. CONCLUSION

We present a system-level design of a human facial analysis
system with a multi-threaded architecture to reach real-time
operation on resource-limited devices. We describe individual
components of our system, integrating several standard machine
learning components with an extensive set of experiments
on each task. Users can switch specific task networks from
the list of available options on the fly. The demo system
has been presented several times in public locations. It has
shown its value in illustrating the potential of modern machine
learning in an easy-to-approach use case working on many
levels. Moreover, this system can be used in the surveillance
system by adding an alarm function that triggers once the
detected face is matched with the suspect’s faces on the query
dataset. Additionally, the system can be used as a reference
and baseline for related applications.
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Abstract: In situational awareness, the ability to make
predictions about the near future situation in the area
under surveillance is often as essential as being aware
of the current situation. We introduce a privacy-preser-
ving instance-based prediction method, where a path
library is collected by learning earlier paths of mobile
objects in the area of surveillance. The input to the pre-
diction is the most recent coordinates of the objects in the
scene. Based on similarity to short segments of currently
tracked paths, a relative weight is associated with each
path in the library. Future paths are predicted by computing
theweighted average of the library paths.We demonstrate the
operation of a situational awareness system where privacy-
preserving data are extracted from an inexpensive computer
vision which consists of a camera-equipped Raspberry PI-
based edge device. The system runs a deep neural network-
based object detection algorithm on the camera feed and
stores the coordinates, object class labels, and timestamps
of the detected objects.We used probabilistic reasoning based
on joint probabilistic data association, Hungarian algorithm,
and Kalman filter to infer which detections fromdifferent time
instances came from the same object.

Keywords: path prediction, people tracking, probabilistic
data association, instance-based learning, computer vision

1 Introduction

The current developments in camera technologies and deep-
learning-based signal processing have made computer
vision systems cost-effective and feasible options for var-
ious surveillance tasks. In many applications, the ability
to make predictions about the near future situation in
the area under surveillance is as essential as being
aware about current situation. For example, the security
of the working environment of mobile machinery could
be improved by a vision system that automatically detects
objects in the area, predicts locations of the mobile
objects, and determines how probably some parts of the
area will be occupied in the near future. The ability to
predict future locations allows, e.g., prediction of pos-
sible congestion in crowded areas or observation of aty-
pical movement behaviors. For the operator of mobile
machinery, the timely warnings provided with the help
of these kinds of predictions could allow extra time to
react when nearby mobile objects are about to enter to
area of safety risk by approaching too close.

In this article, we introduce an instance-based pre-
diction method, where a path library is collected by
learning earlier paths of mobile objects in the area of
surveillance, which preserves privacy of the tracked people.
Many existing computer vision systems for surveillance rely
on transmitting or storing video data to servers for further
analysis. This compromises personal privacy of the people
in the area. In our method, only position coordinates of the
detected moving objects and the detection timestamps need
to be extracted from the camera data. Any data that might
identify the individuals are not stored or saved to the server.

We demonstrate the operation of a situational aware-
ness system that uses only privacy-preserving data extracted
from the computer vision system to track paths, learn the
path library, and predict paths with the path library. Our
system uses the limited set of data to answer the following
questions: Are there people in the surveillance area? If there
are, where are they and what kind of paths are they taking?
Where will they be located, and which parts of the area will
probably be occupied in the near future?
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This article is organized as follows. Section 2 gives a
brief summary of the reported work related to the topic
and contents of this article. In Section 3, signal processing
and algorithmic methods are described: processing of the
camera-based observations to position coordinates, path
tracking from time tagged coordinate samples, construc-
tion of the path library from the tracked paths, and using
the recorded paths from the path library to predict the
future paths of the moving objects in the camera scene.
Section 4 describes the experimental setup to demonstrate
the path prediction method, and finally in Sections 5–7 the
results are reported and discussed and conclusions of the
work are given.

2 Related work

The extension of Kalman filter (KF) techniques to predic-
tion is a well-known approach [1]. Typically, the role of
the KF in prediction is to propagate the system’s state
estimate and its covariance in time using the system’s
dynamic model that is represented in the form suitable
for KF propagation equations. In some applications, the
initial data sequence from the system is processed with
the KF to obtain an accurate estimate of the initial state,
from which the prediction can be started. For example,
this approach is used in ref. [2] to predict the orbits of
navigation satellites for 4 days ahead. Similarly, in our
work we use the KF for initialization of both the library-
based prediction and the KF prediction. However, the
used models are different and in our work, other sup-
porting methods, such as object detection and data asso-
ciation (DA), were required.

For pedestrian motion prediction from video stream,
Schöller et al. [3] compared the prediction accuracy of
simple constant velocity model without random pertur-
bations to several state-of-the-art neural networks, e.g.,
long short-term memories (LSTMs), LSTM with state refine-
ment (SR-LSTM), feed forward neural network, and social
generative adversarial network (S-GAN). The conclusion of
ref. [3] is that the simple model outperforms the neural
networks in this task. Our work aims to solve the same
problem, however, with different constraints (e.g., need
for DA and randomly varying observation sampling) and
targets to longer prediction lengths, and therefore we also
use different methods. While in ref. [3] the number of time
steps for initial observations and prediction lengths is 8 and
12, corresponding the time windows of 3.2 and 4.8 s, in our
tests the length of the initial observation is 5–7 s (and sam-
ples) and the prediction lengths are 4–6, 9–11, and 19–21 s

(and samples). We also enhance our prediction model by a
collection of past paths stored into path library. The path
library can be seen as an instance-based or memory-based
learning method, a nonparametric method that uses the
training instances themselves as a model [4].

Yrjanainen et al. [5] presented privacy-aware person
tracking and counting on Raspberry Pi edge device together
with the neural computing stick for smooth computa-
tion. They used object detection, person re-identification,
tracking, and counting on the edge device and collected
encrypted information over the network. However, while
ref. [5] used a set of abstract features to identify the
detected individuals, in this work, we did not use any
individual identifying data at all. We deploy an object
detection network on Raspberry Pi to collect only the
object locations and the detection timestamps.

3 Methods

The path prediction using path library consists of several
tasks. The tasks and the structure of their mutual con-
nections are depicted in Figure 1.

First, the typical paths need to be learned, i.e., the
path library needs to be collected. From camera images,
the objects need to be detected and their locations esti-
mated to obtain samples that include the coordinates of
the detected objects and the timestamps of the detections.
Without any data elements that identify the objects, it is
not obvious which detections come from which objects.
The missing link between the distinct samples is estimated
by solving the DA problem: a new detection needs either to
be associated with one of the existing tracked paths or to
be found not to be a part of any of them, in which case it is
treated as a start of a new path.

Once we know to which path the new detection is
associated, we can track the path, i.e., use the position
of the detection to update the path. We treat the path
tracking task as a state estimation problem, where the
motion model represents our assumptions on what kind
of movements and motion changes are possible, i.e.,
what is the inertia of the object. We store the information
on tracked paths to a database, which we call path
library. A stored path is a sequence of positions and their
estimated uncertainties.

To use the paths stored in the library for prediction,
we need information on which paths might be relevant
for the situation. To obtain that information, we need to
run the path tracking to get an initial idea of what is
happening in the camera scene. Once we have tracked
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a new path for a couple of time steps, this short path
segment can be compared with the contents of the path
library. The library paths most similar to the new segment
can be used to predict the future path. In the following
subsections, these tasks are described in detail.

3.1 Object detection

The first step is to find the bounding boxes associated
with the objects in the camera view. For object detection,
convolutional neural network (CNN)-based methods have
been proven to be effective with their state-of-the-art per-
formances on public benchmark datasets [6–9]. These
CNN-based object detection methods can be broadly divided
into two groups: one-stage and two-stage. One-stage detec-
tors are efficient and have straightforward architecture. In
contrast, two-stage detectors have complicated architecture
but perform better in terms of detection accuracy. Given an
input image, the one-stage method directly outputs the
object location and class without an intermediate proposal.
The two-stage method explicitly generates region proposals
followed by feature extraction, category classification, and
finetuning of the location proposals. Single-Shot MultiBox
Detector (SSD) [7], YOLO3 [6], and RetinaNet [8] are com-
monly used one-stage neural network solutions. Regional
CNNs (RCNNs) [10] such as faster RCNN [9] and mask
RCNN [11] are commonly used two-stage detectors.

For the detection, we use pretrained weights from the
network trained on MSCOCO [12] and the fine-training of
the network with our custom dataset, collected from our
test environment mentioned in Section 4.2. Our Rasp-
berry Pi system contains a single-stage object detection
network, SSD MobileNetV2, that predicts object locations
and a pre-defined class category for each detection. We

then save object locations and class labels together with
detection timestamps.

Since the data were captured with a stationary mono-
cular camera, depth and – consequently – the distance of
detected objects from the camera are unknown. Therefore,
the three-dimensional locations of detected objects cannot
be acquired directly. To estimate their location on themap,
the objects are assumed to lie on a planar surface. A linear
transformation is fitted by minimizing the Euclidean dis-
tance between known map points and estimates based on
their respective positions in the image. Essentially, points
in the image plane are transformed to a plane representing
the ground surface and scaled to map coordinates. Objects
are then projected to the map by applying the transforma-
tion to the center point between the two bottom corners of
their bounding boxes, i.e., the part most likely to be con-
nected to the ground. The camera is calibrated before the
fitting procedure, and images are rectified before object
detection and transformations. Although the transformation
procedure is relatively simple, it works well in this study
because the area in question is relatively small and flat.

3.2 Path estimation

An overview of the tasks involved in the path estimation
and its data flow is shown in Figure 2. The basic tool in
the path estimation is KF, which is described in many
textbooks, e.g., in ref. [13,14]. The probabilistic reasoning
for the DA uses the KF predictions, and the results of the
DA are used in the KF state update. We presented the
position coordinates of the detections and path points
in local-level-system and its east-north-up (ENU) version
[1]. As we assumed the objects to be located in a hori-
zontal plane, we omitted the vertical coordinate. In the

Figure 1: Main functional blocks of the path prediction system.

1050  Helena Leppaakoski et al.



following, we denote the east and north coordinates as x
and y, respectively.

3.2.1 System model

In the KF, we use constant velocity model as motion
model to propagate the path estimates in time. The model
consists of four states: position coordinates and velocities in
two dimensions, written as [ ( ) ( ) ( ) ( )]= x k y k v k v kx , , ,k x y

T .
The state is driven by zero-mean, Gaussian acceleration
( )kw . The discrete-time representation of the model is

derived according to ref. [13]:

( ) ( ) ( )
⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

= − + − = …
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k k k k
T
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x x wF 1 1 , 1,

F
1 0 Δ 0
0 1 0 Δ
0 0 1 0
0 0 0 1

(1)

where the variance of the driving noise ( )kw is
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σw2 is the variance of the driving noise, TΔ is the sampling
time, and k is the index of the sampling instance. This
model suits well for pedestrian motion, which forms the
majority of the motion observed in our test environment.
Other motion models that better describe the motion of

objects with larger inertia and higher dynamics can be
found, e.g., in publication [P1] of ref. [15].

The observation model is used for updating the
path estimate. It describes the relationship between
the true position of the object and the location of the
detected object in the camera image projected onto map
coordinates:

( ) ( ) ( )
⎡⎣ ⎤⎦

= + = …

=

k k k kz x vH , 1,

H 1 0 0 0
0 0 1 0

(3)

where the variance of the measurement noise ( )kv is

[ ( ) ( ) ] ⎧⎨⎩
=

=

≠
E k i i k

i k
v v R,

0, .
T (4)

In our system, we used the following parameter values:
=TΔ 1 s and =σ 0.354w

2 2. As we had chosen the map
coordinates so that the pointing angle of the camera
was roughly to the direction of the negative x axis, and
the projection of image coordinates to map coordinates is
less accurate in the depth than width direction, we used
higher variance for the x detection:

⎡⎣ ⎤⎦=R 4 0
0 1 .

The choice of the values of covariances Q and R was
based on our prior knowledge about the system, i.e., they
were not systematically optimized or fitted to the data.

3.2.2 DA and path update

As the data did not include elements that link the latest
detections to the earlier detections from the same object,
we formed the link computationally as a solution of DA
problem. For this task, we used joint probabilistic data

Figure 2: Subtasks of probabilistic reasoning for path estimation.
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association (JPDA), a well-known method in, e.g., radar-
based surveillance systems [16].

The first step of JPDA is the validation of the detec-
tions, where the task is to find which detected positions
( )kzj , ( )= …j n k1, , z are valid candidates to be associated

with the existing paths, represented by their time-propa-
gated estimates ( ∣ )− ℓk kx̂i , ( )= …i n k1, , x . Here ℓ is the
number of time steps the estimate is projected ahead after
its last observation-based update, ( )n kz and ( )n kx are the
numbers of detections and active paths at time index k,
respectively.

The detection j is considered to be a valid association
candidate to path i, if its observation likelihood with the
path exceeds threshold PG. As we assume that the errors
of the detection positions and the path estimation errors
are Gaussian, the validation region, i.e., the area where
the likelihood condition holds, is an ellipse (illustrated in
Figure 3). Its center is located in the position coordinates
of the predicted path, ( ∣ )− ℓk kx̂i , and its size and shape
are defined by the covariance matrix of the error between
the predicted observation ( ) ( ∣ )= − ℓk H k kz xˆ ˆi i and the
actual observation zj. Therefore, the innovation covariance

( ∣ ) ( ∣ )− ℓ = − ℓ +S k k HP k k H Ri i
T is computed for each path

i and innovation vector ( ) ( ) ( )= −k k kz z z˜ ˆi j j i, is computed
for all pairs of paths i and detections j.

For Gaussian vectors, the checking against a probability
threshold with probability ellipses can be transformed to
checking of Mahalanobis distances. The squared Mahalanobis
distance of innovation is ( ) ( ) ( ( ∣ )) ( )= − ℓ −d k k S k k kz z˜ ˜i j i j

T
i i j,

2
, 1 , .

For a Gaussian 2D vector, the Mahalanobis distance follows
( )χ 22 distribution. Therefore, instead of checking whether a

point lies inside a probability ellipse, we can check that the
Mahalanobis distance between the point and the center of the

ellipse does not exceed the corresponding d2 threshold. This
threshold is obtained from ( )χ 22 inverse cumulative distribu-
tion function: ( )( )= −d F PP χ G

2
2

1
G 2 . In our experiments, we used

=P 0.99G and the corresponding =d 9.21P
2
G

.
Based on the computed Mahalanobis distances, all

detections ′z j for which ( ) ≤′ ′d k di j P,
2 2

G
are considered valid

association candidates for paths ′x̂i . However, these are
not necessarily correct associations, as there may be sev-
eral detections in validation region or there may be over-
lapping validation regions when two or several paths
share common candidates. It is also possible that more
than one path have the shortest Mahalanobis distance to
the same detection.

The next task is to find the association between the
detections that are valid association candidates and the
paths that have valid candidates in their validation regions.
When assigning the detections to the paths, we allow at
most one detection to be associated with at most one
path, i.e., for each path and each detection, there is either
one-to-one association or no association at all. We want to
find the matching pairs so that the overall cost, i.e., the sum
of the squared Mahalanobis distances between the asso-
ciated detections and paths, is minimized. This type of
linear assignment problem can be solved with Hungarian
algorithm [17,18]. We used Matlab function matchpairs to
solve the problem.

Once the association between the detections and
path estimates is made, we run the KF observation update
for the path estimates that have an associated detection.
Often there are also detections that are not associated with
a path, either because they were not valid candidates or
because there were more valid association candidates than
active path estimates. We treat these detections as initial
observations of new paths. After all the detections are used
to update either an existing or a new path, the path esti-
mates are propagated in time using the motion model
defined in (1) and (2), until new detections are available.

After the propagation steps, the uncertainties of the
path estimates are checked. The product of the eigenva-
lues of the position covariance is computed and if it
exceeds the uncertainty threshold, the path is removed
from the set of active path estimates.

3.3 Path library

In the training phase of the prediction model, the paths
removed from the set of active paths are stored into path
library. For each path, the sequence of path position esti-
mates and the corresponding covariance matrices were

Figure 3: Example of validation regions. The four latest detections
(the circles) and the elliptic validation regions of two paths. The
crosses denote the path estimates updated by their associated
detections and the predicted path positions based are shown with
squares.
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stored. To prevent too short-lived path sequences from
populating the library, we did not store sequences that
were shorter than the threshold Lpmin. The sequence length
was defined as the difference between the last and first
observation update of the path estimate. For the sampling
instances without observation update, the predicted esti-
mate was stored, otherwise the updated estimate.

As we used only one camera, it is possible that an
object may stay behind another object for several sam-
pling instances, and has moved far from the edges of the
camera view when it becomes visible for the camera for
the first time. Therefore, we accept that a path can start
everywhere in the camera view. Considering this condi-
tion, we added a grid representation into the path library
to allow faster search of similar library paths in path
prediction. We divided the area into ×1 m 1 m grid and
to each grid cell, we stored the indices of the paths and
the sequence indices of these paths that have coordinates
located in the cell.

3.4 Prediction

The library-based prediction principle is illustrated in
Figure 4. The input to library-based prediction is the
most recent position coordinates of the objects in the
scene. The paths are tracked from the detections with
the KF model and JPDA techniques described in Section
3.2.2. When the lengths of such paths increase above a
given threshold =δt n TΔmin ip , the obtained path seg-
ment, which we call initial path, is compared to the con-
tents of the path library.

Based on similarity with the initial path, a relativeweight
is associated with the paths of the library. However, to avoid
giving any weight to the library paths very far away from the
initial path and to save computational resources, we limit
similarity comparisons using the grid representation of the
library. We start scanning the library paths from the library
grid cell where the initial path starts and then continue to the
neighboring cells and further by increasing the distance to
the starting cell, until the weights of npmax library paths are
evaluated or all the cells within theManhattan distancedcmax
to the starting cell have been checked.

The similarity between the paths is evaluated using
the assumption of the Gaussian distribution of the path
point coordinates and the common interpretation that the
KF estimate and its covariance are the parameters of this dis-
tribution. In the following, an initial path and a library path are
defined by sequences { ( ) ( )}μ k kˆ , Σip ip and { ( ) ( )}μ k kˆ , Σlib lib ,

respectively, where = …k n1, , ip. Here μ̂ and Σ represent
the position parts of the estimate and its covariance, i.e.,
=μ xˆ ˆ1:2 and = PΣ 1:2,1:2. First the Mahalanobis distances

between the initial path and the library path are computed
for = …k n1, , ip:

( ) ( ( ) ( )) ( ( ) ( )) ( ( )
( ))

= − +

−

−d k μ k μ k k k μ k

μ k

ˆ ˆ Σ Σ ˆ

ˆ .

T
ip,lib
2

ip lib ip lib 1
ip

lib

From this, the corresponding values of ( )χ 22 probability
distribution function are computed:

( ) ( ( ))( )=p k f d k .χ 2 ip,lib
22

The weight of the library path is obtained as

( ( ))∑=
=

w p kexp log .
k

n

ip,lib
1

ip

(5)

Using the weights (5), computed for all library paths that
were found from the grid cells close to the start of the
recently tracked initial path segment, the future path is
predicted by computing the weighted average of the
paths in the library and its uncertainty is expressed with
its weighted covariance matrix. Quite commonly, the pre-
diction is composed of several “branches,” meaning that
the distribution of predicted agent’s location is multi-
modal. In this case, an appropriate descriptor of the uncer-
tainty is the smoothed probability distribution produced
by the Gaussian mixture that represents the branches.

If library paths that match closely enough with the
initial path are not found, all the path weights are zeros
and we cannot compute the library-based prediction.
Then the algorithm has to revert to KF-based prediction
as a fallback method.

In our experiments, we used the following parameter
values: = =δt n 6min ip , =n 50pmax , =d 15cmax , and =Lpmin
+n nip pred, where npred is the number of time steps that

the prediction is computed for.

4 Experiments

For real data demonstration, we collected camera-based
object detections. We used part of the data to learn the
paths to path library and another part to assess the
quality of library-based prediction by comparing it to
the KF-based prediction. In the following, we describe
the hardware we used, the data we collected, and the
test procedure for the prediction.

4.1 Hardware

We use affordable, portable, and easily available edge-
device to collect experimental data and run the detec-
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tion system. The system includes Raspberry Pi 3 Model
B+ equipped with 8 Mpix Raspberry camera module V2.
Cooling fan and heat sinks are attached to the Raspberry
to prevent overheating and unexpected shutdown during
continuous operation for days. The system shown in
Figure 5 is placed on the fifth floor of the Tampere Uni-
versity Hervanta Campus building facing toward the open
space next to the parking yard and capturing the view in
Figure 6.

4.2 Data

The system described in Section 4.1 was used to collect
full HD videos during daylight in summer 2018. About
800 frames were extracted from videos captured on dif-
ferent days and times. These image frames were fully
labeled in six class categories: bus, car, cyclist, person,
truck, and van, using the technique mentioned in ref.
[19]. One annotation means two coordinate points and
a classification, visualized as a box and a written class

label. The aim was to create a representative dataset
including various moving objects during daylight for
the object detection network training. We emphasize
that our system does not send any visual data to the
server. Once the detection system is online, it sends the
detected object’s location coordinates and associated
timestamps. However, we save some amount of visual
data for system debugging and visualization purposes.
Hence, the system preserves the privacy of the person
being in the camera view.

In the dataset, “person” was the only category with
plenty of instances spread over the scene. Therefore, we
used only this category in the prediction tests. These
detections appear in bursts and the intervals between
the detection bursts vary randomly, the most common
interval lengths being 2 or 3 s.

To create the path library, we used stored location
and timestamp data collected on day 1 during 13 h. The
data from the next day were used to compare the predic-
tions produced by the path library and the traditional KF.
The path tracking and prediction were implemented with
Matlab.

Figure 4: The predicted path is the weighted sum of the most similar library paths.

Figure 5: Hardware for the data collection and running detection network.
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4.3 Test procedure

In the prediction tests, we wanted to compare the predic-
tions to the detections and to examine the performance
of the method in different prediction lengths. We defined
three interesting prediction lengths =t n TΔpred pred : for
short-, middle- and long-term predictions, tpred was ±5 1,
±10 1, and ±20 1, respectively.
The random variation of the sampling interval posed

challenges to the testing, as to be able to assess a predic-
tion made for a time instance, there should be detections
available at the time. To tackle this problem, we used the
timing shown in Figure 7. The value =δt 6 smin was
chosen to make sure that most often at least three detec-
tion instances will be included in the initial path. To allow
comparison against detections, the predictions were
computed and saved for three time instances around
the targeted prediction lengths. Due to the variation in
the detection sample intervals, the actual tracking interval
δt varies as the tracking ends when the first detections are
obtained such that ( ) ≥δt m δtmin. For the same reason, the
age of the prediction that is compared with the actual
detections also varies.

In the test, we stopped the path tracking and cleared
the memory of the initial path after it was used to com-
putepredictions. The futuredetections, possibly originating

from the same actual paths were then used to start and
track a new initial path, i.e., the detections from the same
actual path were used to start predictions several times at
different phases of the path build-up.

We compared the predictions produced by the path
library to the predictions of KF. With KF wemean here the
same KF combined with JPDA that produced the initial
path for library-based method, but instead of using the
initial path, the KF used its last estimated state and the
motion model (1) to make prediction for the next npred
time steps.

5 Results

To assess the capability of the library-based path predic-
tion, it was compared to KF predictions. The criterion for
the comparison was how probable the prediction method
had considered the detection of objects in the location
where they actually appeared. Looking at a location
where an object became detected, the higher its predicted
probability to be occupied was, the more successful we
considered the prediction.

A captured moment of a tracking and prediction
situation is shown in Figure 8. For illustration purposes,
the build-up history of paths is shown even though for
prediction, the path history was cleared after the predic-
tions were computed. Some phenomena are marked with
labels in the figure: (1) two adjacent paths; (2) a long, static
sequence of detections; (3) a long path; (4) a short, static
sequence of detections; (5) predictions indicate probable
detections but the series of detections has ended; and (6)
pink shade on the map denote areas where library paths
have plenty of position occurrences. The expanding yellow
circles represent the KF predictions and their uncertainty
that increases with time. The blue circles represent the
uncertainties of the library-based predictions, which do

Figure 6: Camera view from the test setup running real time object
detection on a Raspberry Pi platform.

Figure 7: Timing diagram of the prediction test exemplifying the effect of the random variation of detection times.
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not expand to as large area as the uncertainties of the KF
predictions but sometimes divide into different branches.

To get more focused comparisons, we computed the
short-, middle-, and long-term predictions as described

Figure 8: Real data example: path tracking and predictions with KF and path library.

Figure 9: Real data examples: comparing area occupancy predictions by KF (top) and path library (bottom). The red markers give the
locations of objects at the end of prediction: at t 24= s in Example (a) and at t 48= s in Example (b). The gray clouds indicate the predicted
probability of the location being occupied by the agent. The predictions were made using observations obtained 6 s (left), 11 s (middle), and
19 s (right) earlier, respectively. (a) Predictions for t 24 s= . (b) Predictions for t 48 s= .
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in Section 4.3. The occupancy predictions plotted on the
maps together with the detections are shown in Figure 9,
where predictions for two time instances are given as
examples. In the occupancy map, the darker the color
of a pixel, the more probable it is to detect an object in
the pixel. It can be seen that with the both prediction
methods, the accuracy of the prediction gets “diluted”
as the prediction time increases. However, the dilution
appears in different ways with the two methods. While
the predicted occupancy areas of the KF get lighter and
spread over large areas, the library-based predictions
get an increasing number of smaller, more condensed
occupancy patches. The examples of occupancy area pre-
dictions show that the path library gives much more
accurate, but multimodal predictions. The differences
become larger with increasing prediction times and they
are clearly visible already with prediction length 11 s.

6 Discussion

The main contribution of this article consists of predic-
tion of the future paths of mobile objects while preserving
the privacy of the tracked objects. To improve the predic-
tions, we proposed a method based on the library of paths
tracked and recorded in the past. We demonstrated the
operation of the library-based prediction using privacy
preserving data obtained with an inexpensive computer
vision system. With the same data, we compared the
library-based predictions with KF-based predictions.

The requirement of privacy preservation in the data
processing poses challenges to the path prediction by
bringing on the need to solve the DA problem. This
applies to both the initial state estimation and the collec-
tion of the path samples into the library. Despite the pro-
mising results of the library-based prediction, DA errors
in the tracking are possible. They may happen when the
paths of two (or more) objects coincide closely, which is
possible, e.g., when the paths cross each other, or the
paths coincide in a turn, or the paths evolve closely in
the same direction with the same speed. In general, we do
not consider the DA errors as serious flaws for the pro-
posed method as the method aims to answer the question
“will there be anybody in certain location” rather than
the question about who will be there. However, DA errors
could produce inaccurate initial state estimation or cause
somewrong transitions between path segments to be learned
to the library. We assume the statistical weighting in the
usage of the library will mitigate the effect of these errors.

Although the model parameters σw2 and R (defined in
Section 3.2.1) were chosen using a general knowledge

about what could be possible for a pedestrian rather
than by optimization and fitting to the data, the library-
based prediction performed surprisingly well in the demon-
stration with real data. This suggests the good robustness of
the model.

Using low-cost, consumer grade equipment contri-
butes to the inaccuracy and uncertainty of the initial state
estimates for the predictions and the library paths and
the need for the extra complexity of the timing scheme
presented in Figure 7 for the performance evaluation of
the prediction method. Although the proposed prediction
method does not require the use of inexpensive equip-
ment, the good performance with such in the demonstra-
tion suggests the robustness of the method. However,
upgrading the equipment to a more expensive, higher
quality vision system would allowmore accurate tracking
and to some extent, decrease the probability of DA errors.

For the applicability of the library-based prediction
in changing environments, such as construction sites, the
path library may require a forgetting mechanism to give
smaller weight in the prediction to older paths that do not
have recent examples. To improve the scalability of the
path library, i.e., to reduce its resource requirements
regarding memory and search times as the number of
paths in the library grow large, the instance-based struc-
ture of the library could be replaced with a model-based
structure that improves the compression of the stored
path information. For instance, path segments with similar
speed profiles and located close together could be com-
bined to one, and long paths could be split to shorter “path
primitives,” e.g., links that connect nodes where the paths
typically branch off or join together.

7 Conclusions

In this article, we propose a path library-based method to
predict future paths of mobile objects. The predictions are
based on the library of the observed past paths in the area
and a short initial path segment estimated from the coor-
dinates of the most recent object detections from an inex-
pensive, privacy-preserving vision system. We compared
the library-based predictions to the predictions based on
the KF combined with joint probabilistic DA. The per-
formed tests show that the path library gives much
more accurate but multimodal predictions. The difference
increases with longer prediction lengths, and in the pre-
sented examples, it was significant already with predic-
tion lengths of 11 s. However, despite its weaker predic-
tion capability, the KF is needed in the library-based
prediction as a fallback method in situations when
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prediction is needed to areas that are not covered by
examples in the path library and as a preprocessing stage
to track the initial path needed for the computation of the
library-based prediction. The directions of future develop-
ment of the prediction method could include improving
the positioning accuracy of the vision system by a wide-
baseline stereo camera and depth estimation capability.
An obvious target for further research is also the optimiza-
tion of the model parameters.
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