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Abstract. Forgetting in Answer Set Programming (ASP) aims at reduc-
ing the language of a logic program without affecting the consequences
over the remaining language. It has recently gained interest in the con-
text of modular ASP where it allows simplifying a program of a module,
making it more declarative, by omitting auxiliary atoms or hiding cer-
tain atoms/parts of the program not to be disclosed. Unlike for arbitrary
programs, it has been shown that forgetting for modular ASP can always
be applied, for input, output and hidden atoms, and preserve all depen-
dencies over the remaining language (in line with uniform equivalence).
However, the definition of the result is based solely on a semantic char-
acterization in terms of HT-models. Thus, computing an actual result is
a complicated process and the result commonly bears no resemblance to
the original program, i.e., we are lacking a corresponding syntactic op-
erator. In this paper, we show that there is no forgetting operator that
preserves uniform equivalence (modulo the forgotten atoms) between the
given program and its forgetting result by only manipulating the rules
of the original program that contain the atoms to be forgotten. We then
present a forgetting operator that preserves uniform equivalence and is
syntactic whenever this is suitable. We also introduce a special class of
programs, where syntactic forgetting is always possible, and as a comple-
mentary result, establish it as the largest known class where forgetting
while preserving all dependencies is always possible.

Keywords: Answer Set Programming · Forgetting · Uniform Equiva-
lence.

1 Introduction

Forgetting, also known as variable elimination, aims at reducing the language of
a knowledge base while preserving all direct and indirect relationships over the
remaining language. First studied in the context of classical logic [5, 39, 32, 27,
33, 14], it gained considerable interest in a wide variety of formalisms (cf. the
recent survey [12]) and found applications in, e.g., cognitive robotics [30, 31, 35],
conflict resolution [27, 41, 13, 28], and ontology abstraction and comparison [38,
26, 24, 25]. In more general terms, its usefulness stems from the fact that auxiliary
variables can be eliminated, resulting in a more declarative representation of



2 R. Gonçalves et al.

(certain parts of) a knowledge base, as well as that certain pieces of information
can be omitted/hidden for reasons of privacy or legal requirements.

In Answer Set Programming (ASP), forgetting has also been extensively stud-
ied, where its non-monotonic nature has created unique challenges resulting in
a wide variety of different appproaches [41, 13, 40, 36, 23, 37, 10, 18, 15, 4]. Among
the many proposals of operators and desirable properties (cf. the survey on for-
getting in ASP [16]), arguably, forgetting in ASP is best captured by strong
persistence [23], a property which requires that the answer sets of a program
and its forgetting result be in correspondence, even in the presence of additional
rules over the remaining language. However, it is not always possible to forget
and satisfy strong persistence [17, 19].

Recently, forgetting has also gained interest in the context of modular ASP
[9, 20, 2, 22, 34]. In general, modular programming is fundamental to facilitate
the creation and reuse of large programs, and modular ASP allows the creation
of answer set programs equipped with well-defined input-output interfaces whose
semantics is compositional on the individual modules. For modules with input-
output interfaces, strong persistence can be relaxed to uniform persistence that
only varies additional sets of facts (the inputs), and it has been shown that
forgetting for modular ASP can always be applied and preserves all dependencies
over the remaining language [15].

Uniform persistence is closely related to uniform equivalence, which in turn is
closely connected to one of the central ideas of ASP: a problem is specified as an
abstract program, and varying instances, represented by sets of facts, are com-
bined with it to obtain concrete solutions. Thus, arguably, uniform persistence
seems the better alternative when considering forgetting in ASP in general, but
its usage is hindered by the lack of practically usable forgetting operators: the
definition of a result in [15] is based solely on an advanced semantic character-
ization in terms of HT-models, so computing an actual result is a complicated
process and the result, though semantically correct w.r.t. uniform persistence,
commonly bears no resemblance to the original program. What is missing is a
syntactic operator that computes results of forgetting, ideally only by manipu-
lating the rules of the original program that contain the atoms to be forgotten.

Concrete syntactic forgetting operators have been considered infrequently in
the literature. Zhang and Foo [41] define two such operators in the form of strong
and weak forgetting, but neither of them does even preserve the answer sets of
the original program (modulo the forgotten atoms) [13]. Eiter and Wang [13]
present a syntactic operator for their semantic forgetting, but it only preserves
the answer sets themselves and does not satisfy uniform nor strong persistence.
Knorr and Alferes [23] provide an operator that aims at aligning with strong
persistence which is not possible in general. Thus, it is only defined for a non-
standard class of programs, and cannot be iterated in general, as the operator
is not closed for this non-standard class, nor does it satisfy uniform persistence.
Berthold et al. [4] introduce an operator that satisfies strong persistence when-
ever possible, but it does not satisfy uniform persistence, nor is it closed for the
non-standard class defined in [23]. Finally, based on the idea of forks [1], a for-
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getting operator is provided [3] that introduces so-called anonymous cycles when
forgetting in the sense of strong persistence is not possible. However, rather than
reducing the language this operator does introduce new auxiliary atoms to re-
move existing ones, though only in a restricted way. Thus, no syntactic forgetting
operator exists in the literature that satisfies uniform persistence.

In this paper, we research whether there exists such a syntactic forgetting
operator that satisfies uniform persistence. Somewhat surprisingly, we answer
this question negatively in the general case. This raises several questions:

– When is it possible/suitable to forget syntactically while preserving uniform
persistence?

– Are there meaningful classes of programs where syntactic forgetting is always
possible while preserving uniform persistence?

– Can such an operator be iterated, i.e., is it closed for the class of programs
for which it is defined?

– Are there correspondences to existing operators in restricted settings (to
clarify relations to related work)?

Our contributions can be summarized as follows:

– We show that there is no forgetting operator that preserves uniform equiva-
lence (modulo the forgotten atoms) between the given program and its for-
getting result, by only manipulating the rules of the original program that
contain the atoms to be forgotten (as formalized in the property (SIu)).

– We argue that forgetting an atom for which there are rules of the form
p ← not not p is indeed not suitable in a syntactic manner, even for cases
where such result could still be constructed based alone on the rules of the
original program that contain the atoms to be forgotten.

– We present a forgetting operator that preserves uniform equivalence while
forgetting, and is syntactic whenever this is suitable. We show that this
operator can indeed be iterated in the general case.

– In addition, we present a special case of our operator for stratified programs,
without disjunction and loops over (double) negation, and show that syn-
tactic forgetting is always possible while preserving uniform equivalence.

– We also show that, for stratified programs, this operator corresponds to an
existing forgetting operator that aims at preserving all dependencies when-
ever possible, and we establish this class of programs as the largest known
class where forgetting while preserving all dependencies is always possible.

The remainder of our paper is structured as follows. We recall relevant notions
and notations in Sec. 2. In Sec. 3, we first introduce our operator for stratified
programs, before we establish our main impossibility result in the general case
and present our general operator in Sec. 4. We conclude in Sec. 5.

2 Preliminaries

Let us first recall relevant notions on logic programs under answer set semantics
and forgetting in Answer Set Programming (ASP).
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An (extended) rule r is an expression of the form

a1 ∨ · · · ∨ ak ← b1, . . . , bl, not c1, . . . , not cm, not not d1, . . . , not not dn , (1)

where a1, . . . , ak, b1, . . . , bl, c1, . . . , cm, and d1, . . . , dn are atoms of a given propo-
sitional alphabet A.3 We also write such rules as

H (r)← B+(r), notB−(r), not notB−−(r) , (2)

where H (r) = {a1, . . . , ak}, B+(r) = {b1, . . . , bl}, B−(r) = {c1, . . . , cm}, and
B−−(r) = {d1, . . . , dn}, and we will use both forms interchangeably.4 Given a
rule r, H (r) is called the head of r, and B(r) = B+(r)∪notB−(r)∪not notB−−(r)
the body of r, where, for a set L of literals (elements of the form a, not a, or
not not a, for a ∈ A), notL = {not ` | ` ∈ L}, where not not not ` systemati-
cally simplifies as not `. An (extended) logic program is a finite set of rules. By
A(P ) we denote the set of atoms appearing in P and by Ce the class of extended
programs. We call r disjunctive if B−−(r) = ∅; normal if, additionally, H (r)
has at most one element; Horn if on top of that B−(r) = ∅; and fact if also
B+(r) = ∅. The classes of disjunctive, normal and Horn programs, Cd, Cn, and
CH , are defined as usual. Given a program P and an interpretation I, i.e., a set
I ⊆ A, the reduct P I is defined as:

P I = {H (r)← B+(r) | r of the form (2) in P,B−(r) ∩ I = ∅,B−−(r) ⊆ I}.

An HT-interpretation is a pair 〈X,Y 〉 s.t. X ⊆ Y ⊆ A. Given a program P ,
an HT-interpretation 〈X,Y 〉 is an HT -model of P if Y |= P and X |= PY , where
|= stands for the standard satisfaction relation of classical logic. The set of all
HT-models of P is denoted by HT (P ), and we admit that the set of HT-models
of a program P can be restricted to A(P ) even if A(P ) ⊂ A. Given a program
P , a set of atoms Y ⊆ A(P ) is an answer set of P if 〈Y, Y 〉 ∈ HT (P ) and there
is no X ⊂ Y s.t. 〈X,Y 〉 ∈ HT (P ). The set of all answer sets of P is denoted
by AS(P ). Given a set V ⊆ A, the V -exclusion of a set of answer sets (a set
of HT-interpretations) M, denoted M‖V , is {X\V | X ∈ M} ({〈X\V, Y \V 〉 |
〈X,Y 〉 ∈ M}). Two programs P1 and P2 are equivalent, denoted by P1 ≡n P2,
if AS(P1) = AS(P2), strongly equivalent, denoted by P1 ≡ P2, if AS(P1 ∪R) =
AS(P2 ∪ R) for any R ∈ Ce (alternatively, if HT (P1) = HT (P2) by [29]), and
uniformly equivalent, denoted by P1 ≡u P2, if AS(P1 ∪ R) = AS(P2 ∪ R), for
any set of facts R.

Strongly or uniformly equivalent programs can be syntactically different, e.g.,
due to the occurrence of non-minimal or tautological rules, i.e., rules that if
removed would not affect its HT-models in any way. To facilitate the presentation
in this paper, and in line with related work, we restrict our considerations to
programs in normal form following the definition introduced in [4]. Formally, a
rule r in P is minimal if there is no rule r′ ∈ P such that H (r′) ⊆ H (r)∧B(r′) ⊂
B(r) or H (r′) ⊂ H (r)∧B(r′) ⊆ B(r). We also recall that a rule r is tautological
if H (r) ∩ B+(r) 6= ∅, or B+(r) ∩ B−(r) 6= ∅, or B−(r) ∩ B−−(r) 6= ∅.
3 Note that double negation is standard in the context of forgetting in ASP.
4 Thus, there cannot be any duplicates in any of the rule components.
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Definition 1. A program P is in normal form if the following conditions hold:

1. for every a ∈ A(P ) and r ∈ P , at most one of a, (not a) or (not not a) is
in B(r);

2. if a ∈ H(r), then neither a, nor (not a) are in B(r);
3. all rules in P are minimal.

It is shown in [4], that, for a given program P , a strongly equivalent normal form
NF (P ) can be obtained in polynomial time.

A forgetting operator over a class C of programs5 over A is a partial function
f : C × 2A → C s.t. the result of forgetting about V from P , f(P, V ), is a program
over A(P )\V , for each P ∈ C and V ⊆ A. We denote the domain of f by C(f).
The operator f is called closed for C′ ⊆ C(f) if f(P, V ) ∈ C′, for every P ∈ C′ and
V ⊆ A. A class F of forgetting operators (over C) is a set of forgetting operators
f s.t. C(f) ⊆ C.

Among the many properties introduced for different classes of forgetting op-
erators in ASP [16], strong persistence (SP) [23] is arguably the one that should
intuitively hold, since it imposes the preservation of all original direct and in-
direct dependencies between atoms not to be forgotten. I.e., closely related to
strong equivalence, the answer sets of f(P, V ) correspond to those of P , no mat-
ter what programs R over A\V we add to both. However, as shown in [17, 19],
there is no forgetting operator that satisfies (SP) and that is defined for all pairs
〈P, V 〉, called forgetting instances, where P is a program and V is a set of atoms
to be forgotten from P . Thus, a relaxation of property (SP) was introduced in
[15], called uniform persistence (UP), that only considers R consisting of facts.
We recall both properties, where F is a class of forgetting operators.

(SP) F satisfies Strong Persistence if, for each f ∈ F, P ∈ C(f) and V ⊆ A,
we have AS(f(P, V ) ∪ R) = AS(P ∪ R)‖V , for all programs R ∈ C(f) with
A(R) ⊆ A\V .

(UP) F satisfies Uniform Persistence if, for each f ∈ F, P ∈ C(f) and V ⊆ A,
we have AS(f(P, V )∪R) = AS(P ∪R)‖V , for all sets of facts R with A(R) ⊆
A\V .

A class of forgetting operators FUP is defined in [15] based on semantic def-
inition over HT-models, that is shown to satisfy this property (UP), and it is
shown that an operator exists for that class relying on the countermodels of
the semantic characterization in terms of HT-models [7] – a construction previ-
ously used for computing concrete results of forgetting for classes of forgetting
operators based on HT-models [36, 37, 19].

In light of the general impossibility result for (SP) for arbitrary context
programs R, and the fact that (UP) is satisfiable for sets of facts R, one may
wonder whether it is possible to find a property that uses programs R in a class
in between these two extremes such that it is possible to forget and preserve all
dependencies. As it turns out, this is not possible.

5 In this paper, we only consider the very general class of programs introduced before,
but, often, subclasses of it appear in the literature of ASP and forgetting in ASP.
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Proposition 1. (UP) is the strongest relaxation of (SP) w.r.t. the class of
programs R such that there is a forgetting operator over C ⊇ Cn that satisfies it.

This novel result stresses the importance of (UP) and of finding syntactic op-
erators that satisfy this property.

3 Uniform Forgetting from Stratified Programs

In this section, we introduce a syntactic operator for forgetting from a restricted
class of programs that aligns with the ideas of uniform persistence by only manip-
ulating the rules of the original program that contain the atoms to be forgotten.
We focus first on this restricted class of programs with the intuition to ease the
reading and to facilitate comparisons to the few existing syntactic forgetting op-
erators in the literature. As usual, this operator will be defined for forgetting a
single atom first. Several atoms can then be forgotten iteratively, after showing
that the operator can indeed be iterated.

We start by formalizing our restricted forms of programs, called stratified
programs that do not allow cycles over (double) negation nor disjunctions. For
that purpose, we introduce notation to refer to all rules in P that include some
specific atom in one of its components. Namely, PH

p refers to the rules r in P
with p ∈ H (r), P+

p refers to the rules r in P with p ∈ B+(r), P−p refers to the
rules r in P with p ∈ B−(r), and P−−p refers to the rules r in P with p ∈ B−−(r).

Definition 2. Let P be a logic program. We call P stratified if:

1. all of its rules of the form (1) are s.t. k ≤ 1;
2. P can be partitioned into disjoint Pi s.t., for each p ∈ A,

(a) all rules r ∈ PH
p occur in one Pi;

(b) if p ∈ B+(r) with r ∈ Pi, then PH
p ⊆ Pj with j ≤ i;

(c) if p ∈ (B−(r) ∪ B−−(r)) with r ∈ Pi, then PH
p ⊆ Pj with j < i.

This not only avoids cycles over negation between atoms, it also prohibits in the
case of normal forms that any atom occurs in more than one part of a rule.

We now proceed towards introducing the new stratified uniform forgetting
operator fsu. For that purpose, we require some further notation and we intro-
duce it along with motivating examples that provide intuitions on how to obtain
desired results. To ease the notation, we usually consider forgetting p from P .

Example 1. Consider P containing the following rules:

p← s p← not q, r t← p v ← not p

If we add s ← to P , then p becomes derivable, thus also t. So, when forgetting
about p, we want to preserve that adding s makes t derivable, which can be
achieved by introducing a rule t ← s, i.e. by replacing the body atom p with
the body whose rule head is p, in a way quite similar to wGPPE [6]. For the
same reason, a rule t← not q, r should appear in the result of forgetting, passing
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along that, if q is false and r is true, then t is true. This kind of replacement of
p in some body does not directly transfer to the replacement of not p in another
body. In fact, v will be derivable if none of the bodies of rules with head p is
true. For example, we want a rule v ← not s, not not q in the result of forgetting
to capture one such case. It can be verified in that case that not p is true if
one of the two conjuncts, not s and not not q, is true, and false otherwise, and
that adding further rules to capture the remaining combinations allows one to
preserve the dependency between v and the cases in which not p is true. ut

To be able to capture these dependencies in the case of negated atoms, [4]
extends the ideas of the as-dual from [23] inspired by [13]. The as-dual is a set
of conjunctions of literals, each of which can be used to replace some negated
atom, but preserves its truth value. Here, and in the following, we identify by
B\p(r) = B(r)\{p, not p, not not p} the set of body literals of r after removing
every occurrence of p.

Definition 3. Let P be a logic program, p ∈ A(P ), and PH
p = {r1, . . . , rn}. We

define the as-dual of P for p as follows:

Dp
as(P ) = {not {l1, . . . , ln} | li ∈ B\p(ri), 1 ≤ i ≤ n}.

Note that for a stratified program in normal form, B(ri) cannot contain any
form of p, but we prefer to keep this definition general, so that it be applicable
in the general case.

Example 2. Recall program P from Ex. 1. Among these rules, only two contain
p in the head, and we obtain Dp

as(P ) = {{not s, not r}, {not s, not not q}}. We
can verify that whenever all elements in one of these sets are true, p cannot be
true in any answer set of P . ut

Based on that, we can formalize our first operator.

Definition 4. Let P be a stratified program over A, N = NF (P ) the normal
form of P , and p ∈ A. The result of forgetting about p from P , fsu(P, p), is
NF (S) where S is obtained from N as follows:

1. replace r ∈ N+
p with rules H (r)← B\p(r) ∪ B(r1) for each r1 ∈ NH

p ;

2. replace r ∈ N−−p with rules H (r)← B\p(r)∪not notB(r1) for each r1 ∈ NH
p ;

3. replace r ∈ N−p with rules H (r)← B\p(r) ∪D s.t. D ∈ Dp
as(N

H
p );

4. omit NH
p .

Example 3. Consider P , a slight variation of the program in Ex. 1.

p← s p← not q, r t← p v ← not p w ← not not p

We have Dp
as(P ) = {{not s, not r}, {not s, not not q}} from Ex. 2 and the follow-

ing result of forgetting:

t← s w ← not not s v ← not s, not not q

t← not q, r w ← not q, not not r v ← not s, not r
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We can verify that no matter which set of facts over the remaining A is added to
the forgetting result, the induced answer sets coincide with those of the original
program modulo the forgotten atoms. ut

Note that the normal form of a stratified program is also a stratified program.

Lemma 1. Given a stratified program P , NF (P ) is a stratified program.

This allows us to show that forgetting an atom p from P using fsu, results
in a stratified program not mentioning the atom to be forgotten.

Proposition 2. Let P be a stratified program over signature A and p ∈ A. Then
fsu(P, p) is a stratified program over A \ {p}.

This result is important as it allows us to iterate the operator, which can be
used to iteratively forget a set of atoms. For that purpose, we define how such
iteration can be achieved for any operator defined for forgetting a single atom.

Definition 5. Let P be a logic program over Σ, V = {v1, v2, . . . , vn} ⊆ A an
ordered sequence of atoms, and f an operator defined for forgetting a single atom.
Then, we define f(P, V ) inductively as follows:

– f(P, {v1}) = f(P, v1);

– f(P, {v1, v2, . . . , vn}) = f(f(P, {v1}), {v2, . . . , vn}}).

We need to fix an order on the set of atoms to be forgotten (lexicographic for
example) to ensure that the result of forgetting is indeed a unique program. This
raises the question as to whether the order in which we forget the elements of
such a set matters. To answer this question for fsu, we first relate to existing
work in the literature. In fact, due to the restriction to stratified programs, for
many of the syntactic operators presented in the literature, we can show that
our operator does coincide with them, though on different levels.

Theorem 1. Let P be a stratified program and p ∈ A. We have:

1. fsu(P, p) = fSP (P, p) for fSP defined in [4];
2. fsu(P, p) ≡ fSas(P, p) for fSas defined in [23];
3. fsu(P, p) ≡n forget3(P, p) for forget3 defined in [13] if P does not contain

double negation.

Thus, for stratified programs, the syntactic operator that aims at satisfying
(SP) whenever possible, fSP , coincides with our operator; the one that aims
at satisfying (SP) in a rather restricted non-standard setting, fSas, provides
strongly equivalent forgetting results, and the one defined for preserving answer
sets, forget3, only provides equivalent results, and is only defined for disjunc-
tive programs originally, though it is shown in [13] that for N-acyclic programs,
i.e., programs that satisfy conditions (a) and (c) for r ∈ P−−p of Def. 1, double
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negation can simply be omitted.6 In the latter two cases, the reason why the
correspondence is not stronger lies mainly in the preprocessing applied: the nor-
mal form in [23] does not eliminate non-minimal rules, and the transformations
applied in [13] to simplify the program based on its answer sets before forgetting
do not preserve strong equivalence (e.g. Positive Reduction). There are further
syntactic forgetting operators [41], but these do not even preserve equivalence
[13], thus no correspondence result exists.

Among the results of Thm. 1, the first one is of particular interest, as it
relates to an operator that aims at preserving (SP) whenever possible. In the
case of stratified programs, we can improve on that premise and show that it is
always possible to forget while preserving (SP).

Theorem 2. The operator fsu satisfies (SP).

Since (SP) is stronger than (UP), the following corollary is straightforward.

Corollary 1. The operator fsu satisfies (UP).

As shown in [17, 19] no class of forgetting operators can satisfy (SP) on any
class of programs including normal programs. Thus, Thm. 2 is an interesting
result in its own right as it presents the first operator for which it has been
shown that it can be iterated and satisfies (SP) on a class of programs beyond
Horn programs, unlike previous work in [13, 23, 4].

The relevance of this class of programs is further witnessed by the following
complementary result, that shows that three classes of forgetting operators [18,
19] do coincide on stratified programs.

Proposition 3. For stratified programs, the classes FSP, FR and FM do coincide.

This is interesting, as these classes have been shown to satisfy different min-
imal relaxations of (SP) and were assumed to be different in a more general
setting, as such coincidence was only known for Horn programs.

Finally, Thm. 2 also helps determine that the order of iteration does not
affect the final result w.r.t. strong equivalence.

Proposition 4. Let P be a stratified program over A and V1, V2 ⊆ A. Then,

fsu(fsu(P, V1), V2) ≡ fsu(fsu(P, V2), V1).

Hence, for fsu, indeed any order for atoms can be chosen in the sense of Def. 5.

4 Uniform Forgetting in General

In this section, we present the general impossibility result of a syntactic operator
that satisfies (UP), and then define an operator that does satisfy (UP) and is

6 The semantics in [13] then only considers the minimal models of the resulting pro-
gram, but for the sake of the comparison of the operators as such, this is irrelevant.
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syntactic whenever suitable. To lift our ideas presented for stratified programs,
according to Def. 2, we need to consider in addition how to deal with disjunction
and with cycles involving negation. In the following, we first discuss the actual
challenges resulting from admitting these and we start with disjunction.

Example 4. Consider forgetting about p from program P just consisting of a
single rule p∨ q ←. We have AS(P ) = {{p}, {q}}, and thus, according to (UP)
the answer sets of the forgetting result must be {} and {q}. A program over q with
these answer sets is the program containing a single rule q ← not not q. Though
it is not immediately clear how to obtain this program in a syntactic manner,
it helps to consider the following program P ′ consisting of two rules, p ← not q
and q ← not p. Both programs have the same answer sets, and though it is
well-known that they are not strongly equivalent, they are uniformly equivalent.
Moreover, the result of forgetting p is exactly the same, and in the case of P ′,
Def. 4 could be applied to obtain precisely that result. ut

Building on the notion of semi-shifting [13], we formalize the ideas presented
in the previous example to remove rules containing disjunctions including a
particular atom, replacing them with rules without disjunction.

Definition 6. Let P be a logic program and p an atom in A(P ). The result of
semi-shifting P w.r.t. p, SH(P, p), is defined as replacing any rule r ∈ P s.t.
H (r) = p∨ a1 ∨ · · · ∨ ak and k ≥ 1, by the two rules p← not a1, . . . , not ak,B(r)
and a1 ∨ · · · ∨ ak ← not p,B(r).

Inspecting Def. 4, we note that if the normal form of P , N = NF (P ), is
such that NH

p ∩ N−−p = ∅, then we can apply fsu to SH(P, p) for forgetting
p. To make this precise, and to make this operator applicable to non-stratified
programs, we define a new operator as follows.

Definition 7. Let P be a program over A, N = NF (P ) the normal form of P
and p ∈ A s.t. NH

p ∩N−−p = ∅. We extend fsu to this class of programs by:

fdu(P, p) = fsu(SH(P, p), p).

We can prove that fdu defined over this broader class of programs still satisfies
(UP) when forgetting a single atom.

Proposition 5. Let P be a program over A, N = NF (P ) its normal form, and
p ∈ A s.t. NH

p ∩N−−p = ∅. Then, for all sets of facts R with A(R) ⊆ A\{p}:

AS(fdu(P, p) ∪R) = AS(P ∪R)‖{p}.

This result shows that we can forget an atom p from a program P in normal
form by syntactically manipulating its rules, even if P is not stratified, as long
as PH

p ∩ P−−p = ∅. In that regard, note that restricting to normal or disjunctive
programs does not help as fdu may introduce double negation.

This brings us to the question of what happens if we want to forget p from
a program that contains such rules. The difficulty resides in the fact that a rule
p ← not not p admits two models, {p} and {}, and so forgetting about p has to
correctly propagate this choice to all occurrences of p in rule bodies.
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Example 5. Consider forgetting about p from program P containing the rules

p← not not p,B(r1) r ← p,B(r2) s← p,B(r3) q ← not p,B(r4)

where the B(ri) represent the remaining rule bodies. If all these B(ri) are empty,
then, by (UP), the answer sets of P , i.e., {p, r, s} and {q}, should be preserved
(modulo p). Moreover, adding, e.g., {r ←} should still admit two answer sets,
while adding, e.g., {r ←; s←; q ←} should admit precisely one answer set, which
means that no simple syntactic transformation as used so far can achieve this.
Instead, we have to look at which rule heads depend on p (r and s) and which
on not p (q). This information can first be used to create rules to represent the
models of the resulting program of forgetting, by combining these opposing rule
heads in all possible ways, i.e., either the elements supported by p are true, or
those supported by not p, but not both.

r ← not q s← not q q ← not r q ← not s (3)

However, this does not suffice, since we still need to guarantee that the answer
sets are preserved in the presence of an additional set R of facts not containing
p.

This can be remedied by adding the following rules:

r ← not not r, not not s,q s← not not s, not not r, q q ← not not q, r, s (4)

Now, whenever q is derivable (independently), r and s may both either
be simultaneously true or false. This can be generalized to rules with non-
empty B(ri) by adding

⋃
i B(ri) for the involved i to each rule mentioned

in (3) and (4), i.e., such model generators only apply if the remaining bodies
are true. E.g., we obtain r ← not not r, not not s, q,B(r1),B(r2) in the case of
r ← not not r, not not s, q. However, if, e.g., B(r3) is false, then so is s, and there-
fore r and s will no longer be simultaneously true, namely, we need to add a rule
r ← not not r, q,B(r1),B(r2), notB(r3), and similarly for the other cases. I.e., in
general we have to create rules matching the different possible combinations of
true and false rule bodies over the rules containing p in the body. ut

This example indicates that we cannot forget p from P in a syntactic manner
if PH

p ∩P−−p is not empty: rather than replacing (possibly negated) occurrences
of p in the body with (parts of) the bodies of the rules with head p, a set of rules is
created that rebuilds the semantic relations based on that choice between p and
not p. This hardly resembles the original program in general and the possibly
resulting combinatorial representation is not desirable. One could argue that,
presumably, at least this problem is restricted to the rules mentioning the atom
to be forgotten. I.e., implicitly we have used so far the following property that
characterizes the fact that, when forgetting, we can focus just on the rules that
contain the atom to be forgotten.

(SIu) A class F of forgetting operators satisfies Strong Invariance with respect
to uniform equivalence if, for each f ∈ F, P ∈ C(f) and V ⊆ A, we have
f(P, V ) ∪R ≡u f(P ∪R, V ), for all programs R ∈ C(f) with A(R) ⊆ A\V .
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This property is a relaxation of the property strong invariance (SI) (see, e.g.,
[16]), referring to uniform equivalence rather than strong equivalence.

Unfortunately, it turns out that (UP) and (SIu) are in general incompatible.

Theorem 3. There is no forgetting operator over Ce that satisfies both (UP)
and (SIu).

This shows that the problems observed in Ex. 5 are in fact a consequence of
a more general incompatibility between the two properties: it is in general not
possible to have a completely syntactic operator that satisfies (UP).

In light of this result, the rather convoluted hinted construction of a possible
result in Ex. 5, and the fact that forgetting p can be obtained nicely if PH

p ∩P−−p

is empty, we argue that it is not suitable to forget syntactically if PH
p ∩ P−−p

is not empty, even in corner cases where such result exists, despite Thm. 3. We
thus propose an operator that combines our syntactic approach whenever this is
suitable, and use a semantic operator only for the remaining cases.

For this purpose, let fUP be the semantic operator sketched in [15] (based on
the countermodel construction [7]), which satisfies (UP).

Definition 8. Let P be a program over A, N = NF (P ) the normal form of P ,
and p ∈ A. The result of forgetting about p from P , fu(P, p), is NF (S) where:

S =

{
fdu(P, p) if NH

p ∩N−−p = ∅
fUP (P, p) otherwise

Example 6. As an example for fUP , consider P from Ex. 5 with all B(ri) empty.
The HT-models of the forgetting result coincide with the HT-models obtained
for fUP [15]. The countermodel construction provides 15 rules, including one of
those in (4) and the other two with one double negation omitted. Also, variants
of the rules in (3) appear together with constraints to obtain the desired HT-
models. This result can be further simplified following work on minimal programs
[8], and that, in all, the resulting program is rather similar to ours supporting
our stance that in such a case the forgetting result is not truly syntactic. ut

The resulting operator is defined for every program P and any atom p to be
forgotten, and forgetting p from P according to fu provides program without p.

Proposition 6. Let P be a program over signature A and p ∈ A. Then fu(P, p)
is a program over A \ {p}.

This result naturally allows the extension of fu to sets of atoms using Def. 5.
We are able to prove that fu indeed satisfies (UP).

Theorem 4. The operator fu satisfies (UP).

We have thus defined the first general operator that can be iterated and
that satisfies (UP) and that, whenever this is possible and suitable, produces a
result of forgetting that corresponds to a syntactic manipulation of the rules of
the original program that contain the atoms to be forgotten.

In addition, we can show that the order of iteration does not affect the final
result w.r.t. uniform equivalence.
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Proposition 7. Let P be a program over A and V1, V2 ⊆ A. Then,

fu(fu(P, V1), V2) ≡u fu(fu(P, V2), V1).

Thus, we can forget a set of atoms in any order, which may allow us to prioritize
atoms where syntactic forgetting is possible and suitable, resulting in a uniformly
equivalent program, but possibly syntactically closer to the original program.

Finally, it is not surprising that computing such forgetting results is worst-
case exponential in the size of the input program, due to the as-dual in the case
of fdu and the computation of the countermodels in the case of fUP (for fdu alone
exponential in the size of rules mentioning the atom to be forgotten).

5 Conclusions

In this paper, we have investigated syntactic forgetting under uniform equiva-
lence in modular ASP. We have studied this problem first for stratified programs
and shown that even strong equivalence is preserved while forgetting, establish-
ing interesting results to existing operators of forgetting and novel results as to
when these coincide. We then considered the general case and showed that it
is not always possible to syntactically forget using only the rules that mention
the atom(s) to be forgotten while preserving uniform persistence. This can be
traced back to rules of the form p ← not not p which are known to break the
antichain property of answer sets. We argue that syntactic forgetting in such
cases is not suitable, as it would result in a semantic reconstruction of possible
ways of assigning truth to the involved atoms. We thus establish an operator
that is syntactic whenever this is possible and suitable, and we show that this
operator can be iterated and preserves strong persistence.

To add to the discussion of related work in the introduction, we note that
[4], which is closest in spirit to our work, provides an operator that is syntactic,
as the class for which it is defined satisfies strong invariance, i.e., it is amenable
to restrict forgetting only to the rules that mention the atom(s) to be forgot-
ten. Still, it has been observed that the construction is particularly complicated
whenever there are rules of the form p ← not not p, often with rules in the for-
getting result that are not easily associated to the rules in the original program.

Possible future work includes investigating the precise relationship of (UP)
to the notion of relativized uniform equivalence [11], to gain further insights into
semantic operators, study in more detail minimization of logic programs [8] for
simplifying the results of semantic operators, and investigate other impossibil-
ity results in the context of ASP for similarities, such as embedding ASP into
propositional logic [21], where knowing individual rules does not suffice and a
more holistic view is required.
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