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Abstract— Support estimation (SE) of a sparse signal refers to
finding the location indices of the nonzero elements in a sparse
representation. Most of the traditional approaches dealing with
SE problems are iterative algorithms based on greedy methods
or optimization techniques. Indeed, a vast majority of them use
sparse signal recovery (SR) techniques to obtain support sets
instead of directly mapping the nonzero locations from denser
measurements (e.g., compressively sensed measurements). This
study proposes a novel approach for learning such a mapping
from a training set. To accomplish this objective, the convolu-
tional sparse support estimator networks (CSENs), each with a
compact configuration, are designed. The proposed CSEN can
be a crucial tool for the following scenarios: 1) real-time and
low-cost SE can be applied in any mobile and low-power edge
device for anomaly localization, simultaneous face recognition,
and so on and 2) CSEN’s output can directly be used as
“prior information,” which improves the performance of sparse
SR algorithms. The results over the benchmark datasets show
that state-of-the-art performance levels can be achieved by the
proposed approach with a significantly reduced computational
complexity.

Index Terms— Learned compressive sensing (CS), sparse signal
representation, support recovery.

I. INTRODUCTION

SPARSE representation or sparse coding (SC) denotes
representing a signal as a linear combination of only a

small subset of a predefined set of waveforms. Compressive
sensing (CS) [1], [2] can be seen as a special form of SC,
while a signal, s ∈ Rd that has a sparse representation,
x ∈ Rn in a dictionary or basis � ∈ Rd×n , can be acquired
in a compressed manner using a linear dimensional reduc-
tional matrix, A ∈ Rm×d . Therefore, this signal can also be
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represented in a sparse manner in the dictionary, D ∈ Rm×n

(which can be called equivalent dictionary [3], where m � n,
and typically assumed to be full-row rank), which is the matrix
multiplication of the measurement matrix, A, and predefined
dictionary, �, i.e., D = A�. In the SC literature, signal
synthesis refers to producing a signal, y = Dx ∈ Rm , using a
sparse code, x ∈ Rn and a prespecified dictionary, D. On the
other hand, the signal analysis deals with finding the sparse
codes, x from the given measurements, y, with respect to the
dictionary D [4]. Sparse support estimation (SE) [5]–[7] refers
to finding the location indices of nonzero elements in SCs. In
other words, it is the localization of the smallest subset of
the atoms, which are the basis waveforms in the dictionary,
whose linear combination represents the given signal well
enough. On the other hand, sparse signal recovery (SR) refers
to finding the values of these nonzero elements of SCs. SE and
SR are intimately linked in such a way that the SE of a sparse
signal is first performed; then, an SR will be trivial using the
ordinary least-squares optimization. In fact, this is the main
principle of most greedy algorithms [8], [9]

The literature that purely targets SE is relatively short com-
pared to extensive studies on sparse SR [10]. Many existing
works, first, apply a coarse SR using existing SR methods, and
then, SE can be easily performed if SE is the main objective.
Indeed, there are many applications where computing the
support set is more important than computing the magnitudes
of SCs. For instance, in an SR-based classification (SRC) [11],
such as face recognition [12], the training samples are stacked
in the dictionary in such a way that a subset of the columns
consists of the samples of a specific class. As another example,
in cognitive radio systems, only a small ratio of all spectrum
is occupied for a given time interval. Therefore, finding
the occupied spectrum (i.e., the support set) is the primary
concern [13], [14]. Similarly, in a ground-penetrating radar
imaging system, finding the location of the target is more
important than predicting the actual signal magnitudes [15].

In this study, a novel convolutional sparse support estimator
networks (CSENs) is proposed with two primary objectives,
as shown in Fig. 1. First, this approach enables learning-
based noniterative SE with minimal computational complexity.
To accomplish this, we use two compact convolutional neural
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Fig. 1. Proposed CSEN with two potential applications. (a) (bottom-left) sparse SE. (b) (top-middle) Learned-aided CS-sparse signal reconstruction with
CSEN versus (top-right) traditional recovery methods. 1) OMP [8] and 2) �1-minimization.

network (CNN) configurations, both of which are designed
without the dense layers [16]. The proposed CSENs are trained
to optimize the SEs. To the best of our knowledge, this
is the first study that proposes a learning-based approach
for noniterative SE. Hence, in order to perform comparative
evaluations, we train the following state-of-the-art CS signal
reconstruction deep neural networks as the support estima-
tors: 1) ReconNet [17] that originally works on the spatial
domain; 2) the learned AMP (LAMP) [18] that is the deep
version of AMP [19], which is the state-of-the-art optimization
scheme working on the sparse domain; and 3) learned ISTA
(LISTA) [20] is the deep learning version of well-known SR
algorithm, iterative soft-thresholding algorithm (ISTA) [21],
which is the first attempt to unfold an optimization-based SR
algorithm in a neural network manner. An extensive set of
experiments over four benchmark datasets has demonstrated
that the proposed CSEN approach outperforms deep coun-
terparts, especially dealing with a structural sparse signal.
In the first experimental setup, we simulate a CS system
making data acquisition from the MNIST dataset in different
measurement rates (MRs). Moreover, the proposed SE system
is shown to improve the SE performance compared to its deep
counterparts, especially in low MRs and imperfect sparsity
(in the case of CS of approximate sparse signal or noisy
environment). Furthermore, CSEN is tested on a well-known
support recovery problem, where face recognition is performed
based on sparse codes [11]. We use two benchmark datasets,
Yale-B [22] and CelebA [23], in our experiments. Compar-
ative evaluations performed against the two state-of-the-art
dictionary-based (representation-based) face recognition meth-
ods in the literature, SR-based face recognition [11], and col-
laborative learning [24] have demonstrated that the proposed
CSEN approach outperformed both methods. Furthermore,
we develop a CSEN-based Coronavirus disease (COVID-19)
recognition system from X-Ray images [25]. In this problem,
CSEN shows its superiority over other representation-based
classifiers and traditional approaches on classification tasks
when the training size is small/moderate.

As for the second objective, we focus on an alternative
usage of CSENs. Instead of using them as support estimators,
which naturally requires the hard-thresholding of the network
outputs, these outputs can be directly used as prior information
about the sparse signals. It is a well-known fact that having
prior information about the nonzero locations, such as the

probability map, p(x) (or simply p), on the support set,
could improve the conventional SR algorithms [26]. However,
in many cases, it is not clear how to obtain such prior
information in advance. The most common usage of such
a system appears in dynamical sparse recovery [27], where
previous SEs can be used as priors for the next estimation.
In this study, we have demonstrated that CSEN outputs can
be a better alternative for the prior information of the nonzero
locations. Therefore, CSEN is now used as a learning-aided
CS reconstruction scheme, where the prior information comes
directly from the CSEN outputs. A wide range of experiments
shows that this approach has great potential to improve the SR
performance of traditional approaches for sparse SR problems.
As mentioned above, we used CS imaging simulation, but
this time signal reconstruction error is compared with state-
of-the-art conventional SR approaches. Fig. 1 illustrates a
representative graph of two different applications of CSENs:
1) performing SE from CS measurement vector, y and 2) the
output of CSEN is used as the side information, p, which gives
the estimated probability of being nonzero for each index.
In this simple illustration, we assume that the hand-writing
signal “2” is sparse in the spatial domain such that � = I;
therefore, D = AI = A, and B is a denoiser matrix such as DT ,
or (DT D+ λI)−1DT , where λ is the regularization parameter.
Moreover, we also show the possibility of using the learning-
aided CS reconstruction scheme when the signal is not sparse
in the spatial domain but in a proper domain. In this respect,
the sparsity of natural images in the gradient domain is used
to have a CSEN-aided total variation minimization system.

The rest of this article is organized as follows. In Section II,
we start by giving mathematical notation that is used in this
article. A brief overview of sparse representation and CS
theory, with an emphasis on state-of-the-art sparse SR and SE
techniques, will be given in Section III. In the same section,
we also introduce case studies of SE that are chosen for this
work. Then, we discuss the limitations of existing support
estimator techniques. In Section IV, we will present the pro-
posed learned-based SE scheme and the two compact CSEN
models. Experimental evaluations of the study will also be
given at the end of this section, which we can divide into five
main categories according to the case studies: 1) basic SE per-
formance evaluation on the MNIST dataset that is performed
to compare CSENs with the aforementioned state-of-art deep
networks; 2) SE-based face recognition performance evolution
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of proposed SE with an emphasis on how CSEN-based SE
has the ability to improve the classical representation-based
approaches; 3) a CSEN-based COVID-19 recognition system;
4) performance comparison of classical compressing sensing
reconstruction techniques and proposed learned-aided SR in
terms of both speed and reconstruction accuracy in the MNIST
dataset; and 5) CSEN-aided total variation system for recovery
of compressively sensed natural images. Having theoretical
and experimental analysis, in Section VI, we will present a
more detailed discussion on how the proposed scheme differs
from the state-of-the-art SR and SE techniques, pros and
cons, and possible usage scenarios with an emphasis on the
flexibility of proposed CSEN in different scenarios. Finally,
the conclusions are drawn in Section VII.

II. NOTATIONS

In this work, we define the �p-norm of any vector x ∈ Rn

as �x��n
p
= (

∑n
i=1 |xi |p)1/p for p ≥ 1. The �0-norm of the

vector x ∈ Rn is given as �x��n
0
= lim p→0

∑n
i=1 |xi |p = #{ j :

x j �= 0}, and the �∞ is defined as �x��n∞ = maxi=1,...,n(|xi |).
A signal s can be defined as a strictly k-sparse signal if it can
be represented with less than k + 1 nonzero coefficients in a
proper basis �, i.e., �x�0 ≤ k, where s = � x. We also define a
sparse support set or simply support set, � ⊂ {1, 2, 3, . . . , n},
as the set of indices that represent the nonzero coefficients,
i.e., � := {i : xi �= 0}. The complement of support set, �, with
respect to {1, 2, 3, . . . , n} is given as �c = {1, 2, 3, . . . , n}\�.
In this manner, x� ∈ R|�| is a vector consisting of nonzero
elements of x ∈ Rn , where |�| refers to the number of the
nonzero coefficients. Similarly, M� ∈ Rm×|�| denotes a matrix
that consists of the columns of a matrix M ∈ Rm×n indexed
by support �.

III. RELATED WORK

The CS theory claims that a signal s can be sensed using
far fewer linear measurements m than Nyquist-/Shannon-based
traditional methods’ use, d , i.e.,

y = As = A�x = Dx (1)

where A ∈ Rm×d is the measurement matrix and D ∈ Rm×n

is called the equivalent dictionary. It can be demonstrated that
sparse representation

min
x
�x�0 s.t. Dx = y (2)

is unique if m ≥ 2k [28] and �x�0 ≤ k. In brief, the uniqueness
of the sparse representation in (2) shows that any k-sparse
signal pair can still be distinguished in the equivalent dic-
tionary, D. However, the problem in (2) is that this is a
nonconvex problem and known to be NP-hard. The most
common approach is the relaxation of the �0-norm to the
closest convex norm, which is �1-norm

min
x
�x�1 s.t. x ∈ �(y) (3)

where �(y) = {x : Dx = y}, which is known as basis
pursuit [29]. The surprising result of the CS theory is that,
even if the exact recovery of the signal, s, was not possible

by using the minimum norm solution, a tractable solution is
possible using (3), when D satisfies some properties, such as
restricted isometry property [30] and m > k(log(n/k)).

However, the signal of interest, x, is not perfectly k-sparse
but approximately sparse in most of the cases. In addition,
CS measurements, most probably, are corrupted by an additive
noise during data acquisition, quantization, and so on. As a
result, we handle y = Dx + z, where z is the additive noise.
In this case, the constraint can be relaxed by setting �(y) =
{x : �Dx−y�2 ≤ �}, which is known as basis pursuit denoising
(BPDN) [29] or the Dantzig selector [31], if we set �(y) =
{x : �DT (y−Dx)�∞ ≤ λ}. In the noisy case, even exact recov-
ery of sparse signal is not possible, stable recovery is well stud-
ied in the literature for BPDN [32] and the Dantzig selector
[33], [34]. We mean by stable recovery is that a stable solution
x̂ obeys �x − x̂� ≤ κ�z�, where the κ is small constant.
Another related formulation is

min
x

{�Dx − y�2
2 + λ�x�1

}
(4)

which is known as Lasso [35] formulation, which is also
known to produce stable solution in noisy case and exact
solution in noise free case [36].

A. Generic Sparse Support Estimation

In many application scenarios, detecting the indices of
the nonzero coefficients’ location, �, is more important than
computing these coefficients. To list a few, in a sparse anomaly
(either from CS [37] or uniform sampled measurements)
detection problem [38], where a group of users initiates a
flooding attack to a communication network (specifically for
a VoIP network), detecting the malicious user group (a subset
of all users) is more critical. Among others, CS-based active
user detection in the downlink of a CDMA system [39]
and for the uplink of an NOMA [40], [41] system can be
counted. Such systems are believed to play an important role
in 5G communication technology. As discussed in Section I,
other examples may be listed as sparse representation-based
classifications [11], [12] and radar imaging [15], [42].

Mathematically speaking, for the linear measurement model
given in (1) and with additive noise, y = Dx + z, we define
the following support estimator E(., .):

�̂ = E(y, D) (5)

where �̂ is the estimated support. For the noise-free case,
x is exactly k-sparse, and the exact � recovery performance
of an algorithm coincides with the sparse SR performance.
This an expected outcome since the unique representation is
satisfied when m > 2k. In the noisy case, even if the exact
SR is not possible, it is still possible to recover the support
set exactly. In the literature, several studies have proposed
to provide information-theoretical (i.e., the optimal decoder,
E’s performance) guarantee conditions for exact [5], [10],
[43], [44] and partial SE [7], [10], [45]. However, in most of
the practical applications, a tractable SR method is applied
first to find an estimation x̂ of the sparse signal x; then,
a componentwise thresholding is applied to x̂ to compute the
estimated support, as illustrated in Fig. 2.
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Fig. 2. Most common model for a practical support estimator.

A common approach is to follow an iterative sparse SR
method from the CS literature. For instance, it is proven in [46]
that, if mini∈� |xi | > 8σ(2 ∗ log(n))1/2, then one can recover
the support set exactly using Lasso with λ = 2(2 ∗ log(n))1/2,
where σ 2 is variance of the measurement noise. This theorem
is valid in the case that the equivalent dictionary satisfies the
mutual coherence property defined in [46]. One may clearly
deduce from their results that accurate SE is possible via
Lasso if the nonzero coefficients’ magnitudes are above a
certain level determined by the noise. Similarly, the conditions
of exact support recovery under noise using OMP are given
in [47], and partial support recovery performance bounds of
AMP are in [48]. Along with these SR algorithms in the
CS literature, which are iterative methods, traditional linear
decoders, such as maximum correlation (MC) [49], x̂MC =
DT y, and LMSEE [48], x̂LMMSE = (DT D+σ 2

z In×n)
−1DT y, are

also used in many applications. The theoretical performance
bounds of these methods are also given in [48].

B. Case Study of SE: Representation-Based Classification

Consider an image from a particular class is queried. It can
be expected from the estimated SCs, x̂, to have signifi-
cant (nonzero) entries that are located in a specific location so
that the corresponding columns in the dictionary matrix, D, are
the samples from the actual class of the image. This problem
is also known as the representation-based classification, which
is a typical example where the support set location is the main
information that we are seeking.

In [11], �1-minimization is used to obtain such a sparse code
to determine the identity of face images. However, in reality,
such an ideal decomposition is not accomplished in general
because face images show a high correlation among different
classes. This is why, instead of using the estimated sparse
codes, x̂ obtained by an SR technique, such as (4), the authors
propose a four steps solution.

1) Normalization: Normalize all the atoms in D and y to
have unit �2-norm.

2) SR: x̂ = arg minx �x�1 s.t. �y − Dx�2.
3) Residual Finding: ei = �y − Dix̂i�2, where x̂i is the

estimated coefficients corresponding the class i .
4) Class Determination: Class(y) = arg min(ei).
This technique and its similar variants have been reported

to perform well not only in face recognition but many other
classification problems [50], [51]. Later, Zhang et al. [24]
propose to change the second step, from �1-minimization to the
classical �2-minimization; x̂ = arg minx{�y− Dx�2

2 + λ�x�2
2},

which has a closed-form solution, x̂ = (DT D+ λIn×n)
−1DT y.

This collaborative representation-based classification (CRC)
was reported to achieve a comparable classification perfor-
mance for different classification problems. For face recog-
nition problems, in particular, the authors reported that high
classification accuracies were obtained especially for high
MRs.

C. Sparse Signal Reconstruction With Side Information
of Support Set

Consider the case where SE is not the main concern but SR
is. In case side information is available about the support set,
an improvement to �1-minimization can be achieved in sparse
SR as follows:

min
x

{�Dx − y�22 + λ�w � x�1

}
(6)

where � is elementwise multiplication operator and w is the
predefined cost that imposes the prior information about each
element’s values. In the concept of modified CS [52] and
CS with prior information literature, the cost function, w,
generally appears in the form of wi = (1/(pi + �)), where
� > 0 is a predefined constant and pi is the i th element of
the vector p, which is a type of a measure, such as prior
likelihood [26] of the support set, which could represent the
probability of the (i)th element being nonzero.

D. Limitations of Existing Support Estimators

Both SE and SR algorithms guarantee to perform well
if the equivalent dictionary D satisfies certain properties,
such as mutual incoherence [53]. However, in many practical
scenarios, D fails to satisfy these properties, e.g., in the face
recognition problem, the atoms of D, vectorized faces, are
highly correlated. The second limitation of traditional sparse
recovery algorithms is that they are iterative methods and
computationally costly. Therefore, the support estimators rely-
ing on these sparse recovery algorithms may not be feasible,
especially in real-time applications. The third limitation of
state-of-the-art SR techniques, such as �1-minimization, is that
there is a lower limit for MR (see phase transition [54]); below
this limit, the SR algorithms start to fail completely. This limit
generally depends on the wellness of D (defined by properties
such as mutual incoherence [53]). Therefore, SE techniques
that build upon an SR algorithm tend to fail if D does not
satisfy the required properties, e.g., if the atoms of D are highly
correlated.

On the other hand, when it comes to SR techniques lever-
aging SE as prior information, despite the fact that a good
improvement can be achieved using such prior information,
most of the works assume that the information is available in
advance; however, they do not mention how to obtain such a p.

IV. CONVOLUTIONAL SPARSE SUPPORT ESTIMATOR

NETWORK

Recent advance in deep neural networks [18], [20] enables
a noniterative solution for the sparse SR. It is often reported
that they produce a solution x̂, which is closer to x than
the ones obtained by an iterative approach. They can still
work under those MRs where classical CS recovery algorithms
fail. Nevertheless, their complex configuration with millions
of parameters causes certain computational complexity issues,
such as speed and memory problems, especially when they are
used in edge devices with limited power, speed, and memory.

If one may wish to find only support � instead of the
sign and amplitude of x, a traditional machine learning
approach would be sufficient. In this study, we propose a
support estimator, E(.), which can be performed by a compact
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Fig. 3. Proposed model for an efficient support estimator.

CSEN network. Another crucial objective is to have the ability
to learn from a minimal training set with a limited number of
labeled data. A typical application where this approach can
benefit from is face recognition via sparse representations,
where only a few samples of each identity are available.

Let us define a binary mask α ∈ {0, 1}n, as follows:
αi =

{
1 if i ∈ � (7a)

0 else. (7b)

Consequently, the problem of finding an estimation α̂ of this
binary mask will be equivalent to producing an SE �̂, i.e., �̂ =
{i ∈ {1, 2, . . . , n} : α̂i = 1}.

To accomplish this objective, first, the CSEN network with
input and output, P(y, D) : Rn → [0, 1]n, produces a vector p
that gives the information about the probability of each index
to be in support set such that pi ∈ [0, 1]. Then, the final
support estimator, E(y, D), will produce an SE such that �̂ =
{i ∈ {1, 2, . . . , n} : pi > τ }, by thresholding p with τ , where
τ is a fixed threshold.

As shown in Fig. 3, the proposed SE approach is differ-
ent from the conventional SR-based methods, which directly
thresholds x̂ for SE. Moreover, the input–output pair is differ-
ent. The proposed CSEN learns over (y train, v train) to compute
p, while the conventional SR methods work with (y train, x train)
to first make the sparse signal estimation and then compute
SE by thresholding it. As evident in Fig. 1, the application of
direct SR may cause noisy estimation of the support codes,
while the proposed CSEN has the advantage of learning the
pattern of the support codes and, therefore, can predict their
most-likely location with proper training.

In this study, the proposed CSEN models consist of only
convolutional layers in the type of fully convolutional net-
works [16] that are trained by optimizing the SEs. Since the
SE problem involves one-to-one mapping, other network types,
such as multilayer perceptrons (MLPs), can also be used as
in [18]. However, this brings two limitations compared to
CSENs: high computational complexity and overfitting due
to the limited training data and number of parameters in the
network. In Section V, it will be shown that such an approach
yields a poor generalization and is not robust to noise.

When a CSEN is trained, it learns the following transfor-
mation: α̂← P(x̃), where α̂ is the estimation of binary mask
representing the estimated support for the signal x, and the
proxy x̃ = By with B = DT, or (DT D + λI)−1DT , i.e., the
MC and LMMSE formula in [48]; hence, x, x̃ ∈ RN . First,
the proxy x̃ is reshaped to 2-D plane (e.g., the original size
of the image or predefined search grid). Correspondingly,
the proxy X̃ (the matrix version of x̃) is convolved with w1,
the set of weight kernels connecting the input layer to the next
layer with N1 filters to form the input of the next layer with
the summation of weight biases b1 as follows:

f1 =
{

S1
(
ReLu

(
bi

1 + wi
1 ∗ X̃

))}N

i=1 (8)

where S1(.) is the down-sampling or identity operator, wi
1 is

the i th kernel weight, and bi
1 is its corresponding bias term and

ReLu(x) = max(0, x). In more general form, the kth feature
map of layer l can be expressed as

fk
l = Sl

(
ReLu

(
bk

l +
Nl−1∑

i

wik
l ∗ f i

l−1

))
(9)

where wi
1 is the i th kernel weight of the lth layer, bi

l is its
corresponding bias term, Nl is the number of filter in this
layer, and Sl(.) is either the down- or up-sampling or identity
operator depending on the CSEN structure. The trainable
parameters of the network would be

�CSEN =
{{

wi
1, bi

1

}N1

i=1,
{
wi

2, bi
2

}N2

i=1, . . . ,
{
wi

L , bi
L

}NL

i=1

}
for a L layer CSEN.

In the proposed approach, the mean square error (mse) is
computed between its binary mask, α, and CSEN’s actual
output, P
(x)p, as follows:

E(x) =
∑

p

(P
(x)p − αp
)2

(10)

where v p is the pth pixel of α. The CSEN network is
trained using samples in the train data, Dtrain = {(x̃(1),α(1)),
(x̃(2),α(2)), . . . , (x̃(s),α(s))}. Please note that, even if we use
mse as the loss function in the original CSEN design,
depending on the application, any other regularization function
(e.g., �1-norm and mixed norm) can be added to this cost
function. As an example, we present a strategy to approximate
the loss function, which is group �1-norm in addition to mse.

V. RESULTS

In order to evaluate the effect of different network configura-
tions, in this study, we use two different CSEN configurations
and perform a comprehensive analysis of each of them.
Generally, each convolutional layer has a dimension reduction
capability with pooling functions. However, the first proposed
network architecture consists of only convolutional layers
with ReLu activation functions to preserve the sparse signal
(e.g., image) dimensions at the output layer. In this con-
figuration (CSEN1), we propose to use three convolutional
layers with 48 and 24 hidden neurons and 3 × 3 filter
size, as given in Fig. 4. CSEN2 is a slight modification of
CSEN1 configuration, as shown in Fig. 5, by using up- and
down-sampling layers. Although this modification increases
the number of parameters, in return, it yields substantial
performance improvement over MNIST. While the SE per-
formance analysis over MNIST has done using CSEN1 and
CSEN2, only CSEN1 results are reported since CSEN2 pro-
duces similar recognition rates (∼0.001 difference) for face
recognition. In any case, both network configurations are
compact compared to the deep CNNs that have been proposed
recently. For example, the study in [17] proposes ReconNet for
SR, which consists of six convolutional layers with 32 neurons
or more in each layer.

Since there is no competing method for SE that is similar
to the proposed method, we use the ReconNet [17] in this
study on the SE problem by directly giving x̃ as the input
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Fig. 4. Type-I CSEN (CSEN1).

Fig. 5. Type-II CSEN (CSEN2).

and removing the denoiser block at the end for comparative
evaluations. Finally, we apply thresholding over the output
of ReconNet to generate SE i.e., �̂R = {i ∈ {1, 2, . . . , n} :
PR(x̃) > τ }, where PR(.) is ReconNet with fully convolu-
tional layers. ReconNet is originally a CS recovery algorithm
working directly on spatial domain, i.e., ŝ ← P(y) instead
of solving them in the sparsifying dictionary, i.e., ŝ = �x̂
where x̂ ← P(y). Therefore, ReconNet serves as a deep
CSEN approach against which the performance of the two
compact CSENs will be compared. Moreover, we also train
the state-of-the-art deep SR solution, LAMP, and, first of its
kind, LISTA networks, in order to use them over the SE
problem. For the LAMP method, it is possible to predefine the
number of layers in advance. For a fair comparison, we have
tested the unfolded networks, LISTA and LAMP, for three
different setups: two-, three-, and four-layer designs using
their provided implementation. Next, in the experiments of
face recognition based on SR, we consider both speed and
recognition accuracy of the algorithms as it is performed only
for the �1-minimization toolbox in [55]. Thus, in order to per-
form comparative evaluations, the proposed CSEN approach is
evaluated against most of the conventional state-of-the-art SR
techniques along with ReconNet. Finally, CSEN2 is applied
as a preprocessing step for the CS-recovery to obtain w in the
cost function, as illustrated in Fig. 1.

The experiments in this study have been carried out on
a workstation that has four Nvidia TITAN-X GPU cards
and Intel Xeon CPU E5-2637 v4 at 3.50 GHz with 128-GB
memory. Tensorflow library [56] is used with Python. ADAM
optimizer [57] is utilized during the training with the proposed
default values of the learning parameters: learning rate: lr =
0.001 and moment updates: β1 = 0.9 and β2 = 0.999 with
only 100 and 30 backpropagation iterations for MNIST and
face recognition experiments, respectively.

A. Experiment I: Support Estimation From CS Measurements

The following metrics are used to report the performance
of the proposed and competing methods:

F1 Measure (F1-Score) = 2× Precision× Recall

Precision+ Recall
(11)

Specificity = TN

TN+ FP
(12)

Sensitivity = TP

TP+ FN
(13)

where true negatives (TNs), false negative (FN), true posi-
tive (TP), and false positive (FP) are calculated between the
predicted binary mask α̂ and its corresponding ground truth
α for each sample in test set. Then, the final reported perfor-
mance metrics are the averaged ones using the macroaverage
method.

For the experiments in this section, the MNIST dataset is
used. This dataset contains 70 000 samples (50k/10k/10k as the
sizes of the train/validation/test sets) of the handwritten digits
(0–9). Each image in the dataset is a 28 × 28 pixel resolution
with intensity values ranging from 0 (black, background) to
1 (white, foreground). Since the background covers more area
than the foreground, each image can be considered as a sparse
signal. Mathematically speaking, we may assume that the i th
vectorized sample, xi ∈ Rn=784, can be considered as the ki -
sparse signal. The sparsity rates of each sample are calculated
as ρi = (ki/n), and its histogram is given in Fig. 6. We have
designed an experimental setup where these sparse signals
(sparse in canonical basis) xi ’s are compressively sensed

yi = Axi = Dxi (14)

where D = A ∈ Rm×n since � = I. We calculate the MR as
MR = (m/n). Therefore, the problem is SE from each CS
measurement, i.e., finding �̂i from each yi in the test dataset.
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Fig. 6. Histogram of ρi ’s obtained from the 10k samples (test set). The
vectorized gray-scale images, xi , in the MNIST dataset are already sparse in
the spatial domain (in canonical basis, i.e.,  = I ) with �xi� ≤ ki .

Fig. 7. F1 measure graph of CSEN and LAMP configurations in different
noise levels at MR = 0.25.

For this dataset, the MR is varied from 0.05 to 0.25 in order
to investigate the effect of MR on the SE performance. The
measurement matrix is then chosen as the “Gaussian,” and the
elements Ai, j of the matrix are i.i.d. drawn from N (0, (1/m)).
It is worth mentioning that the approximate message pass-
ing (AMP) algorithm is a well-optimized method for the
Gaussian measurement matrix, and LAMP is a learned version
of this algorithm. Therefore, they are reported to be state of
the art if the measurement matrix is Gaussian, but they do not
even guarantee the converge for other types of measurement
matrices. On the other hand, the comparative performance
evaluations against LAMP, LISTA, and deep CS-SR methods
are presented in Tables I and II, and the results clearly indicate
that the proposed method achieves the best SE performance in
terms of F1 measure for MR = 0.25 and 0.05 and comparable
for MR = 0.1. The results presented in Table I indicate that,
despite its deep and complex configuration, compact CSENs
achieve superior performance levels compared to ReconNet.
For both LISTA and LAMP, both increasing the layer size
from 2 to 4 does not improve their SE performances as it can
be observed in Table I. Hence, their numbers of layers are not
further increased.

Furthermore, comparative evaluations are performed when
the measurements are exposed to noise in the test set, i.e., yi =
Dxi + zi , where zi is an additive white Gaussian noise.
The results presented in Fig. 7 show that SE performances
of the LAMP and LISTA method are adversely affected by
increased measurement noise. Their performance gets even
worse when the number of layers is increased [i.e., see results

TABLE I

SUPPORT RECOVERY PERFORMANCE OF ALGORITHMS
FROM THE NOISE-FREE MEASUREMENTS

TABLE II

SUPPORT RECOVERY PERFORMANCE OF ALGORITHMS

UNDER 10-dB MEASUREMENT NOISE

for LAMP (2) to LAMP (4) or LISTA (2) to LISTA (4)].
CSEN2, on the other hand, achieves the highest F1 measure
for all noise levels.

B. Convolutional Support Estimation-Based
Classification (CSEN-C)

As explained in Section III-B, the dictionary-based
(representation-based) classification could be seen as an SE
problem. Therefore, CSEN presents an alternative and better
approach to both CRC and SRC solutions. In this manner,
the proposed CSEN approach is evaluated against both CRC
and the state-of-the-art SRC techniques recently proposed.
The algorithms are chosen by considering both their speed
and performance on the SR problem since the speed-accuracy
performance of SRC directly depends on the performance of
the sparse SR algorithm [55], and there is no unique winner
to achieve the top performance level for all databases. The
proposed method is, of course, not limited to face recognition
but can be applied in any other representation-based classi-
fication problem. In Section V-C, we will also consider a
new and challenging classification task, Coronavirus disease
(COVID-19) recognition from X-Ray Images.

End-to-End Learning of CSEN-Based Classifiers:
In dictionary-based classification designs, the samples
of a specific class are stacked in the dictionary as atoms with
predefined indices, e.g., the atoms belonging to a particular
class can be located in a concatenated manner. Consequently,
in sparse representation-based classification, instead of
using �1-minimization in (4), group �1-minimization can be
introduced as follows:

min
x

{
�Dx − y�2

2 + λ

c∑
i=1

�xGi�2

}
(15)
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where xGi is the group of coefficients corresponds to class i .
Hence, the mse cost function in (10) can be modified
accordingly

E(x) =
∑

p

(P
(x)p − αp)
2 + λ

c∑
i=1

�P
(x)Gi�2. (16)

This modified cost function can be used to achieve a better
estimation of the support set. Having this improved estimation,
the query class can be obtained. However, having such an
intermediate step is also redundant for a classification problem.
In this study, we slightly modify the network to make it an end-
to-end learning system: to approximate the new cost function
defined in (16), a simple average pooling can be applied
after the last layer of CSEN, which is then followed by the
SoftMax function to produce class probabilities. Therefore,
the modified cost function with the cross-entropy loss at the
output would be E(x) = −∑C

i ti log(P
(x)), where ti and
P
(x) are the real and predicted values by CSEN, respectively,
for class i ∈ C . In this way, the modified network can directly
yield the predicted class labels as the output. The pipeline
of the proposed end-to-end learning is drawn in Fig. S1 in
the Supplementary Material. One may question whether the
proposed compact network designs (CSEN1 and CSEN2) are
the optimal ones. We also replaced CSEN compact networks
with the deeper fully convolutional one, ReconNet, as an
alternative network design and report also its performance as
a competing method.

1) Multiclass Classification Problem: Face Recognition via
CSEN-C (Experiment II): In the face recognition experiments,
we have used Yale-B [22] and CelebA [23] databases. In the
Yale-B dataset, there are 2414 face images with 38 identities;
and a subset of CelebA is chosen with 5600 images and
200 identities. The face recognition experiments are repeated
five times with samples randomly selected to build the dictio-
nary, train, and test sets with 32, 16, and 16 and 8, 12, and
8 samples each for Yale-B and CelebA, respectively, for CSEN
schemes, and 25% of training data is separated as validation.
To have a fair comparison, for CRC and SRC methods,
the training set is also included in the dictionary, which
are 48 and 20 samples per identity for Yale-B and CelebA,
respectively. The selected subset of the CelebA dataset is also
different between each repeated run. For the Yale-B database,
we use vectorized images in the dictionary. Earlier studies
reported that both SRC and CRC techniques achieve a high
recognition accuracy of 97%–98%, especially for high MR
rate scenarios (m/d > 0.25 for A ∈ Rm×d). On the other
hand, for the CelebA dataset, both CRC and SRC solutions
tend to fail when we use raw atoms in the dictionary without
extracting descriptive features. This is why, in this study,
we propose to use a more representative dictionary. Instead
of using raw images, the atoms consist of more descriptive
features extracted by a neural network-based face feature
extractor in the library [58]. The proposed method is compared
against CRC and SRC techniques with the following seven
state-of-the-art SR solver: ADMM [59], Dalm [55], OMP [55],
Homotopy [60], GPSR [61], L1LS [62], �1-magic [63], and
Palm [55].

Fig. 8. Recognition accuracy versus process time comparison of algorithms
in the Yale-B database.

Fig. 9. Recognition accuracy versus process time comparison of algorithms
in the CelebA database.

Overall, when we perform experiments in two facial image
databases, Yale-B and CelebA for different MRs, the CSEN-
based classification proves to be very stable; and in all MRs,
it gives the highest or comparable recognition accuracy to the
highest ones for all experiments, as presented in Figs. 8 and 9.
Furthermore, it is significantly superior in terms of computa-
tional speed compared with SRC solutions.

To be able to use the same CSEN designs introduced in
Section IV, we reorder the positions of the atoms, i.e., in
the representative sparse codes corresponding nonzero coef-
ficients remain next to each other in the 2-D plane. A simpli-
fied illustration of the comparison of conventional dictionary
design and the proposed design for sparse representation-based
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Fig. 10. Graphical representation of proposed dictionary design versus
conventional design for face recognition problem.

TABLE III

FOR CSEN-BASED RECOGNITION, THE UTILIZED FACE RECOGNITION
BENCHMARK DATASETS ARE GIVEN WITH THEIR CORRESPONDING

MASK SIZE AND NUMBER OF SAMPLES IN DICTIONARY,
TRAINING, AND TESTING PER CLASS

classification is shown in Fig. 10. Defined sparse code sizes
and their representations in the 2-D grid for Yale-B and
CelebA datasets are also given in Table III.

C. Binary Classification Problem: COVID-19 Recognition
From X-Ray Images via CSEN-C (Experiment III)

The recent fast spread pandemic caused by Coronavirus
disease (COVID-19) has affected millions worldwide. X-ray
imaging is an easily affordable and accessible tool, which
provides faster results, compared to other tests that are used
in COVID-19 detection. It is well known that deep neural
network models achieve state-of-the-art performance results in
recognition and detection tasks. However, they require a large
number of training samples to achieve a good generalization
capability. On the other hand, representation-based classifiers
are known to obtain reasonable classification performances
with scarce data. In our previous work [25], we showed that
CSEN-based classification is effective in recognizing COVID-
19 among other classes when the classification problem is
multiclass, i.e., COVID-19, bacterial pneumonia, viral pneu-
monia, and normal (healthy) classes. In the sequel, we will
investigate the performance of CSEN-based classification in
a binary classification task, that is, COVID-19 differentiation
from other classes (control group). In such a sudden outbreak,
such as COVID-19, preventing the spread should be a major
concern. For this reason, we focus on minimizing FNs (while
keeping the FPs as low as possible.

We used a benchmark dataset, Qata-Cov19 [25], of Chest
X-Ray images from COVID-19 patients containing 462 sam-
ples. The control group (non-COVID class, a Kaggle
dataset [64]) consists of 5824 X-Ray images that are 2760,
1485, and 1579 samples from Bacterial pneumonia, viral
pneumonia, and normal class, respectively. We used fivefold
cross-validation for evaluation, that is, for each fold, a different
(20%) portion of the dataset was used as the test set, while
the remaining (%80) of the data was used for training. In this

TABLE IV

COVID-19 RECOGNITION PERFORMANCES OF THE ALGORITHMS

way, all classifiers were evaluated over the entire dataset.
Specifically, over 6286 total samples, for each fold, 5029 of
them are selected for training, and 1257 (1164 samples from
the control group and 63 samples from the COVID-19 class)
are used as the test set. Data balancing was applied only to the
training set, while the test set remained the same. The training
set is augmented to have 9320 samples (4660 samples from
the control group and 4660 samples from the COVID-19 class)
via data balancing. The average performance over the fivefold
was reported as the overall performance of each algorithm. The
same experiment, with the same partitions, was conducted for
all competing algorithms for a fair comparison.

In order to extract discriminative features from raw chest
X-ray images, a pretrained model CheXNet [65], which
was trained for other types of pneumonia detection from
X-Ray images, is used. Using the pretrained CheXNet model,
we extracted 1024-long vectors right after the last average
pooling layer. After data normalization (zero mean and unit
variance), we obtained a feature vector s ∈ Rd=1024. Then,
the PCA matrix A is applied to the features, i.e., y = As.
As competing algorithms to CSEN-based designs, CSEN1,
CSEN2, and ReconNet, we selected the traditional classifiers
KNN, MLP, and SVM, as well as the representation-based
classifiers CRC and SRC. For SRC, we only reported the
best-performed sparse recovery technique for this classification
task, which is DALM. For the competing representation-based
classifiers, CRC and SRC, the whole training data are used in
the dictionary. On the other hand, for CSEN-based classifiers
and ReconNet one, out of total training samples, 3200 samples
(1600 samples for each class) are used in the dictionary, and
the rest were used to train CSENs. For this smaller dictionary,
the sparse code size in the 2-D plane is set as 80 × 40.

As it can be observed from Table IV, SRC performance
drastically drops for the binary classification task. It is an
expected result because the ideal representation coefficient, x,
is not sparse enough (e.g., the sparsity ratio (k/n) = 0.5).
Although the CSEN-based classifier is also sparsity-driven
and favors sparser representation (e.g., multiclass) problems,
it still shows superior performance over other representation-
based classifiers, which are CRC and SRC. When we compare
with other traditional classifiers, the proposed scheme out-
performs the second-best performing one, SVM, with respect
to the missclassification rate of COVID-19, sensitivity, and
F2-Score. These performance metrics can be considered major
indicators because we want to achieve the highest sensitivity
possible for the minimization of the FNs with a tolerable false
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Fig. 11. Top: proposed CS reconstruction. Bottom: traditional
�1-minimization-based CS-recovery.

alarm rate. On the other hand, if one wants to compare the
performance in terms of F1-Score instead of F2-Score, CSEN-
based classification still achieves a comparable performance
with SVM. F-2 Score is calculated as follows: F2-Score = 5×
(Precision × Recall)/(4 × Precision + Recall). One may
question whether or not the compact CSEN configuration
is the optimal one. When we replace the proposed compact
network configurations with a deeper well-known network,
ReconNet, in the CSEN-based design, no significant perfor-
mance improvement is observed. In fact, the results are even
worse compared to CSEN2 configurations.

D. Learning-Aided Compressive Sensing

1) Experiment IV: Sparse in Spatial Domain: As the
experimental setup, we randomly choose sparse signals, x,
in the MNIST database and use the Gaussian measurement
matrix, A, to simulate the CS, i.e., y = Ax. Then, we recover
the sparse signal from y by using the aforementioned state-of-
the-art SR tools and the proposed weighted �1-minimization
[see (6)], where the weights w are obtained using CSEN output
such that w = (1/(p+ �)). Fig. 11 shows an illustration
of how the proposed CS reconstruction scheme differs from
the traditional CS recovery setup. Using the output of CSEN
as prior information not only provides more accurate SR
but also faster convergence of iterative sparse SR such as
�1-minimization.

Furthermore, we draw the estimated phase transition of
the algorithms in Fig. 12 using an experimental setup whose
procedure is explained in [19]. Briefly summarizing the pro-
cedure, a grid of (MR, ρ) is generated for each algorithm,
with 20 independent realizations of the problem: according
to their sparsity ratios, ρ, randomly chosen sparse signals x,
among 10000 MNIST test images, are compressively sensed
with the independent realization of measurement matrices.
Then, they are recovered using the competing algorithms,
and each realization is considered a success for the specific
algorithm if ((�x − x̂�2)/�x�) ≤ tol, where tol is a predefined
parameter; we choose tol = 10−1 in our experiments. For a
specific algorithm, we draw the phase transition in the border
where a 50% success rate is achieved. The procedure is similar
to [19], with the exception that they repeated the experiment
only once, while we repeat it 100 times for each method,
except L1LS due to its infeasibly high computational cost
(it took almost two weeks with an ordinary computer). With
an accurate SR algorithm, we expect the transition border to
be close to the left-top corner in the phase transition graph
because it is a good indicator that the algorithm performs well

Fig. 12. Phase transition of the algorithms.

in low MRs and with a high sparsity ratio, ρ. From Fig. 12,
one can easily deduce that the proposed CS-reconstruction
approach clearly outperforms all competing state-of-the-art SR
reconstruction methods. Moreover, the two examples where
signals are compressively sensed with M R = 0.25 and their
estimated versions by different SR methods are shown in
Fig. 13. It is clear that the proposed approach recovers the
sparse signal with the best quality, while the other state-of-
the-art SR techniques perform poorly.

2) Experiment V: Sparse in a Proper Domain (Total Varia-
tion for Natural Images): In Section V-D1, we assumed that
MNIST handwriting signals are sparse in the spatial domain,
i.e., � = I. Nevertheless, it is not the case for most of
the real-world signals. For instance, natural images are not
sparse in canonical basis but sparse in a convenient sparsifying
basis, such as DCT and wavelet. In this section, we will
use the gradient domain as sparsifying basis, i.e., � = ∇.
Mathematically speaking, let we have an image S ∈ Rn1×n2

to be compressively sensed with the measurement matrix
A ∈ Rm×n via y = As ∈ Rm , where s ∈ Rn is vectorized
image, and n = n1 × n2. The image can be sparsely repre-
sented in ∇ with sparse code pair (Xh, Xv), which are nothing
but gradients on the horizontal axis (x-axis) and the vertical
axis (y-axis), respectively, i.e., ∇hS = Xh and ∇vS = Xv.
Therefore, one can recover the image from y by solving the
following total variation minimization problem:

min
S

λ�∇S�TV + �y − Avec(S)�2
2 (17)

where we use the following anisotropic total variation
definition:
�∇S�TV = �∇hS�1 + �∇vS�1 (18)

=
∑
i, j

∣∣Si+1, j − Si, j

∣∣+∑
i, j

∣∣Si, j+1 − Si, j

∣∣. (19)

TV minimization-based solutions are mostly used in CS
reconstruction problems and other inverse imaging systems
to better preserve the edges and the boundaries compared
to other sparsifying domains, such as DCT. In order to
solve the optimization problem in (17), we use one of the
state-of-the-art TV minimization solver, TV Minimization
by Augmented Lagrangian and Alternating Direction Algo-
rithms (TVAL3) [66]. Similar to Section V-D1, a CSEN
can take the proxy of sparse code as input and produces
a probability like measure that give a likelihood about the
support of the sparse signal. In this TV-based problem, CSEN
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Fig. 13. Examples from MNIST that is compressively sensed and then reconstructed at MR = 0.25.

Fig. 14. Examples of the tested natural images. CSEN learns the p maps from the proxy images in both axes. Then, the p maps are used in solving the
weighted total minimization problem. Traditional TVAL3 solutions have performance of 35.06 (dB) and 22.75 (dB) in PSNR, while CSEN-aided one achieves
36.97 (dB) and 23.68 (dB) in PSNR for butterfly and cameraman images, respectively.

takes two-channel input (X̃h =�∇hS, X̃v =�∇vS) and produces
a two-channel p-map, (ph, pv). Example proxy images and
CSEN outputs can be seen in Fig. 14. The proxies are
obtained by having AT y first and then applying ∇ in both
axes after reshaping AT y to the original image dimension,
n1 × n2. Hereafter, similar to Section V-D1, learning-aided
CS recovery can be fulfilled by solving the following weighted
TV minimization problem:

min
S

λ�W�∇S�TV + �y − Avec(S)�2
2 (20)

where

�W �∇S�TV = �Wh �∇hS�1 + �Wv �∇vS�1 (21)

and Wh and Wv are calculated by using the outputs of CSENs
ph and pv, respectively i.e., Wh = (1/(ph + �)) and Wv =
(1/(pv + �)).

In order to solve (20), the same solver can be utilized
with the one that is used to solve (17) by only changing
the soft-thresholding to the weighted soft-thresholding in the
algorithm. In this manner, we use TVAL3 for both problems
with the following parameter setup: μ = 213, β = 26,
μ0 = 22, 2−2, tol = 10−6, and maxit = 300.

In order to estimate p-maps, CSEN1 network was trained.
The training dataset is prepared in the following manner:
89272 image patches of size 256 × 256 were randomly
cropped from the DIV2K image dataset [67]. During data
generation, data augmentation was applied to original DIV2K
images with eight different rotations and three different scal-
ing factors. The generated image patches are normalized to
have values in [0, 1]-scale. We applied gradient operation
to each patch; then, ground-truth support sets were obtained
by defining a small threshold to the gradients, i.e., �GT =
{i, j ∈ {1, 2, . . . , n1} × {1, 2, . . . , n2} : |∇Si, j | > τ1}. We set

τ1 = 0.04 and n1 = n2 = 256. Input images were first applied
to CS, y = Avec(S); then, proxies are obtained from CS
images. Finally, the absolutes of the proxies are given as input
and CSEN1 were trained to learn mapping to binary mask v
[defined in (7a) and (7b)]. During training, the batch size was
chosen as 8, and CSEN was trained with 100 epoch. The
learning rate was set to be 0.001 for the first 50 epochs,
and then, it was scheduled to be 0.0001 and 0.00001 for the
following 30 and 20 epochs, respectively. To calculate the cost
matrices, W, � is set to be 0.2.

Since applying the Gaussian random measurement matrix,
A, to large-scale signals of size n = × 256 is computa-
tionally infeasible, we applied structural measurement matrix.
The rows of the measurement matrix can be chosen from a
subset of the randomly permuted rows of a basis for which
a computationally fast implementation is feasible. We used
the Walsh Hadamard transform whose fast implementation is
available in the TVAL3 toolbox. By using such a structural A,
the computational complexity of matrix multiplications, e.g.,
As and AT y, can be reduced to O(n log n) from O(m × n)
compared to using fully random matrices.

In the experimental setup, we tested the possibility to have
an improvement in CR recovery with such a learned-aided
weighted total variation minimization. The test is conducted
on the Set5 [68] image dataset and Barbara and Cameraman
images. All the images were resized to be 256 × 256 size.
Along with the PSNR performance metric, the relative error
performance metric that was used in the TVAL3 study was also
used during the test. The performance metric relative error is
calculated as Relative Error = (�S− Ŝ�F/�S�F ), where Ŝ is
the estimated image and �.�F is the Frobenius norm. Table V
shows the performance comparison of traditional TV mini-
mization and CSEN-aided one. On average, the learning-aided
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TABLE V

CS RECOVERY PERFORMANCE OF TV-BASED ALGORITHMS (MR = 0.6)

Fig. 15. Performance metrics on the SET 5 image dataset for conventional
total variations minimization versus CSEN-aided one. Both techniques use a
TVAL3 solver to solve the problem. The results also show when the CSEN
trained with 50 epochs and 100 epochs and MR = 0.6.

scheme increases the recovery performance in the Set5 dataset
compared to the conventional one and for Barbara and Cam-
eraman Images. To further investigate whether this perfor-
mance improvement is gained due to arbitrary changes in
the threshold values caused by the usage of weighted soft
thresholding instead of using soft thresholding, we repeated the
same CS recovery tests by using the CSEN1 weights learned
with the different number of epochs from 1 to 100. Fig. 15
shows the behavior of the recovery performance of the CSEN-
aided solver and the conventional one. The results illustrate
that, when CSEN is trained more, the recovery performance
of the algorithm increases until convergences. This behavior
proves that CSEN output, (ph, pv), carries information (more
activation on nonzero values, e.g., edges and boundaries) to
be used in model-based recovery algorithm, TV minimization
in that specific case, and the quality of this output determines
the image recovery quality.

All in all, this proof-of-the-concept study illustrates that the
proposed learned-aided CS recovery scheme has the potential
to help model-based solutions for CS imaging systems and
worth further investigation.

VI. DISCUSSION

A. Sparse Modeling Versus Structural Sparse Modeling

The first generation CS-recovery or sparse representation
methods only use the information that the signal, which we
encounter in real life, is sparse in a proper domain or dic-
tionary. These models do not utilize any further assumptions
about the sparse signal, x, in SR or SE. Therefore, they only
impose sparsity to the signal to have support set with elements
in arbitrary location, i.e., min �x�0 s.t. Dx = y. However, most
sparse signals that we face in practical applications exhibit
a kind of structure. In second-generation sparse representation
models, researchers realized that, in addition to arbitrary spar-
sity, any prior information about the sparse code can be used
in modeling more advanced recovery schemes [69], [70]. For
instance, the indices of the nonzero wavelet coefficients of an

image mostly exhibit grouping effect [71]. This kind of group
sparsity pattern can be imposed by designing the optimization
problem involving mixed norm minimization problems [72]
instead of simple �1-norm. On the other hand, more complex
sparsity structures require a more complex model design.

This work proposes an alternative solution to the hand-
crafted model-based sparse SR approaches, to be able to learn
the pattern inside sparse code (or structural sparse signals),
x by a machine learning technique. This proof of the concept
work in which the performance is tested over three real
datasets, MNIST, Yale, and CelebA, validates the possibility
of such learning and deserves further investigation in different
sparse representation problems.

B. Unrolling Deep Models Versus CSEN

The most common approaches to reconstruct sparse
signals, x, from the given measurements, y, with a fixed
dictionary D can be listed as follows.

1) Convex Relaxation (or �1 Minimization) Such as Basis
Pursuit [29]: minx �x� s.t. y = Dx or BPDN [29]:
minx �x� s.t. �y−Dx� ≤ �, where � is a small constant.

2) Greedy algorithms such as matching pursuit (MP) [73],
orthogonal MP (OMP) [8], and compressive sampling
matched pursuit (CoSaMP) [9].

3) Bayesian framework [74].

These conventional algorithms dealing with sparse inverse
problems work in an iterative manner; for instance, most
convex relaxation techniques, such as BPDN, minimize
the data fidelity term (e.g., �2-norm) and sparsifying term
(e.g., �1-norm) in an alternating manner in each iteration.
Therefore, these schemes suffer from computational complex-
ity and not suitable for real-time applications.

Along with the traditional approaches listed above, deep
learning methods used in this domain have recently become
very popular: x̂ ← P(y), where P is a learned mapping
from m-dimensional compressed domain to n-dimensional
sparse domain. These techniques are built on the idea that
the performance of existing convex relaxation can further be
improved by reducing the number of iterations and enhancing
the reconstruction accuracy. The key idea is that both the
possible denoiser matrices, B (responsible for dealing with
data fidelity term), such as DT , or (DT D + λI)−1DT , where
λ is the regularization parameter, and the thresholding values
(responsible from sparsifying) can be learned from the training
data using a deep network generally with dense layers. For
instance, the first example of this type is LISTA [20], which
is built upon ISTA [21]. These categories of methods, also
called unrolled deep models, design networks in an iterative
manner, which are powerful tools for sparse SR.

However, in many practical applications, we may either
no need to estimate the sparse signal itself or not have a
large amount of training data for deep unrolling networks.
In that manner, CSEN provides a third approach, by directly
estimating the support set via a compact design, which
requires less computational power, memory, and training set.
It exhibits very good performance, especially in the problems
that include sparse representation with sparse codes having
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TABLE VI

1-D VERSUS 2-D CSENS IN THE CELEBA DATASET

structural patterns. The other advantage of the compact design
with convolutional layers is that it is more stable against noise
compared to unrolled deep models that include dense layers.

C. Proxy Signal Versus Measurement Vector as
Input to CSEN

The proposed SE scheme utilizes proxy x̃ = By as input to
convolutional layers. Making inference directly on proxy using
the ML approach has been recently reported by several studies.
For example, the study in [75] and [76] proposed to perform
reconstruction-free image classification on the proxy, and the
study in [77] performed signal reconstruction using proxy as
an input to a deep fully convolutional network. Furthermore,
proxy x̃ can be learned by fully connected dense layers as
presented in [75]. However, this brings additional complexity,
and training the network may cause overfitting with a limited
number of training data. As in [75], they had to adapt by first
training the fully connected layers or try to freeze the other
layers during the training.

On the other hand, choosing the denoiser matrix, B,
is another design problem. For example, Değerli et al. [75]
and Lohit et al. [76] use B = DT as denoiser to obtain proxy.
We reported the results in this article for denoiser matrix,
B = (DT D + λI)−1DT , because it gives slightly more stable
performance over B.

D. 1-D Versus 2-D Representation of the Proxy Signal

In order to use the same CSEN networks, we reshaped the
1-D sparse codes into 2-D for representation-based classifi-
cation tasks. Nevertheless, a 1-D CNN network structure can
also be used. To test this claim, we created 1-D CNN versions
of CSEN 1 and CSEN2 networks (the same number of hidden
layers, nodes, and kernel sizes). In the CelebA dataset, they
were tested, and as it can be seen in Table VI, 1-D versions
can also achieve very similar classification performance.

E. Equal Size Dictionary Versus Equal Size Training Samples

In a representation-based classification scheme when dic-
tionary size getting bigger (when the number of training
samples is increased), the computational complexity of the
method drastically increases. For instance, for the COVID-19
dataset, dictionary size reaches 512 × 9320; in that case, even
CRC computational time drastically increases. Fortunately,
the computational time of CSEN does not increase that much
because only a subset of the training set is used in the
dictionary i.e., 512 × 3200 and the rest to train CSEN.
This phenomenon can be seen in Table VII. On the other hand,
the recognition performance does not necessarily improve with
increased dictionary size; on the contrary, it may even start
deteriorating when the dictionary size reaches an impracticable
level. SRC is computationally heavier when the dictionary
size increases, the computational complexity becomes cumber-
some, and the recognition performance does not necessarily

TABLE VII

COMPUTATION TIMES (S) OF EACH METHOD OVER
1257 TEST IMAGES IN THE COVID-19 DATASET

increase. Furthermore, SRC can completely fail when the
representation is not sparse enough, e.g., binary classification
(see Table IV). On the other hand, the proposed SE-based
classifiers perform very stable for both multiclass or binary
classification problems and varying sizes of training datasets.

In the representation-based classification experimental
results, the dictionary sizes are always higher than the dic-
tionary size in the CSEN-based scheme, as mentioned above.
The other fair comparison is using the same dictionaries for all
competing methods. For COVID-19 recognition experiments,
as computational times are reported in Table VII, the number
of parameters of the networks is given in Table S4 in the
Supplementary Material. The CRC algorithm’s performance
when the dictionary is the same as the one used in the
CSEN-C approach is reported in Table S5 in the Supplemen-
tary Material. For face recognition, task performance versus
computational time is reported in Figs. S2 and S3 in the Sup-
plementary Material. CSEN-C has clear advantages compared
to other dictionary-based classifiers by reducing computation
complexity and increasing classification accuracy.

VII. CONCLUSION

Sparse support estimators that work based on traditional
sparse SR techniques suffer from computational complexity
and noise. Moreover, they tend to fail at low MRs completely.
The proposed CSENs can be considered as reconstruction-
free and noniterative support estimators. Of course, despite
their high computational complexity, recent state-of-the-art
deep signal reconstruction algorithms may be a cure to sparse
recovery methods. However, they are still redundant if SR is
not the main concern. In addition, such deep networks often
require a large amount of training data that are not available
in many practical applications. To address these drawbacks
and limitations, in this study, we introduce novel learning-
based support estimators that have compact network designs.
The highlights of the proposed system are as follows: 1) signal
reconstruction-free SE where sparse estimation can be done in
a feed-forward manner, noniteratively at a low cost; 2) compact
network designs enabling efficient learning even from a small-
size training set; and 3) the proposed solution is generic; it
could be used in any SE task, such as SE-based classification.
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[75] A. Değerli, S. Aslan, M. Yamac, B. Sankur, and M. Gabbouj, “Com-
pressively sensed image recognition,” in Proc. 7th Eur. Workshop Vis.
Inf. Process. (EUVIP), Nov. 2018, pp. 1–6.

[76] S. Lohit, K. Kulkarni, and P. Turaga, “Direct inference on compressive
measurements using convolutional neural networks,” in Proc. IEEE Int.
Conf. Image Process. (ICIP), Sep. 2016, pp. 1913–1917.

[77] A. Mousavi and R. G. Baraniuk, “Learning to invert: Signal recovery via
deep convolutional networks,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Mar. 2017, pp. 2272–2276.

Mehmet Yamaç received the B.S. degree in electri-
cal and electronics engineering from Anadolu Uni-
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