

 Tapio Rytinki

MODEL-BASED RE-ENGINEERING OF
CONTROL APPLICATION

Code generation and verification

Master of Science Thesis
Faculty of Engineering and Natural sciences

Examiners: Reza Ghabcheloo
Examiners: Niko Siltala

April 2022

TIIVISTELMÄ

Tapio Rytinki: Mallipohjaisen suunnittelun käyttö ohjaussovelluksen uudelleensuunnittelussa.
Diplomityö
Tampereen Yliopisto
Automaatiotekniikka
Huhtikuu 2022

Tämä opinnäytetyö esittelee tavan siirtyä perinteisestä ohjelmistokehityksestä mallipohjai-
seen suunnitteluun ohjaussovellusalueella, erityisesti PLC-pohjaisissa ohjausjärjestelmissä. Pe-
rinteisellä ohjelmistokehityksellä tarkoitetaan prosessia, jossa ohjelmisto kirjoitetaan suoraan
järjestelmä- ja moduulisuunnittelun perusteella järjestelmävaatimuksien määrittelyn jälkeen.
Mallipohjaisella uudelleensuunnittelulla tarkoitetaan prosessia, jossa vanha ohjelmisto muunne-
taan uudeksi toteutukseksi mallipohjaisen suunnittelun menetelmiä hyödyntäen. Mallipohjainen
suunnittelu on matemaattinen ja visuaalinen menetelmä monimutkaisten ohjausjärjestelmän
ongelmien ratkaisemiseksi, ja se keskittyy kehitysprosessin suunnitteluvaiheeseen.
Kiinnostus mallipohjaiseen suunnitteluun perinteisen kehitystyön sijaan on lisääntynyt useista
syistä, mutta siirtyminen tähän on ongelmallista. Vanha ohjelmisto on yleensä käsin kirjoitettu ja
muuntaminen mallipohjaisiksi ja esimerkiksi siirtyminen uudelle alustalle voi olla monimutkaista.
Tämä opinnäytetyö vastaa esitettyyn ongelmaan kehittämällä systemaattisen tavan, miten voi-
daan siirtyä käyttämään mallipohjaista suunnittelua ohjelmistokehityksessä. Tämä saavutetaan
yhdistämällä uudelleensuunnitteluun prosessi ja ohjelmistokehityksessä paljon käytetty V-malli
toisiinsa. Lisäksi työssä esitellään esimerkkitapaus, jossa käytetään esiteltyä prosessia viiteoh-
jelmiston muuntamiseksi uudeksi toteutukseksi mallipohjaisen suunnittelun avulla. Tämä esi-
merkkitapaus keskittyy siihen, miten ohjelmiston verifikaatio tapahtuu esitetyssä uudelleen-
suunnittelun mallissa. Tämä esimerkkitapaus on tehty käyttämällä mallipohjaiseen suunnittelu-
prosessiin tarkoitettua ohjelmistoa, joka tunnetaan nimellä MathWorks 'Simulink, ja tämän lisä-
osaa Simulink PLC-coder. Esimerkkitapauksessa onnistuttiin luomaan mallipohjaista suunnitte-
lua hyödyntäen uudelleensuunniteltu ohjelmisto. Esimerkkitapauksen tuloksena arvioidaan uu-
delleensuunnitteluprosessin ongelmia, itse tapaustutkimusta ja esitetään idea jatkotutkimuksel-
le.

Avainsanat: Model-based design, CODESYS, Simulink, code generation, IEC 61131,
Programmable logic controller, Re-engineering, Verification

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

ABSTRACT

Tapio Rytinki: Model-based re-engineering of control application
Master of Science thesis
Tampere University
Automation Engineering
April 2022

This thesis introduces a way to transform from traditional software development to model-
based design in the control application domain, specifically PLC-based control systems. Tradi-
tional software development refers to a process where code is written directly based on system
and module design after system requirements are defined. Model-based re-engineering refers
to a process where old software is converted to new implementation using a model-based de-
sign methodology. Model-based design is a mathematical and visual method to address com-
plex control system problems and is focused on the design phase of the development process.

There are multiple reasons why there is a rising interest to use model-based design instead
of traditional development but changing to this development model is problematic. The old
codebase is usually done by handwritten code and transforming to model-based and new plat-
forms can be complex. This thesis answers the presented problem by developing a systematic
way how this transformation can be done. This is achieved by combining re-engineering with V-
model. Furthermore, a case study is performed which uses the introduced process for trans-
forming the reference code into a new implementation using model-based design. This case
study focuses on how the verification process evolves when re-engineering is part of the V-
model. This case study is completed using proprietary software for the model-based design
process known as MathWorks’ Simulink and Simulink PLC-coder. Case study showed that it
was possible to create a redesigned software using introduced re-engineering model. As a re-
sult of this case study, problems in the re-engineering process and the case study itself are ex-
plored and an idea for further study is presented.

Keywords: Model-based design, CODESYS, Simulink, code generation, IEC 61131,
Programmable logic controller, Re-engineering, Verification

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

PREFACE

This thesis was made in partnership with Cargotec Finland Oy, Kalmar. Special

thanks to Development Manager Janne Kuosmanen from Cargotec for providing an in-

teresting and relevant problem to study and pushing along the way. This topic was well

suited for my characteristics and the topic is something that should receive more and

more interest in the future. Also big thanks to Reza Ghabcheloo and Niko Siltala for

good feedback and positive attitude and most of all, for his patience related to this the-

sis.

Special appreciation to my family for understanding my absence during these long

workdays.

Tampere, 15 April 2022

Tapio Rytinki

CONTENTS

1. INTRODUCTION .. 1

2. KEY CONCEPTS .. 4

2.1 Control systems and controllers ... 4

2.1.1 Programmable logic controllers and code standard 5
2.1.2 Structured text .. 6

2.2 Development of PLC control system .. 7

2.2.1 The traditional development model for control system 8
2.2.2 V-model .. 9

2.3 Traditional software development drawbacks 10

2.4 Model-based design ... 11

2.5 Verification and validation .. 13

2.6 Re-engineering .. 18

2.7 Reverse engineering .. 21

3. RE-ENGINEERING MODEL SYNTHESIS .. 23

4. CASE-STUDY ... 26

4.1 Introduction to the controller under examination 26

4.1.1 Tools used in case-study .. 27
4.1.2 Workflow for case-study .. 29

4.2 Requirement analysis ... 30

4.2.1 Analysis for StartingOfMotion-function. 31
4.2.2 Analysis for PI-controller ... 32

4.3 Modeling controller with Simulink ... 32

4.3.1 Interfaces .. 33
4.3.2 Created model based on requirements and reference design 34

4.4 Verification ... 36

4.5 Model verification ... 41

4.5.1 SoM: Model verification ... 41
4.5.2 PI-controller: Model-in-the-loop verification 44

4.6 Implementation and Code-generation with Simulink PLC coder 45

4.7 Implementation verification ... 46

4.7.1 SoM: Implementation verification with test bench 47
4.7.2 SoM: Comparison between reference and new implementation .. 49
4.7.3 PI-controller: SIL verification with Co-simulation 52

5. DISCUSSION.. 56

6. CONCLUSION .. 59

7. REFERENCES ... 60

APPENDICES .. 62

Appendix 1: Structured text - Testbench code used in verification 62

Appendix 2: Matlab script: OPC-UA linking PLC and matlab 63

Appendix 3. Structured text: PI-controller generated from model................... 65

Appendix 4. StartingOfMotion-model ... 67

Appendix 5. StartingOfMotion-model test harness .. 68

Appendix 6. Cosimulation-model for PI-controller .. 69

LIST OF SYMBOLS AND ABBREVIATIONS

MBD model-based design

SW software

SoM StartingOfMotion -subfunction

TUT Tampere university of technology

ST Structured text

FB Function block

PLC programmable control logic

V-MODEL refers to a specific software development process

RE Re-engineering

HIL Hardware-in-the-loop

SIL Software-in-the-loop

MIL Model-in-the-loop

SDLC Software development life cycle

.

1

1. INTRODUCTION

Highly developed and complex control systems are hard to understand and increasing-

ly hard to further improve and develop. Most control systems today are built on specific

hardware/software platforms which require platform-specific know-how as well as

codebase. A control system is usually set up from a software perspective and control-

related aspects are underrated, which can cause an unorganized code base when new

features are introduced. This raises the question, what happens when requirements

exceed platform limitations? Codebase must be created or transformed into a new plat-

form, which causes several problems: how to ensure that the new software is working

as the old one and how to gain expertise for a new platform, and many others related

to this transformation. This thesis explores this problem space and how model-based

re-engineering could solve these issues. Model-based re-engineering in the context of

this thesis means software development process transformation to model-based while

retaining validated implementation from the old software.

Interest in model-based design has risen from its ability to decouple developing, test-

ing, and verification of complex system models from coding practicalities. A traditional

method for creating embedded code is to use text-based documents for design docu-

mentation and creating code based on requirements. This leads to a time-consuming

process of interpretation of documents and there is a disconnect between engineering

requirements and actual working software. Using model-based design (MBD) instead

of the traditional method allows auto-generation of IEC-61131 compliant code which

can eliminate human coding errors and make implementation more understandable

without platform-specific expertise. In the long run, MBD can also lead to easier testing

using Model-in-the-loop without needing actual hardware to test implementation.

Model-based design with code generation should lead to error-free translated programs

but as a result the correctness of design models i.e., Simulink diagrams, is significantly

important. And when this method is combined with re-engineering, models should also

conform to old implementation.

The objective of this thesis is to study how to re-engineer control software using model-

based design and create an example process model for it. To test this new process, a

2

case study is performed for a real-life example controller. The case study aims to mod-

el and generate code that should not modify the functionality of the original controller.

MathWorks’ MATLAB/Simulink is used as software as there are no other viable options

currently to generate IEC-61131 compliant code from a model. This thesis should pro-

vide a basic understanding how model-based design can be used together with Sim-

ulink PLC-coder to re-engineer software and how to verify results against the original

implementation.

The following questions should be answered in the thesis:

- Describe model-based re-engineering process for PLC control software.

- What are the advantages and disadvantages of re-engineering control software

with the proposed process model?

- How to verify generated PLC code with model-based design?

- Evaluate how applicable model-based design is for re-engineering control soft-

ware in different scenarios.

Research questions are complex and arguable by nature and this thesis does not pro-

vide strict answers on how re-engineering should be executed and what are the best

options for every case. Instead, options are explored and one case study is done with

an actual controller which gives first-hand experience to answer qualitative thesis ques-

tions.

Individual tasks shall be divided as follows to answer thesis questions:

- Research traditional PLC software development and model-based design

methodology.

- Research software re-engineering and related topics.

- Study and determine code verification and testing procedures.

- Propose a process on how to re-engineer PLC software using MBD.

- Testing the proposed process with an actual controller

- Analyse proposed process and results for case study

Background research was done before starting this thesis which showed that there is

very little background study on this subject that combines MBD with re-engineering.

Therefore, this combination must be done using individual studies of each subject and

the process must be created based on these.

3

This thesis contains a total of 7 chapters. The first chapter introduces the reader to the

theoretical aspect of the whole thesis and the problem statement. This is split into 6

subchapters which are essential to justify the created process. The first subchapter in-

troduces control systems in general and PLCs as well as code-standard used in PLC

programming. This subchapter is presented to give the reader understanding of the ac-

tual code that is presented in later parts. The second subchapter introduces generally

used development models in SW development. The third subchapter introduces model-

based design which could be thought of as a subset of the second chapter. The fourth

subchapter introduces what verification and validation mean in a broader sense and

how these are related to model-based design. The fifth subchapter show what does re-

engineering generally means.

The third chapter, after the theoretical part of the thesis, combines the second chap-

ter’s topics with a general re-engineering process which is used in the fourth chapter as

a base for a case study.

The fifth chapter works as a conclusion and presents results from the case study and

analyses the findings. The last chapter discusses what has been archived in this thesis

and gives future study proposals related to this topic.

4

2. KEY CONCEPTS

This thesis will approach the topic by introducing several key concepts which are relat-

ed to this topic. The topic has multiple key concepts and these are shown in Figure 1.

as a mind-map at the abstract level which should help the reader understand the rela-

tions between these knowledge domains.

Figure 1, Key concepts as a mind map

As can be seen from the figure, this thesis will contain parts from multiple different do-

mains. This was recognized as a risk at the start of this thesis as it could be hard to

make a cohesive thesis. But as this kind of work has not been done before, the basis

needs to be covered to some extent.

2.1 Control systems and controllers

This chapter introduces the definitions of systems and controllers. These definitions are

simplified, and more detailed definitions are not needed for this thesis, because this

thesis assumes that the reader has some basic knowledge of control systems.

A system can be considered as an arrangement of parts that form a system and has a

boundary to its environment and the system changes its reaction based on some kind

of manipulation of the environment and the system’s changes can be observed. [1].

5

A control system can be defined as a system that can maintain or modify a system's

state to desired result or value [1]. This means that each complex control system can

be considered as many subsystems intertwined together to make a whole control sys-

tem. In more practical terms, usually control system is a part of a more complex control

system and ideally, one control system handles one kind of information and controls

over part of the system based on requirements from other systems.

A controller is the part of the system that manages systems reactions and as a whole,

these form a control system. Controllers can be implemented in multiple ways depend-

ing on the application requirements but usually, when a controller is mentioned, some

kind of computational device is referred to. There are numerous different architectures

on how control systems are rearranged and usually, computer applications are used in

a higher level of a control system and programmable logic controllers (PLCs) are used

when control is needed next to the field level. A controller software, in a broader sense,

is a software program that manages and directs the flow of data between two entities.

2.1.1 Programmable logic controllers and code standard

A programmable logic controller (PLC) or programmable controller is an industrial digi-

tal computer that has been adapted for different environments and modified to be high-

ly reliable. They consist of hardware, software, and environment like other computing

systems. This special form of microprocessor-based controller stores programs as in-

structions and the programming language is designed to be more easily programmed

than traditional computer programs. The operations of a PLC can be considered hard

real-time operations because the control code is executed within a certain time limit.

The term “logic” in PLC derives from the use case: PLCs are usually used for logic and

switching operations [2] but are now increasingly used in mathematically complex con-

trols with increased processing power.

Embedded Systems (and PLC systems) are characterized by the following attributes

[3]:

- Usually, a control system is a subsystem providing function to a higher-level

system.

- Control systems provide access and processing to other devices or subsystems

- Control systems perform physical control activities like reading sensors or

commanding actuators.

6

- They are mostly not visible or directly accessible by the users. Users are not

able to recognize them as computers

IEC 61131 -the standard covers the complete life cycle of PLCs from selecting a PLC

to guidelines for implementation of PLC programs [2]. This thesis is focused on using

structured text as a PLC programming language and its counterpart of the standard

IEC-61131-3. It is a text-based programming language and can be generated from oth-

er programs rather easily because of its simple format, limited functionality, and syntax.

Programming with PLCs started with ladder logic programming which used a similar

graphical language to electrical drawings [26]. This was widely adopted by many manu-

facturers with different kinds of nuances. As a result International standard International

Electrotechnical Commission 1131-3 (now recognized as IEC 61131-3) has been es-

tablished and adopted for ladder diagrams (LAD) and other PLC programming lan-

guages such as instruction list (IL), sequential function charts (SFC), structured text

(ST) and function block diagram (FBD). The standard also defines a library of pre-

programmed functions and function blocks [2] which are nowadays usually found in

every PLC regardless of manufacturer.

2.1.2 Structured text

Structured text (ST) is one of the standard defined programming languages for PLCs

and it can be considered import part of this work. The structured text resembles Pas-

cal-code and also has a similar structure as c-code. Usually, PLC manufacturers follow

standards pretty well and code is usually transferrable between manufacturers with lit-

tle changes using structured text. Even though all other PLC programming languages

are just as well supported by manufacturers, interchangeability is not guaranteed as

well as with structured text. Most of the IDEs that don’t support IEC-61131-3 based

programming languages can sometimes handle structured text with plugins like Visual

Code Studio. This is the reason why only this code format is used in this thesis. One

short example of structured text is shown in Figure 2.

7

Figure 2, Example code using Structured text

The main difference between programming traditional programs and PLC programs is

that the PLC program's main task is always run in an infinite loop and keeps repeating

as long as PLC is in operational “RUN” mode.

2.2 Development of PLC control system

Developing embedded systems is well studied and mostly, the same principles and

methods can be applied to developing PLC systems. Generally, developing control sys-

tems requires multidisciplinary skills and cooperation from many parties with different

knowledge domains. This multidisciplinary nature of a PLC control system leads to the

following challenges summarized for a PLC control system as follows, adapted from

[3]:

- Flexibility: PLC control systems need high adaptability for new environments,

requirements, and ease of integration to new services.

- Reliability: PLC systems need to operate under real-time constraints, resource-

constrained, and in physically insecure environments.

8

- Control: PLC systems performing control functions need autonomy, reconfigu-

rability, safety, fault-tolerant, and capability to work under missing data opera-

tion.

2.2.1 The traditional development model for control system

Traditionally, most embedded systems are developed using some variant of the classi-

cal waterfall model or its extension V-model [4]. The basic waterfall model for software

development consists of several steps which follow each other :

- Requirement Analysis & Definition:

Requirements are a set of functionalities and constraints that are defined by the

end product and what is expected from the system. The end-product require-

ments are gathered from the end-user by consultation and in many cases,

these requirements are presented in natural language. These are usually trans-

lated to software requirement specifications (SRS) and system requirements.

- System & Software Design:

This stage plans the actual implementation by analyzing the requirements and

creating technical specifications and system and module designs that meet the

requirements. This is usually done by a system designer but in smaller projects

software engineers.

- Implementation & Unit Testing:

Using the system and module design from the previous stage, work is divided in-

to the modules and actual programming begins. Each module usually presents

one small program which is tested individually. Depending on the source, this

contains also the system implementation part where each module is combined

to form a system.

- Integration & System Testing:

In the integration phase, the whole system is integrated and tested. This phase

tests the whole system implementation per requirements and after successful

testing, implementation is complete and ready to be delivered. It’s usually nor-

mal that this phase has failed at some level, and a complicated guessing game

must be started on the reason. And usually, testing is done separately from ac-

tual implementation so the issue could be within the tests themselves.

- Operations & Maintenance:

9

This phase is a continuous phase where problems are corrected after initial de-

livery. Most likely all problems are not found in the previous stage so this phase

could continue for a very long time and usually ends when the product is con-

sidered “end-of-life”

2.2.2 V-model

V-model is similar to the waterfall model and can be thought of as an extension of

it. Its also known as the “Verification and Validation” model. The difference to the

traditional waterfall model is that instead of moving linearly down a “waterfall”, the

waterfall is bent upwards to form V-shape (Figure 3). The arrow in between refers

to a verification and validation phase where each part of the down step has a test

plan that verifies the correct functionality. The vertical axis represents the time the

horizontal axis level of detail from abstract to specific.

Figure 3: Generic V-model example [5, p.20, Fig 5]

This presented V-model is a generic one and usually, implementations of this vary

depending on the project. Figure 4 shows an example of how model-based design

adopts to V-model.

10

Figure 4: V-model with MBD including verification, two different approaches. Top
figure from V. Socci [6, p.2, Fig 1] and the figure below from Naijun Zhan et al [4, p.8,
Fig 1.3]

Model-based design is introduced further in the next subchapter but as can be seen,

from Figure 4, different implementations can be used using V-model as long as the

ideology of verification remains in each step.

2.3 Traditional software development drawbacks

Because of multidisciplinary development for control systems, there are multiple

boundaries between different teams. Although every team has the same goal that the

product works as wanted, these translations through boundaries may lead to errors in

the final product [4]:

- As product requirements are created usually by a mix of engineering disci-

plines, these are transferred to natural language. These are hard to manage

and are usually interpreted incorrectly.

11

- System engineer creates system- and module design. These are written using

natural language which has the same interpretation problems and testing the

fully integrated design cannot be done at this stage.

- In the implementation phase, the software engineer programs by specifications

done by the system engineer. This phase is error-prone as there are interpreta-

tion errors and usually the module/system design does not directly transfer to

the actual code.

The main problem here is that there is no straight path to validate and redefine re-

quirements in early-stage if these are seen unfit for the system. The same issue occurs

again and again as we go through the chain. Another problem is that there is a discon-

nect from the design phase to the testing phase as implementation usually provides no

tracing method back to requirements [4].

In comparison to software development for computer applications, embedded control-

lers have usually more resilient requirements, and requirement changes can be harder

to implement and validate and require much more specialized knowledge about the

system. This problem is emphasized in the traditional development model.

2.4 Model-based design

To overcome the challenges mentioned in the previous chapter, a model-based design

was proposed. Model-based design, referred to as MBD, uses visual and mathematical

models in the development process and these models can be thought of as more gen-

erally understood without platform/code specific knowledge. The model-based design

paradigm differs a lot from traditional design methodology because instead of using

complex application/component/manufacturer specific coding to fulfill requirements,

more general functional blocks can be used to describe needed functionality. Using the

model-based design, the system model is the center of the development process, and

the model is developed in the first stage of development and allows for early detection

of system errors. Every discipline can use the same easily understandable model to

test/validate changes and requirements to a controller with a simulated “plant” model.

The model-based design addresses the problems related to the whole software cycle

from the requirement to the maintenance phase by unifying and visualizing the devel-

opment process and allowing traceability between each step. “Experiences from real-

world industry indicate that the efficiency of code generation by tools based on MBD

can be improved up to 50% compared to hand-written code in the conventional man-

ner” [4].

12

As mentioned before, designing a control system requires a holistic approach that re-

quires integration from multiple disciplines. Because most of the embedded systems

are somehow connected to the real world and constraints are real-world-based, math-

ematic concepts are essential in developing control systems. Model-based develop-

ment used in control engineering is founded on these mathematic concepts.

Model-based design workflow differs from traditional workflow because requirement

analysis and high-level design can be quickly designed with simple models and used

as a base for further development [7]. When code generation is available, also the ac-

tual implementation can be done automatically. As for now, MATLAB/Simulink supports

code generations for multiple languages.

Simple model-based design process:

- Define the system

- Identify system components

- Model the system with equations

- Build the model

- Run the simulation

- Verify the simulation results

In a summary, the following benefits can be acquired using MBD and code generation

[4]:

- Requirements can be modeled, and design can be tested against these re-

quirements early on.

- The model plays an essential role and can reduce miscommunication between

different teams.

- Fast evaluation of different designs.

- Automatic code generation can improve system reliability by reducing variability

in code quality.

- Traceability between implementation and code.

There are some drawbacks to MBD, like increased complexity of the development pro-

cess and using MBD as a blanket solution for all problems. This could lead to unneces-

sary development work without any benefits.

13

2.5 Verification and validation

Re-engineering will require some method to ensure that implemented software is run-

ning as the original software. Designing complex software systems leads to errors and

errors should be found as early as possible in the development process. Verification

and validation are processes that try to find errors in development before the actual de-

velopment is completed. “Verification and validation are independent procedures that

are used together for checking that a product, service, or system

meets requirements and specifications and that it fulfills its intended purpose.”[8]. Alt-

hough these terms seem to be used as synonyms, there is a clear boundary between

them.

Validation: “The process of evaluating a system or component during or at the end of

the development process to determine whether it satisfies specified requirements.” [9]

Verification: “The process of evaluating a system or component to determine whether

the products of a given development phase satisfy the conditions imposed at the start

of that phase” [9]

Traditional software development and MBD define verification in software development

differently: Singh [2011], [8] and other sources define verification as a pure document

review process. In contrast to this, Mathworks has defined a verification process to in-

clude an actual code testing process as shown in Figure 5, Verification and validation

process. The differences stem from the different development models. In the traditional

model, it is impossible to verify design early in the development phase.

Figure 5, Verification and validation process for a generic programming language,
includes separate verification for object code and source code [adapted from 10]

In traditional software development, a verification process is done only when translating

software requirements to software specifications and validation is only done when the

whole software is complete. A more detailed explanation for verification is presented by

https://en.wikipedia.org/wiki/Requirement
https://en.wikipedia.org/wiki/Specification_(technical_standard)

14

Lettinin & Winterholer [11]: verification is divided into dynamic and static verification.

The main difference is that static verification is done without running the software and

dynamic vice versa, and as Abran & Moore defined “Software testing consists of the

dynamic verification that a program provides expected behaviors on a finite set of test

cases, suitably selected from the usually infinite execution domain.” [12]

Figure 6, Verification approaches [11, p.10, Fig 1.5]

As for the scope of this thesis, only dynamic verification methods are studied. Following

verification methods are found from embedded software/hardware development and all

of these verification methods are not directly applicable for PLC software development

but are still found useful in case-study.

Dynamic verification methods are shown in Figure 6:

- Testing is a traditional empirical method to execute software to find design er-

rors. This includes writing test cases and scripts to test different scenarios.

- Co-simulation means using different sub-simulations all in one model with syn-

chronization. Different simulations are coupled with input/outputs at intervals.

- Co-debugging and co-verification mean debugging/verifying multiple systems at

the same time. As for embedded systems, this means debugging/verifying

firmware and hardware at the same time. This is not applicable on the PLC ap-

plication side as these are handled by device manufacturers directly.

- Assertion-based verification means improving observability of the original de-

sign by injecting internal temporal properties to design and monitoring these for

intended functionality during simulation.

15

Software testing is often used as synonym to validation and software testing is done to

minimize failures in the final products. According to Yogesh Singh [13], testing as a

whole can be thought of as verification and validation combined. The most essential

part of software testing related to this thesis is determining the process of how the veri-

fication/validation is executed at the component level. Testing with MBD differs from

traditional software testing which is presented in Figure 7. From the figure can be seen,

that traditional testing only tests implementation in the “up-ward” part of the V-model

and only static reviews are done in the most essential part of software development.

Figure 7, Testing within V-model in standard software development. [13, p.27, Fig
1.10]

Basic terminology used in software testing and this thesis:

- Bug: Informal name of defects.

- Error: Refers to the difference between actual output and expected output.

- Fault: a condition that causes the software to fail to perform its required function

- Failure: Failure is an instance of fault. Testing is usually done to find faults be-

fore they lead to failures.

- Test: a Test is an act of subjecting software to test cases. A test has two goals,

find failures or demonstrate correct reactions.

- Test Case: A Set of defined inputs and expected outputs. Easy to do for static

stateless systems, but complex for anything else.

16

- Test object or SuT: The individual element to be tested. Knowns also as “sys-

tem-under-stress” There usually is one test object and many test items.

Although testing is a large subject on its own and could be explored in several ways,

handling this subject is limited to how to define test cases. In a stateless system this is

mostly easy: Create a set of test cases against which software is tested. Test cases

are usually derived from product requirements and contain inputs from the software in-

terface and some expected results from the software. The result portion is usually the

part that is neglected because, depending on the test case level, the actual results

could be hard to interpret. In this part usually domain-specific expertise is required.

Changing the function from stateless to stateful increases testing complexity by mani-

fold. This problem is usually called “State-space-explosion” which means, in simple

terms, adding one state to a system increases all possible states exponentially, which

causes problems when defining test cases. This is the normal case with testing as sev-

eral modules interact with each other and each contributes to this “State-space-

explosion”. There are several research studies conducted to address this problem and

it is not further studied in this thesis. In our simple case study, modules are simple and

do not have internal states which could affect testing complexity.

In control design, where usually dynamic properties are more interesting than static re-

sponse, test case definition, test data generation, and analysing the actual results are

harder than in combinatorial logic. That is why in-loop testing is mostly used when test-

ing these kinds of functions. PLC software is usually a mix of both kinds of control

problems (combinatorial and complex mathematical algorithms), and that is why both

testing methods are explored.

The following test methods are interesting in the scope of this thesis: Specification-

based testing, Code-based testing. In-loop testing is also presented, although is not di-

rectly a testing method, but rather an environment where tests are performed. In this

thesis, all tests are performed and analysed manually so only an overview of these

testing methods is provided and automatic testing is not covered.

Specification-based testing is used to test combinatorial logic. Specification-based

testing is also known as “functional testing” or “black-box-testing”. This relies on the no-

tion that to test software throughout, nothing is known from the actual software being

tested and it presents itself as a “black box”. Only the expected behavior is needed to

test implementation. There are benefits to this kind of approach. Test cases are inde-

pendent of the software that is implemented and changing the software doesn’t render

17

test cases useless. Test cases can be also be made even if the implementation is not

ready.

Code-based testing, in contrast to specification-based testing, code-based testing

needs full access to the software being tested. This is also called white-box testing.

This is beneficial because a person who generates the test cases can also take into

account those scenarios which are implemented but not specified. This could happen

for example when specifications do not cover every possible situation or specifications

are too generally written.

In-loop testing refers to a testing method-

ology specific for complex real-time control-

lers whereas loop parts refer to feedback

loop from a simulated environment model

(sometimes called plant-model). Traditional

software testing is not sufficient in PLC test-

ing cause PLCs are connected to actual

physical objects and must abide by some

fundamental natural laws that are not arbi-

trary. This means that PLC software is usu-

ally tested with actual hardware and real or

simulated environments which is summa-

rized in Figure 8: Different integration levels

[6, p.2, Table II]. Depending on the situa-

tion, black-box testing or white-box testing

can be applied. Generally, black-box testing

is usually applied in the in-loop environment

in later stages (HIL, IIL, EIL) and white-box

in earlier parts (MIL, SIL, PIL). This means

that testing a program with knowledge of in-

ternal structures is beneficial in the early stage where the developer is usually involved.

In later stages, black-box testing could be executed by the test engineer.

Model-in-the-loop (MIL) testing is usually done early in the development loop to ensure

that the model meets the requirements. In controller design, this means that the con-

troller is modeled and tested against a controllable model (plant model) without any ac-

tual hardware components.

Figure 8: Different integration levels [6, p.2,
Table II]

18

In Software-in-the-loop and Processor-in-the-loop (SIL/PIL) testing, code is generated

for the controller, but code is run without actual hardware. In a PLC case, this means

SIL is forgotten since running PLC code requires virtualized PLC or softPLC and can-

not be run straight from modeling software. This testing method means that the hard

real-time limits may not be tested but the code can be verified functionally against the

plant model. According to V.Socci, shown in Figure 8, SIL/PIL testing doesn’t involve a

system environment, but this is contradicted in many sources and the actual definition

of “in-loop” refers to testing against some system environment.

Hardware-in-the-loop testing involves actual hardware in the loop where controller in-

puts/outputs can be from the actual environment or simulated one (plant model). This

testing phase verifies that the actual hardware is performing adequately in real-time.

Iron-in-loop, Environment-in-loop (EIL), and Customer-in-loop (CIL) refer to the actual

tests done with real environments and hardware. These are the most expensive tests

to run and failures could cause even unsafe situations. That is why these tests are

usually done after all other tests are passed.

As shown in Figure 4, the previous V-model section, there are differences in how these

in-loop tests could be executed. At the bottom of the figure, rapid prototyping is intro-

duced to the V-model and it’s suited for embedded controller design. As rapid prototyp-

ing is not used or in the scope of this thesis, the bottom model in the figure is chosen

as a baseline for creating the re-engineering model.

2.6 Re-engineering

Software development life cycle (SDLC) is a well-known overview model for how a

software product is made. This model usually describes 5 basic steps of software de-

velopment: planning, analysis, design, implementation, and maintenance. Re-

engineering is part of the most expensive[14] maintenance phase where products life-

time is extended by making necessary changes to adjust to new requirements. The re-

quired change is usually aimed at correcting software, adding functionality, transferring

to new environment/hardware, or just restructuring. Although re-engineering is neces-

sary to increase software service life, it is still an overlooked phase of the product life

cycle as it is not nearly as researched as other phases of development.

Software re-engineering is a process where software is redone without affecting its

functionality. The re-engineering process usually involves organizing and restructuring,

re-documenting, and recoding system using modern programming languages [15].

Software re-engineering is usually required when the programming language or plat-

19

form comes outdated, the architecture of the product is changed thoroughly, or new re-

quirements are not possible to be fulfilled. Rosenberg, L states “The difficulty lies in the

understanding of the existing system. Usually, requirements, design, and code docu-

mentation is no longer available or is very out of date, so it is unclear what functions

are to be moved. Often the system contains functions that are no longer needed, and

those should not be moved to the new system”.

There are four general objectives in re-engineering and at least one of the following is

the main motivation for re-engineering activity [15]:

- Improving maintainability

- Migration

- Improving reliability

- Preparation for functional enhancements.

In the general model, presented in Figure 9, re-engineering starts with the implementa-

tion of the current system and ends with a new implementation of the system. This can

be a simple process if the only driver for re-engineering is to adopt for new coding lan-

guage. But, when the system needs re-organizing at the same time or for some other

reason it is not enough to just translate the language, the process can be very com-

plex. This means that old requirements and specifications must be carefully examined

and studied and the whole implementation needs to be redesigned-

20

Figure 9: The general model of re-engineering software [15, p.4, Fig 1]

The general model In Figure 9, the re-engineering model is split into two major parts,

reverse engineering, and forward engineering. Reverse engineering is described in de-

tail in the following subchapter.

There are different approaches to facilitating the re-engineering process. Usually, there

are some limitations on how re-engineering can be applied for specific software, for ex-

ample, the structure of the program or the time limit for the re-engineering process.

These different approaches are determined in the following list, each approach has its

benefits and drawbacks [15].

1. Lump-Sum method: This approach replaces the whole system at once. This has

the advantage of being straightforward, and each interface can be rewritten. But

this is not applicable for a large system, not only for the recourses it takes to

complete in a reasonable time but also usually new requirements must be in

place before this re-engineering is complete so two systems must be main-

tained at the same time.

2. Incremental method: This approach replaces the original system part by part

and more specifically component by component. There is a lower risk of failing

with this approach because only small increments should be made at one step.

This approach has the disadvantage of taking a long time before being com-

pleted and the old interfaces must be reused or at least supported.

21

3. Evolutionary method: As in the incremental method, this approach also replaces

the system part by part. The difference to the incremental method is that whole

individual functionality is replaced which can mean that at least some interfaces

must be adjusted. The disadvantage is that their parts can be quite large and

old implementation may also need to be adjusted when applying re-engineered

parts.

2.7 Reverse engineering

Reverse engineering is a part of the re-engineering process, and the objective of re-

verse engineering is to evaluate code behaviour to duplicate it. Although the re-

engineering process could be started without reverse engineering, the most reliable

source of code behaviour is the source code. Reverse engineering is a process starting

from source code and translating it back to specifications and requirements. This al-

lows the re-use of the knowledge already implemented in programs, and specifically,

the knowledge that has not been documented. Some automatic translation programs

have been researched for reverse engineering. One method, which translates PLC

program to UML diagram, is presented in “UML based approach for re-engineering

PLC programs” [16],

When developing new software, requirement engineering is started when objectives for

software are clear and these need to be formalized. The requirement engineering pro-

cess is mostly overlooked and the main reason for failed projects is insufficient re-

quirement engineering [17]. Requirement engineering is not just one step in software

development but a process that overlaps with different software development phases.

In the planning phase, requirements are gathered from clients and stakeholders. In the

analysis phase, requirements are checked for conflicts between other requirements.

The design phase translates these requirements to specifications which are then used

to create needed software. In the testing and validation phase, requirements are com-

pared to actual software functionality. In the management phase of the software devel-

opment, requirements are maintained as new software requirements are discovered.

The maintenance phase is usually overlooked in the requirement process and new re-

quirements are not properly handled in requirement engineering. This causes require-

ment conflict and misalignment between code and requirements.

Traditionally, requirements are usually neglected in reverse engineering and reverse

engineering is handled as a separate process from requirement engineering [18]. Re-

verse engineering design/code back to requirements is a difficult process and requires

22

human intervention when requirements are presented in natural language. In Figure

10, Syed Ahsan Fahmi and Ho-Jin Choi propose a modified process to take require-

ments into account in the reverse-engineering process.

Figure 10: Modified requirement handling in re-engineering [18, p.5, Fig 5]

Although this process does not provide any help in creating these requirements, there

are several benefits to complying with this:

- The number of new requirements can be found

- Outdated requirements can be traced out

- Original requirements can be revised

23

3. RE-ENGINEERING MODEL SYNTHESIS

In this chapter, all the previously introduced topics are analysed and the first two thesis

questions are answered: 1. How to describe model-based re-engineering process for

PLC controller software. 2. What are the benefits of re-engineering with the proposed

process model.

Although there are several more modern development models in addition to the V-

model that was introduced, V-model is used as a base for this thesis. V-model is still a

frequently used process model for software development and even in more modern

models like example agile, the underlying best practices are still founded on the v-

model. Most of the agile methods have sprung from the v-model and both of these

models have similar properties as stated in the presentation “Agile V-model” [19]. And

from the practical point of view, the used development model is most likely mixed from

many models and modified as seen fit.

The proposed model, in Figure 11, is created by combining different aspects in re-

engineering, model-based design, and V-model. This model is a combination of differ-

ent models introduced in the previous chapter and has the following properties:

- The model extends V-model

- The model can account for several different re-engineering problems meaning

the model is generic.

- The model includes the re-engineering phase.

- The model conforms to model-based design

The model is read from left to right to timewise and the “V”-shape is now an “N”-shape

where the model can be thought to have two validation loops. One validation loop is

presented in the re-engineering phase where new implementation is compared to the

original implementation and original requirements and one actual validation where new

requirements are compared to the new implementation. But for clarity, the first valida-

tion loop is called the verification phase as it is still just a step before the actual valida-

tion. In theory, the model could be thought like a flipped “V”-shape if a testing part were

omitted and only re-engineering considered. But in practice, these kinds of changes, at

least in controller development, require new integration and validation testing.

24

Figure 11: Proposed model to re-engineer control software with MBD

A generic model presents all necessary parts in re-engineering old software to model-

based design. Starting from the left, the original implementation is analysed for design

and then requirements are extracted. These extracted requirements can be used to re-

thinking the actual operation and redefine original requirements. After reverse engi-

neering, part of the normal V-model is used as a development process except that the

re-engineering artifacts are used as a reference in verification. The model also shows

verification steps in each step which indicates that this is specific to the model-based

development process.

There are several decisions in implementing the model in practice:

1. What re-engineered method should be used?

2. How to use new requirements and how can these be tested in the modeling

phase?

3. How to verify that the new implementation matches the original?

All of these decisions are individual to a specific re-engineering activity, questions need

to be answered case by case as the conditions vary in many ways. The model may

need to be adjusted in some ways in these individual cases. For example, there could

be some difficulties using the original implementation as a reference to the new imple-

mentation in SIL/PIL testing as the specifications could have changed. This would re-

quire re-thinking i.e could there be another way to verify correct functionality after re-

engineering meaning code reviews or other verification methods. And depending on

the situation, it may be beneficial to skip some of the parts as the process as a whole is

quite demanding.

Benefits of using this process model as re-engineering with model-based design:

25

- It uses familiar processes for the development

- Holds the same benefits as V-model and model-based design, discussed in the

previous chapter.

- Updates the requirements from the original implementation.

- Original implementation can be in any language and hardware, as long as it can

be linked to a Simulink model or otherwise verified against the new implementa-

tion

- The model is complete in the sense that it links from the original implementation

to the new maintenance phase.

This model, like all models, has its drawbacks:

- The process is complex and requires the involvement of different teams. Most

likely the benefits from moving to model-based design do not justify these re-

source requirements alone and the process needs to be adjusted and broken

up into smaller and possibly incomplete parts. This problem should be looked

into and automating these processes should be considered if possible.

- A second problem with the proposed model is that if the system requirements

are modified heavily, the redesigned controller may not be directly comparable

to the original controller. Usually in re-engineering as discussed in previous

parts, new requirements should not be brought in this stage, but still adjusting

the requirements could modify the compatibility of the new controller and origi-

nal controller to some extent and makes verification harder.

- The third problem relates to using the original controller as a reference in verifi-

cation. Depending on how the re-engineering is done, this could be impossible

or at least require manual adjustments, but this problem can be mitigated with

careful planning.

The presented model is partially studied in practice in the next chapter.

26

4. CASE-STUDY

In this case study, a real functioning controller is used as a reference (in further text

parts “reference” refers to this controller) and the same controller is recreated with a

model-based design. The controller is currently in a maintenance phase and was pro-

vided to this thesis for examination. The purpose of this case study is to experience the

actual workflow of the proposed re-engineering model and present detailed information

on each step and what kind of tools can be used and what issues are found. As the re-

engineering is quite extensive in work effort, It was decided to focus on the re-

engineering part (first half of the “N”-model) and specifically to forward engineering.

Case-study starts by introducing the reference controller. Afterward proposed model re-

engineering model is applied within limitations. Limitations are mostly defined by cho-

sen functions' simplicity and the need to focus on verification. The re-engineering mod-

el is referenced at the start of each chapter to help the reader to understand what part

of the model is applied.

4.1 Introduction to the controller under examination

This section gives a small introduction to the controller to be examined. As the whole

controller is too complex and large to be studied in the timeframe of this case study,

only an overview of the complete controller is introduced to give some background

knowledge and a possibility to understand the terms used.

The complete controller is a motion controller for the crane position. The crane itself

moves on rails and has three degrees of freedom (Figure 12).

27

Figure 12 Automated stacking crane system (from Kalmar website: ASC application
infographic)

Initially, the goal was to get the complete motion controller part re-engineered but be-

cause of time constraints, only part of the controller is examined. These subfunctions

were chosen as they present basic functionality types that controllers generally use.

The first one is the generic PI-controller which is used in multiple parts of the motion

controller. The second one is a simple fault detection function that executes combinato-

rial logic to detect faults between commanded and executed actions and controls if the

command execution can be continued. In this work, it’s referred to as StartingOfMotion

(SoM) as it is originally named.

In real environments, the program is executed using SoftPLC running Codesys control

runtime environment on Industrial PC. Codesys is a runtime system that includes an in-

tegrated development environment (IDE) and runtime environment (RTE).

4.1.1 Tools used in case-study

Mathworks MATLAB is a platform for numeric calculations and programming devel-

oped by MathWorks. When using Matlab with model-based design, Simulink is a

popular toolbox for this kind of work. Simulink is even so popular that it is usually

referred to as individual software and this toolbox now has its own separate

toolboxes. Simulink is designed for modeling, simulating, and analyzing complex

systems. The most important toolbox within Simulink, related to this case study and

28

MBD in general, is the PLC coder. This allows transforming the model directly to

PLC code, within certain limits. The full list of supported PLC IDEs is shown in Vir-

he. Viitteen lähdettä ei löytynyt.. There also exist other code generation toolbox-

es and multiple other languages are supported, for example, C and C++. One other

important toolbox within Simulink is Stateflow which can be used to model reactive

logic systems using state systems. Matlab R2021b was used in this thesis and at

least the PLC coder -toolbox evolves rapidly so some of the things mentioned here

could become outdated quickly.

In theory, modelling and simulation software could be anything that meets certain re-

quirements. The modelling software was decided beforehand and not given much

thought as Simulink seemed like an obvious choice as one of the requirements was to

use generate code for PLC and no alternative could be found.

Figure 13 All supported IDEs for PLC coder

29

4.1.2 Workflow for case-study

This section provides an overview of a model implementation used in the case study.

The steps follow the proposed re-engineering model but are further detailed here. The

original controller is used as a reference in new implementation verification.

In Figure 14, the used workflow is mapped to the proposed re-engineering model.

Figure 14, Workflow mapped to re-engineering model, the dark grey colour repre-
senting parts that are not part of this case study. Focus areas are coloured in orange.

As we can see, the case study does not involve the testing/validation phase at all and

reverse engineering is only applied lightly. The case study focuses is in forward engi-

neering and particularly on verification. Light grey colored areas in Figure 14 represent

steps that in some sense were done partly when deciding how this case study was to

be completed and not further described in this thesis as the reference implementation

is Kalmar’s intellectual property.

Re-engineering steps for both controllers:

1. Generate requirements for the controller model. This means first analysing the

original controller and extracting requirements.

2. Decide and create testing procedures for verification.

3. Create a model for a controller using Simulink / Stateflow

4. Transfer Model to actual PLC (In this case soft-PLC)

5. Verify generated code against a model.

6. Verify functionality by comparing reference and new controllers.

30

4.2 Requirement analysis

This part is related to both reverse engineering and forward engineering as shown in

Figure 15

Figure 15, Requirement analysis as part of re-engineering model

In large software, each module or system represents some functionality and gives

some specific requirements which can be traced back [17]. When talking about mod-

ules and functions, modules usually represent a larger part of a code and may contain

many functions and each function's contribution may not be easily identified to gener-

ate any specific requirement. Because this case study only involves a small part of the

whole motion control system, each property of these functions is handled as a require-

ment instead of a specification which would be an appropriate description.

Requirement analysis in reverse engineering is not as studied topic as other topics re-

lated to reverse engineering [18]. Methods used in this thesis to find out software re-

quirements can be explained in these steps:

1. Analyse the current system with an outside (black box) perspective, meaning

testing the function to see the outcome or just by analysing the interface.

2. Analyse subsystems through the code for individual requirements (white-box).

This usually helps to understand non-functional requirements.

3. Combine requirements between steps 1 and 2 and check for conflicts.

Because this re-engineering happens incrementally and is required to be compliant

with the old implementation, the controller/module interface must be part of the re-

quirement/specification. These derived requirements are used in the next step in mod-

eling and creating test cases.

31

4.2.1 Analysis for StartingOfMotion-function.

An analysis is started by using the function interface as the starting point and continu-

ing through the code line by line to see the differences between actual implementation

and supposed requirements. The actual interface is shown in Figure 16. This sets the

first requirement/specification as it needs to remain untouched for the verification part.

As a “black box” analysis, from the interface per-

spective, three preliminary requirements can be

derived.

1. The software has detected if a movement has

not started after being commanded and gener-

ates a fault.

2. The movement has not started in the right di-

rection in a configurable window after being

commanded and the fault is generated.

3. The last target and control target position must

be stored when a new command is received.

These requirements can be seen linked to

movement speed, position, commands, and pa-

rameters. Requirements should be kept simple and not defined code in detail.

In the white box analysis, requirements can be clarified by analysing the code in detail.

Starting the movement should be checked only after a configurable minimum distance

has been reached and monitoring conditions are set. Conditions for monitoring move-

ment start: Automatic movement and job execution are enabled, movement direction is

right, and traveled distance is large enough. The error should be generated if the

movement hasn’t started in a configurable time. If the movement has started, the cor-

rect direction should be verified separately. Direction is checked once when the velocity

command is given and the distance to be traveled is long enough. Direction error is set

if the absolute moved distance exceeds a configurable limit and the detected move-

ment is in the wrong direction.

Figure 16, SoM interface

32

4.2.2 Analysis for PI-controller

PI-controller is a generic controller with anti-windup. The interface for this controller can

be seen in Figure 17. One requirement can be

seen from the interface. The Control signal value is

limited by parameters and if the control signal is

saturated, this is expressed in the interface with a

separate signal. Requirements are not further ana-

lysed for this controller because these are more

qualitative and not in the scope of this thesis.

4.3 Modeling controller with Simulink

The purpose of this section is to provide information on how the modelling was done

and offer a small guide. Modelling part is part of “new design and architecture” as

shown in Figure 18.

Figure 18, Modelling part of the re-engineering model

In the scope of this thesis, the basic principles of modelling with Simulink are not de-

scribed and the reader is expected to have basic knowledge of these. Actual modelling

is done differently for two controllers: SoM is modelled using basic building blocks

found on Simulink and PI-controller as Matlab System-block. Matlab System-block al-

Figure 17, PI-controller interface

33

lows implementing functions as Matlab scripts. This decision was to detect limitations

of the PLC coder and as PI-controller is a mathematical algorithm, it’s more straight-

forward to implement. This option was not available at least in the previous version of

the PLC coder.

4.3.1 Interfaces

The modelling process starts from the interfaces because interfaces need to remain

unchanged to allow generated code to be compatible with the original software. Creat-

ing interfaces to the Simulink model is done by bus creator [20]. Bus creator allows the

creation of a bus object which has predefined signals as inputs. Bus object combines

signals graphically which makes reading diagrams more readable. Using bus creator

also enables generating interface programmatically. The bus can be either virtual or

non-virtual. The virtual bus is used just to make diagrams clearer and the non-virtual

packs the signals to a single structured data type with only one pointer. This applies to

generated code, meaning non-virtual bus will generate a struct-datatype which is es-

sential in re-engineering. At least when the original interface contains signals structs

and needs to remain unchanged. Although interfaces were not implemented to either

model with busses, it is the recommended way of doing this and initially, these were

used. Busses were removed in the testing part as they made testing unnecessarily

more complex. Figure 19 shows the final implemented interfaces.

Figure 19, Interfaces in Simulink-model. Differences in visual presentation is because PI-

controller is System-block and SoM is standard block

34

These are almost identical to the original software to help with the testing part. One dif-

ference was made regarding the simulation time, and this was probably an unneces-

sary change if other paths were thought out. In the original PI-controller, cycle time was

read directly inside the function but in the model, it is brought through the interface. In

general, copying the interfaces could be considered a good practice when implement-

ing the incremental method in re-engineering. One of the most important parts of copy-

ing these interfaces is the implemented datatype. This is not usually crucial in the mod-

elling phase, but correct datatypes should be checked from documentation or actual

code generation that Simulink datatypes are translated properly to the target. An ex-

ample of this datatype translation is given in Table 1

Table 1, Simulink - Codesys datatype transformation

Simulink Codesys

double LREAL

single REAL

int8 SINT

uint8 USINT

int16 INT

uint16 UINT

int32 DINT

uint32 UDINT

boolean BOOL

If datatypes are not defined for the model, Simulink will use automatically the “largest”

datatype, double which translates to “LREAL” in Codesys. This datatype checking

should be also done inside the model to avoid unnecessary memory usage.

4.3.2 Created model based on requirements and reference de-
sign

The next step in the modelling is to define the functions needed to create the actual

model. PLC coder support referenced subsystem, and this was used to create models.

Subsystem referencing saves subsystem as separate .slx file which can be referenced

in models. This allows multiple advantages including using the same subsystem in mul-

tiple models and easy multiuser modifications e.g. modifications are reflected in every

model/user project. As for SoM-modeling, most of the modelling copies the original de-

35

sign and it does not fully follow the defined proposed re-engineering model as the

model should be fully recreated based on the requirements. But this decision was just

to find out limitations in Simulink modelling, and there is nothing wrong with just copy-

ing the design if it is properly done already. This decision did affect the readability of

the Simulink model, shown in Figure 20, and more consideration should be done when

transferring to visual representation.

This kind of “signal-routing-mess” is not uncommon when subfunctions are not identi-

fied correctly and this could be cleared properly using in/out-ports but resolving this

was not necessary to create a working model.

PI-controller modelling was straightforward as this is just an algorithm. Original code

was translated to Matlab-script and used as a System-block in simulation. This model

was extended by creating an arbitrary plant model that could be used for verification.

Figure 21, Part of the matlab script that impelements new PI-controller

Figure 20, Created SoM-function simulink model, full size image as appendix 4

36

A generic imaginary mass-spring-dampener system was chosen randomly to represent

the plant. The actual function of the plant model is not important in the scope of this

thesis. Figure 22 shows the extended model with the plant model in a feedback loop to

the controller.

Figure 22, PI-controller extended with a simple plant model

Figure 23 represents the whole model with some arbitrary inputs in a test harness. PI-

controller is simulated in a closed-loop with the plant model to allow dynamics to play

part in a testing phase.

4.4 Verification

The verification part relates to small arrows shown in Figure 24 between each step

which is further explained in detail in this chapter.

Figure 24, Verification as shown on re-engineering model

Deciding how to verify the model and implementation to match requirements is not

generally an easy choice. Figure 25 shows each verification phase. 1st Verification is

using specification-based testing, meaning that generating tests is done based on

specifications (in this thesis requirements). More advanced verification methods, like

37

Model checking, are not needed for this simple case. 2nd and 3rd verification use nu-

merical equivalence testing which means that new and reference implementations

should have the same result compared to each other and the model in the 1st verifica-

tion.

Figure 25: Three verification phases

This numerical equivalence testing uses the tests that are generated in the first verifica-

tion, although it could be argued that code-specific testing would be more appropriate

as it would allow more detailed testing and would take account of the inner workings of

these test objects.

The limitation in PI-controller -verification is that plant (acting) model should be as close

to real-life as possible to fully test against requirements. But as requirements were in-

tentionally defined loosely, the arbitrary plant model was created which was shown in

the previous section. As for verification, some arbitrary test vector can be created and

numerical equivalence compared between each verification step. A discrete plant mod-

el could also have been used with SoM-model verification, as shown in the article " In-

creasing the efficiency of PLC Program Verification using a plant model” [21]. The

study was using formal verification methods and concluded that adding this plant can

increase engineers' capability to prove new properties but increases complexity in veri-

fication.

The verification process is described in detail in Figure 26. for both types of functions.

As shown in the re-engineering process model, verification is not a step to be executed

but a condition to move forward in design. Verification processes used in this thesis are

quite demanding in effort and only examples in these two specific cases. Normally this

process should be adapted to the complexity of the functions and presented verification

methods are excessive relative to the functions.

38

Figure 26, Top: SoM-verification, Bottom: PI-controller verification

As shown in the pictures, the verification process differs between the two controllers.

Verification methods differ because SoM-function is using combinatorial and sequential

decision logic and in practice doesn’t usually need complex verification methods. Usu-

ally, MBD is used to model complex control logic with algorithmic functions and the PI-

controller’s workflow presents a more general and simpler approach to this type of con-

trol. In PI-controller verification, two verification steps are combined as this step is exe-

cuted with co-simulation in software-in-the-loop testing. Co-simulation is not necessary,

and the SoM-verification method could be used as well with PI-controller, but this was

done to find a less demanding approach to workload.

Test cases are created and used to verify functionality in between model and require-

ments but also in this case, between a reference controller and a new controller. These

39

test cases are created based on requirements defined in the previous phase. Test cas-

es do not test all possible outcomes but give confidence that at least the basic princi-

ples work. Test cases are missing a few relevant program paths identified from the

code but are left out intentionally and defined as irrelevant in the scope of this thesis.

SoM has following properties/methods:

1. Determine movement starting error. The movement has not started.

2. Determine movement direction error when movement has started.

3. Store last starting position

4. Store control target position

5. Initiate continuous movement checking

To test these properties, three test cases were created:

Test Case 1: Normal drive
1. Store starting position for comparing when target position changes or

start command is turned on
2. Start monitoring (“on fly” OR when velocity is low enough) AND movement

distance is long enough (Positioning window)
3. Start moving at appropriate speed.
4. When 1s has elapsed check that axis has moved at least Y mm

Expected result: No errors and last starting position and control start posi-
tion are stored.

Test Case 2: Movement did not start fault
- 1. Store starting position for comparing when target position changes

or start command is turned on
- 2. Start monitoring (“on fly” OR when velocity is low enough) AND move-

ment distance is long enough (Positioning window)
- 3. Vehicle is standstill

Expected result: When 1s is elapsed, Error “movement starting error” is visi-
ble and last starting position and control start position are stored.

Test Case 3: Movement started to wrong direction
 1. Store starting position for comparing when target position changes

or start command is turned on
 2. Start monitoring (“on fly” OR when velocity is low enough) AND move-

ment distance is long enough (Positioning window)
 3. Start moving on the direction

Expected result: When DirectionDetectLimit is exceeded, Error “Direction er-
ror” is visible and last starting position and control start position are
stored.

These test cases were then translated to test vectors, meaning a set of inputs to test

provided system. This was done using a simple spreadsheet (Figure 27) and importing

40

it to Simulink signal builder (Figure 28). The headers in the spreadsheet had the same

symbols as in the testable interface so these could be easily identified when imported.

One notable thing about using this method is that the first column needs to define simu-

lation time. There are likely more modern ways to introduce these test cases to simula-

tion like using Simulink Test, but this was simple and effective.

Figure 27, Testcase 1 as a spreadsheet

Figure 28, SignalBuilder view with TestCase1

For the PI-controller, the actual test cases were not created. Instead, an arbitrary test

vector was used as the requirements are mostly qualitative, and testing controller limits

seemed unnecessary. As an expected result could be defined that the controller can

drive the mass-spring-system to a steady state with a certain time limit without

overdamping in the transient phase but the actual values are not important.

For both controllers, test harnesses were used for isolating components under test so

that the actual model would remain usable when these test signals were added. The

general test harness setup can be seen in Figure 29.

41

Figure 29: Simulink Test Harness [22]

Also, when using a test harness, the PLC coder can export verification code (test-

vectors) and required test benches with the actual code.

4.5 Model verification

Model-in-the-Loop (MiL) testing is done in the early stage of development. This will en-

sure that created model conforms to the re-created requirements. Model-in-Loop test-

ing is related to unit testing in traditional software development, while the units under

test are “model units”. Only PI-controller is simulated “in-loop” with plant-model. SoM-

model is simulated and results analysed that the model meets the requirements but as

this does not possess any dynamic properties and plant model is present, the “in-loop”

definition is not directly accurate and that’s why referred to just as model verification

although the goal is the same. Both models are tested using the test vectors (signal

builder) created in the last section and the results are analysed. If the requirements are

met in each case, the model is correct, and the next step (implementation) can be per-

formed

4.5.1 SoM: Model verification

StartingOfMotion (SoM) 1. st verification test harness is shown in Figure 30, Model

testing on SoM. As can be seen from the model, Signalbuilder generates all signals

with double-datatype (this can’t be changed) and uses continuous signals. These need

to be transformed to correct datatype and discrete-time for the model to be executed.

These changes were done by “Convert” and “unit delay” -blocks and as these did not

affect the tests, other options were not searched. SoM-model has five outputs which

are observed in analysis phase: LastStoredStartingPosition, ControlStartPosition,

42

CheckMovementContinous, MovementStartingError, DirectionError. LastStoredStart-

ingPosition -naming is confusing as it saves the Target position (input) when movement

is determined to start. ControlStartPosition saves the current position (input) when

movement has been determined started. CheckMovementContinous is set to true when

MovementStartingError is checked. MovementStartingError is set when movement is

determined to have started but the crane has not moved within a certain time limit. Di-

rectionError is set when Crane moves in the opposite direction against the target posi-

tion for too far (set by input-parameter). ControlStartPosition, CheckMovementContinu-

ous, LastStoredStartingPosition are used inside the calling function which is not cov-

ered in this thesis.

Figure 30, Model testing on SoM- test harness, full image as appendix 5

 Results from running test vectors are shown in Figure 31, Figure 32, and Figure 33.

Figure 31, Testcase 1 on SoM MIL

43

Figure 32, TestCase2 on SoM MIL

Figure 33, TestCase3 on SoM MIL

Three test cases were created and the expected results are as follows:

TestCase 1 Expected result: No errors and the last starting position and con-
trol start position are stored.

TestCase 2 Expected result: When 1s is elapsed, Error “movement starting er-
ror” is visible and the last starting position and control start position is
stored.

TestCase 3 Expected result: When DirectionDetectLimit is exceeded, Error “Di-
rection error” is visible and the last starting position and control start
position is stored.

Comparing results to expected results shows that nothing suspicious is happening and

all three test cases are passed as they meet the expected results. This indicates that

the model is performing adequately against the requirements. No further analyzing

needed at this point.

44

4.5.2 PI-controller: Model-in-the-loop verification

PI-controller’s MIL verification is straightforward because no strict requirements were

imposed. The only requirement that was set was that System output is controlled and

reach a stable state within a reasonable time window. Figure 34 shows the test har-

ness used in testing, and in this case, only static values were used as test vectors for

the PI-controller. PI-controller model control output (rY) and diagnostic output (bLIM),

as well as Plant output (SystemOut), were observed and analyzed.

Figure 34: MIL testing on PI-controller test harness

Running a simulated PI-controller with the static test vectors shown in Figure 34

produces results shown in Figure 35: MIL test results.

Figure 35: MIL test results, Top: Plant output, Bottom: Controller output

From the MIL-test results, we can determine that the output of the system stabilizes

in setpoint (10) as defined in requirements and the controller is not saturated at any

point. The actual performance is not analysed as there are no requirements defined.

45

4.6 Implementation and Code-generation with Simulink PLC
coder

This part is referenced as the implementation part in the re-engineering model.

Figure 36. Implementation in re-engineering model

Implementation was done by generating PLC code straight from the model. This was

done using Mathworks PLC coder which allows the generation of IEC 61131-3 compli-

ant Structured text code. PLC coder doesn’t seem to support the 3rd revision of IEC-

61131-3 which extends the previous standard with new data types and conversion

functions, references, namespaces, and the object-oriented features of classes and

function blocks [IEC 61131-3], and also other limitations are present. A full list of limita-

tions was available for the PLC coder [23] but this didn’t seem to be updated, as some

of the limitations mentioned were functioning regardless. This indicates some mismatch

in the documentation versus the PLC coder version.

In code generation, one of the most noticeable limitations was the inability to generate

code for a simple timer in Simulink. This was essential in the SoM-model because usu-

ally at least in high-level alarm generation, errors need to be active for a defined time

before setting an alarm. These timers are usually attached to the error-generating func-

tion as a “low-pass filter” to reduce false positives. Timer generation was supported for

PLC ladder logic and Stateflow, and in the end, the limitation was bypassed by using

Stateflow for timer generation.

PLC coder's most useful feature in the thesis was the ability to generate test bench di-

rectly to generated code. Test bench means that the generated code has a test func-

tion that is isolated from the actual function, which automatically tests the model with

wanted test vectors. Generated SoM-testbench can be found in appendix 1.

46

Another feature worthy of mention is that the PLC coder can generate a traceability re-

port which links the model to generated code line so each can be compared manually

when needed. This is required when using code generation for safety-related IEC

61508-3 code generation [24]. Also, custom comments can be linked from model to

code which helps readability, although generated code is usually not meant for manual

intervention.

The actual implementation is executed on Raspberry PI Zero and Codesys runtime On

Linux after code generation with both controller types.

4.7 Implementation verification

Software-in-loop verification refers to testing using actual implementation. As men-

tioned before, this part is done differently from SoM-function compared to PI-controller.

In SoM-verification, the model is not “in-the-loop” which means SIL-term is not fully ac-

curate, but the purpose of the test remains the same.

As mentioned in the previous chapter, a PLC coder was used to generate the imple-

mentation and also test benches from the test harness. This will verify that the actual

implementation runs exactly as the model in Simulink.

Figure 37, Example of how a test vector is integrated into generated code

As shown in Figure 37, the test bench is implemented using arrays that are looped

through functions and outputs verified.

47

4.7.1 SoM: Implementation verification with test bench

Verification using test benches is a straightforward process. Because the interface is

modelled identically with the reference controller function, a test bench can be used to

run test cases with both the reference controller and the generated one.

Running the test bench had some problems in real-time depended operations as the

tech bench is generated as discrete values in inputs and expected values in each PLC

cycle. When the PLC is performing slower or faster than in the Simulink model (which

usually is the case even if only for one cycle), the test bench generates an error. One

method of trying to avoid this error is to set PLC task to match the model sample time.

But this usually still fails, so the best method is to simply modify the test bench to allow

small differences to happen, or manually inspect the test with traces. Test results with

running test cases on SoftPLC are shown in Figure 38, TestCase1 SoM “SIL” verifica-

tion: Implementation compared to model, Figure 39, TestCase2 SoM "SIL" verification:

Implementation compared to model, and Figure 40 Testcase3, SoM “SIL” verification:

Implementation compared to modeland prefixes “cycle_” and “gen_” signify model and

generated implementation respectively.

Figure 38, TestCase1 SoM “SIL” verification: Implementation compared to model

48

Figure 39, TestCase2 SoM "SIL" verification: Implementation compared to model

Figure 40 Testcase3, SoM “SIL” verification: Implementation compared to model

As can be seen in test results, the automatic tests that are generated by PLC coder will

always fail when there are real-time related tests. Usually, this kind of small time vari-

49

ance does not matter in a real-life situation but it’s good to know that the generated

testbench is really inflexible in these cases.

4.7.2 SoM: Comparison between reference and new implemen-
tation

In the last verification phase, the reference controller and implementation generated

from the model are compared. This is also straightforward as the test bench can be run

on a reference as well and results compared. A reference controller was imported to

generated implementation and tests were run concurrently. As can be seen from Figure

41, Generated implementation on left, Reference (old) on right, generated one is full of

comments that refer to the actual model and the interface has changed a bit by imple-

menting a state machine that is not modelled (SSMethodType input). This “extra” input

is used in a generated model to initialize variables in beginning but this should not

cause errors in comparison.

Figure 41, Generated implementation on left, Reference (old) on right

Code screenshot In Figure 42, Implementation in test bench for reference and generated

SoM shows how the reference was integrated to the test bench.

50

Figure 42, Implementation in test bench for reference and generated SoM

The test bench was executed in softPLC and results are shown in Figure 38, Figure 39,

and Figure 40.

Figure 43, SoM: TestCase1 verification - Comparison between generated and ref-
erence

51

Figure 44, SoM: TestCase2 Comparison - Comparison between generated and ref-
erence

Figure 45, SoM: TestCase3 Comparison - Comparison between generated and ref-

erence

In Figure 43 and Figure 45, Testcase 1 and Testcase 3 there is an error between gen-

erated implementation and referenced. The comparison shows that generated control-

52

ler has added delay for variable rLastStoredStartingPos, the reference implementation

seems to store this variable differently. In the generated implementation, this variable

storing happens as a one-shot operation, but the reference model stores this value in

multiple cycles. There is also added delay in generated implementation, and this is

most likely caused by the difference between model and reference implementation, and

there is no error in code generation. The model uses state machines which usually add

at least one cycle delay to operation. Diagnosing these differences has increased com-

plexity because the generated code is hard to read by a human and ignored at this

point. This could be diagnosed further, what is the exact reason but, in this case, we

can determine that even with these errors, requirements are fulfilled with both imple-

mentations.

4.7.3 PI-controller: SIL verification with Co-simulation

In SIL verification using co-simulation, Simulink uses Open Platform Communication

Unified Architecture (OPC UA) to communicate with soft PLC. In co-simulation, model

and implementations (generated and reference) run test vector simultaneously with

synchronized signals (Figure 46) and in-loop with the plant models. Synchronization is

achieved by changing the timestep input from Simulink internal clock to be received

from SoftPLC. This way, the Simulink model is updated with the same values as used

in SoftPLC. If timestep is not updated from the PLC, the PI-controller model is not up-

dated although executed. The whole architecture used in co-simulation can be seen in

Figure 47

Figure 46, Co-simulation synchronization [25]

53

Figure 47, Co-simulation system used in this thesis

In this co-simulation, as said before, model, generated, and reference (SuTs) are exe-

cuted simultaneously. Also, each testable has its dedicated plant model and feedback

loop so the differences can be easily observed.

PIController_OPCUA which can be seen in Figure 48, is Matlab System -block that is

executing Matlab-script. This script opens the OPC UA communication with the

SoftPLC through the wireless network. The script finds predefined variables from the

PLC and assigns values from the model. These values are then used in PI-controller in

the plc and control -signals are brought back to the model. This OPC-UA script can be

found in appendix 2. The generated PI-controller is found in appendix 3.

54

Figure 48, Co-simulation model in Simulink, full image as appendix 6

It was beneficial to add both generated, reference, and model to this co-simulation. In

this way, separate 2nd verification which was done with SoM-model can be omitted as

implementation verification and comparison with the reference controller can be done

simultaneously. Results from the co-simulation can be seen in Figure 49 and Figure

50.

Figure 49, System response for each controller. Generated and reference overlap
completely

55

Figure 50, Controller output rY. Generated and reference overlap

Results reveal that generated controller and reference are performing identically. Dif-

ferences can be seen between the model and SoftPLC. The delayed response at the

beginning and skipped sync signals reveal that there is a synchronization issue with the

test setup. The most likely reason for these differences is that the model block-

parameters sample-time was 70ms which was also set in PLC cycle time. But in the co-

simulation, model sample time should have been faster or “inherited” as the “sync”-

signal from the plc was already controlling the execution. Because of two execution

controls, the Simulink model skipped execution sometimes and synchronization did not

completely function as expected. Figure 50 confirms this. Regardless of this difference,

it can be concluded that each system has a similar response, and generated controller

performs as the reference controller which is the goal. Re-testing to fix the synchroniza-

tion issue seems needless and can be overlooked.

56

5. DISCUSSION

As the thesis topic looked like a clear subject to study and finding information on this

specific problem from different sources should be relatively easy, this was not the case.

PLC development seems to fall in between traditional high-level and embedded soft-

ware development, which made finding PLC-specific studies complicated. This problem

was overcome by finding related subjects and handpicking applicable parts from em-

bedded software development and “normal” software development. The re-engineering

part is quite a large topic and is quite neglected in the literature. The reason for this

could be that re-engineering is still at most an afterthought in software development.

In the case study, Re-engineering two parts of the original controller with methods and

the proposed process seemed to function well overall. In this case, requirements were

purely copied from reference code comments at the beginning but looking through the

code line-by-line revealed that all the functionality was not documented/commented on.

This seems to indicate that the original code has seen some changes in its lifetime, as

they usually do, and some things have been implemented after-hours. In this case, the

“undocumented” part was small enough that it would have not made a difference in the

end but following this proposed process, these kinds of requirements or specifications

can be easily identified and updated to a new controller.

Modeling the controller to Simulink was done based on new requirements. Normally the

old design can be used as a guide for modeling but in this case, following the original

design was a mistake. This made the StartingOfMotion-model complex, and it should

have been redesigned altogether and changed completely to use Stateflow functions.

Stateflow integration works well with the PLC coder -addon and it would have made

event / time-based controls easier. For algorithmic controls, the traditional Simulink

model with user-defined systems is simple to use and worked well with PI-controller

and PLC coder-addon.

The verification between each phase confirmed that the artifact produced from each

step is working as expected before proceeding with the process. Re-engineering added

one verification step to the traditional V-model. In this case, both controller types were

verified to be compatible with reference and could be used in upcoming re-engineering

activities. This verification process was most important in re-engineering. Especially in

SoM-function, the model seemed to need refactoring right away but was still function-

57

ing very similarly and within acceptable limits to the reference controller. This grew con-

fidence in the process itself, as the model worked although the expected result was the

opposite.

The simplicity of the case study did cause some drawbacks, mostly from a practical

point of view. Although this workflow worked fine for this simple case, it is expected that

most real-life situations would not be straightforward. How much more complicated is

the process when reference software is high in complexity and done originally with

some other platform entirely? This would make the verification process more compli-

cated. Does the more complicated workflow bring the wanted results if the incremental

re-engineering method is used? This could mean that the controller needs to be split in-

to two parts, one using MBD and one still developed traditionally. This would make fur-

ther development unnecessarily complicated when two different workflows are used.

Answering these kinds of questions is hard generally. It could be assumed that transi-

tion to MBD has many software qualities improving properties when further developing

the software and the proposed re-engineering model, it should increase confidence that

all necessary properties are implemented when transitioning to MBD. Another clear

benefit is that MBD separates the model from a platform, changing to any other code-

generation supported platform is much simpler. But nothing comes without a drawback.

Transitioning to MBD is an extensive process, at least with the proposed model. Fur-

thermore, even if this re-engineering process would be only used in larger parts of the

software and individual functions would be just tested within the Simulink model, still

the process looks time-consuming.

In my personal opinion, the visual method of solving complex control problems is not

always the best as there is much more freedom than in text-based code and even

some simple problems could take much more visual space than in text format which

may affect readability. Another issue that I had with using Simulink, was complicated

compile errors. Compile errors were usually of such nature that required Simulink-

specific understanding. But this is probably not a large issue and the benefits most like-

ly outweigh this drawback. Overall, using Simulink is straightforward and I believe any

software engineer should not have a hard time using this tool, for added benefit, engi-

neers without a software development background should be comfortable as well.

Co-operative development was not tested, which is crucial in any software develop-

ment with multiple users and should be investigated before diving into MBD. Another

possible issue resides in Matlab and Simulink itself; PLC coder is part of the closed

source software and adding this as an essential part of the toolchain is problematic. Al-

58

ternatives to Simulink, at least when writing this, are not as developed and lack fea-

tures. If MBD does not work as wanted in the long run, changing back to traditional de-

velopment could cause problems as all the development work is done with Simulink so

far and the generated code is not the best starting point for traditional programming.

59

6. CONCLUSION

This thesis's main objective was to find out how to re-engineer a controller with a mod-

el-based design. To answer these questions, a re-engineering process model for MBD

was introduced through literature research and a case study was performed with actual

controller as reference. The chosen path for answering these questions was complex

but should have given the reader understanding of how to transform controller software

development to benefit from model-based design through re-engineering.

As a result of this thesis, re-engineering was combined with the V-model software de-

velopment process and the case-study part proved that the introduced re-engineering

process is applicable. Although the re-engineering process was applicable in the sim-

ple case study, some costly drawbacks were found. In contrast to benefits, there were

some drawbacks. The main issue with this process is the complexity. This would make

the process resource-intensive which reduces willingness to use the re-engineering

model in full. The case study focused on verification which could be thought of as the

most valuable part of re-engineering and different approaches were introduced to this

phase. In the end, verifications were completed successfully against the reference con-

troller although a simple case study did not address all the practical questions which

could arise. The case study can act as an example of how one could approach this

kind of problem, although a more detailed study would be necessary to cover the topic

more broadly.

Although model-based design and re-engineering are separate topics and each could

be studied separately with more detail, the aim was to combine these topics into one

thesis. This combination made the subject a little shallow but should work as a starting

point for a more detailed study. Another possibility to further continue this study, im-

plementing safety functions with model-based design and other IEC 61508 Functional

Safety-related topics should be interesting as PLCs are often used in safety systems.

Verification methods introduced in this thesis could function as a starting point as pre-

liminary lookup proposed that these kinds of verification methods could function with

functional safety as well.

60

7. REFERENCES

[1] W. Bolton, Control systems, 1st ed. Newnes, Oxford, 2002, p.6-7

[2] W. Bolton, Programmable Logic Controllers, Sixth ed. Newnes, 2015, p.4.

[3] A. Crespo, P. Albertos and J. Simo', Embedded Control Systems: From Design To Imple-
mentation, Symp. Cost Oriented Automation, 2007, p.2

[4] Naijun Zhan, Shuling wang, Hengjun Zhao, Formal Verification of Simulink/Stateflow
Diagrams, Springer, 2017, p.3-4, 8

[5] Clarus Concept of Operations, The National Technical Information Service, Springfield 2005.
p.20

[6] V. Socci, Implementing a model-based design and test workflow, IEEE International Sympo-
sium on Systems Engineering (ISSE), 2015 p.2.

[7] : Tatiana Kelemenová, Michal Kelemen, Ľubica Miková, Erik Prada, Tomáš Lipták, František
Menda and Vladislav Maxim, Model Based Design and HIL Simulations, Iss. Mechanical Engi-
neering 1, 2013, http://pubs.sciepub.com/ajme/1/7/25/.

[8] Global Harmonization Task Force - Quality Management Systems - Process Validation
Guidance (GHTF/SG3/N99-10:2004 (Edition 2) p.3.

[9] IEEE Standard Glossary of Software Engineering Terminology, in: IEEE Std 610.12-1990,
1990, p.1-84.

[10] Mathworks, Verification and Validation, (Accessed: 24 March 2022)
https://www.mathworks.com/help/slcheck/verification-and-validation.html.

[11] Lettnin, D. & Winterholer, M., Embedded Software Verification and Debugging. 1st ed. New
York, NY: Springer New York., 2017, p.10-11

[12] A. Abran, J.W. Moore, SWEBOK 2004: Guide to the Software Engineering Body of
Knowledge, IEEE Computer Society Press, 2004, p.4-1.

[13] Y. Singh, Software Testing, Cambridge: Cambridge University, 2011, p.27, 231.

[14] P. Tonella, A. Potrich, Reverse Engineering of Object Oriented Code, 1st ed. Springer New
York, New York, NY, 2005. p.1

[15] Dr. Linda H. Rosenberg, Software Re-engineering, Software Assurance Technology Cen-
ter,p 3 - 10.

[16] M. B. Younis, G. Frey, UML-based Approach for the Re-Engineering of PLC Programs, IE-
CON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, p. 1-6.

http://pubs.sciepub.com/ajme/1/7/25/
https://www.mathworks.com/help/slcheck/verification-and-validation.html

61

[17] S. Hassan, U. Qamar, T. Hassan, M. Waqas, Software Reverse Engineering to Require-
ment Engineering for Evolution of Legacy System, 2015 5th International Conference on IT
Convergence and Security (ICITCS), p. 1-2.

[18] Syed Ahsan Fahmi, Ho-Jin Choi, Software Reverse Engineering to Requirements, Infor-
mation and Communications University, 2007, p.1-6

[19] RBCS 2014 The Agile V Model. (Accessed: 24 March 2022) https://rbcs-
us.com/site/assets/files/1203/agile-v-model.pdf

[20] Mathworks, Interface Specification Using Bus Objects, (Accessed: 24 March 2022)
https://www.mathworks.com/help/simulink/slref/interface-specification-using-bus-objects.html.

[21] J. Machado, B.Denis, J. Lesage, J. Faure, J.C.L Ferreida Da Silva, Increasing the efficien-
cy of PLC Program Verification using a plant model, Mechanical Engineering Department, Uni-
versity of Minho, 2003, p.6.

[22] Matworks, Test harness, (Accessed: 24 March 2022)
https://ww2.mathworks.cn/help/sltest/ug/test-harness-construction-for-specific-model-
elements.html.

[23] Mathworks, PLC coder limitations, (Accessed: 24 March 2022)
https://www.mathworks.com/help/plccoder/ug/structured-text-code-generation-limitations.html.

[24] M. Conrad, G. Sandmann, A Verification and Validation Workflow for IEC 61508 Applica-
tions, Mathworks, 2009, p.2

[25] Mathworks, Co-Simulation Execution, (Accessed: 24 March 2022)
https://www.mathworks.com/help/simulink/ug/co-simulation-execution.html

https://rbcs-us.com/site/assets/files/1203/agile-v-model.pdf
https://rbcs-us.com/site/assets/files/1203/agile-v-model.pdf
https://www.mathworks.com/help/simulink/slref/interface-specification-using-bus-objects.html
https://ww2.mathworks.cn/help/sltest/ug/test-harness-construction-for-specific-model-elements.html
https://ww2.mathworks.cn/help/sltest/ug/test-harness-construction-for-specific-model-elements.html
https://www.mathworks.com/help/plccoder/ug/structured-text-code-generation-limitations.html
https://www.mathworks.com/help/simulink/ug/co-simulation-execution.html

62

APPENDICES

Appendix 1: Structured text - Testbench code used in veri-
fication

IF testVerify THEN
 IF testCycleNum < 201 THEN
 (* TEST CYCLE SETUP *)
 cycle_bCommandEnable := tb_bCommandEnable[testCycleNum];
 cycle_CommandStart := tb_CommandStart[testCycleNum];
 cycle_rActualVel := tb_rActualVel[testCycleNum];
 cycle_rTargetVel := tb_rTargetVel[testCycleNum];
 cycle_rActualPos := tb_rActualPos[testCycleNum];
 cycle_rTargetPos := tb_rTargetPos[testCycleNum];
 cycle_bStandstill := tb_bStandstill[testCycleNum];
 cycle_rVelocityTargetMinimum := tb_rVelocityTargetMinimum[testCycleNum];
 cycle_rPositionErrorOut := tb_rPositionErrorOut[testCycleNum];
 cycle_rCheckMovementTolerance := tb_rCheckMovementTolerance[testCycleNum];
 cycle_rPositioningWindow := tb_rPositioningWindow[testCycleNum];
 cycle_iVelocityProfileState := tb_iVelocityProfileState[testCycleNum];
 cycle_rDirectionDetectLimit := tb_rDirectionDetectLimit[testCycleNum];
 cycle_rLastStoredStartingPos := tb_rLastStoredStartingPos[testCycleNum];
 cycle_rControlStartPosition := tb_rControlStartPosition[testCycleNum];
 cycle_bMovementStartingError := tb_bMovementStartingError[testCycleNum];
 cycle_bCheckMovementContinuos := tb_bCheckMovementContinuos[testCycleNum];
 cycle_bDirectionError := tb_bDirectionError[testCycleNum];
 IF testCycleNum = 0 THEN
 (* INIT *)
 gen_StartingOfMotion0(ssMethodType := SS_INITIALIZE, bCommandEnable := cycle_bCommandEnable,

CommandStart := cycle_CommandStart, rActualVel := cycle_rActualVel, rTargetVel := cycle_rTargetVel, rActualPos
:= cycle_rActualPos, rTargetPos := cycle_rTargetPos, bStandstill := cycle_bStandstill, rVelocityTargetMinimum
:= cycle_rVelocityTargetMinimum, rPositionErrorOut := cycle_rPositionErrorOut, rCheckMovementTolerance := cy-
cle_rCheckMovementTolerance, rPositioningWindow := cycle_rPositioningWindow, iVelocityProfileState := cy-
cle_iVelocityProfileState, rDirectionDetectLimit := cycle_rDirectionDetectLimit);

 gen_rLastStoredStartingPos := gen_StartingOfMotion0.rLastStoredStartingPos;
 gen_rControlStartPosition := gen_StartingOfMotion0.rControlStartPosition;
 gen_bMovementStartingError := gen_StartingOfMotion0.bMovementStartingError;
 gen_bCheckMovementContinuos := gen_StartingOfMotion0.bCheckMovementContinuos;
 gen_bDirectionError := gen_StartingOfMotion0.bDirectionError;
 END_IF;
 (* STEP *)
 gen_StartingOfMotion0(ssMethodType := SS_STEP, bCommandEnable := cycle_bCommandEnable, Command-

Start := cycle_CommandStart, rActualVel := cycle_rActualVel, rTargetVel := cycle_rTargetVel, rActualPos := cy-
cle_rActualPos, rTargetPos := cycle_rTargetPos, bStandstill := cycle_bStandstill, rVelocityTargetMinimum :=
cycle_rVelocityTargetMinimum, rPositionErrorOut := cycle_rPositionErrorOut, rCheckMovementTolerance := cy-
cle_rCheckMovementTolerance, rPositioningWindow := cycle_rPositioningWindow, iVelocityProfileState := cy-
cle_iVelocityProfileState, rDirectionDetectLimit := cycle_rDirectionDetectLimit);

 gen_rLastStoredStartingPos := gen_StartingOfMotion0.rLastStoredStartingPos;
 gen_rControlStartPosition := gen_StartingOfMotion0.rControlStartPosition;
 gen_bMovementStartingError := gen_StartingOfMotion0.bMovementStartingError;
 gen_bCheckMovementContinuos := gen_StartingOfMotion0.bCheckMovementContinuos;
 gen_bDirectionError := gen_StartingOfMotion0.bDirectionError;

 ref_StartingOfMotion0(bCommandEnable := cycle_bCommandEnable, bCommandStart :=

cycle_CommandStart, rActualVel := cycle_rActualVel, rTargetVel := cycle_rTargetVel, rActualPos :=
cycle_rActualPos, rTargetPos := cycle_rTargetPos, bStandstill := cycle_bStandstill, rVelocityTargetMinimum :=
cycle_rVelocityTargetMinimum, rPositionErrorOut := cycle_rPositionErrorOut, rCheckMovementTolerance :=
cycle_rCheckMovementTolerance, rPositioningWindow := cycle_rPositioningWindow, iVelocityProfileState :=
cycle_iVelocityProfileState, rDirectionDetectLimit := cycle_rDirectionDetectLimit);

 ref_rLastStoredStartingPos := ref_StartingOfMotion0.rLastStoredStartingPos;
 ref_rControlStartPosition := ref_StartingOfMotion0.rControlStartPosition;
 ref_bMovementStartingError := ref_StartingOfMotion0.bMovementStartingError;
 ref_bCheckMovementContinious := ref_StartingOfMotion0.bCheckMovementContinuos;
 ref_bDirectionError := ref_StartingOfMotion0.bDirectionError;

 (* VERIFY *)
 IF testVerify THEN
 IF ABS(cycle_rLastStoredStartingPos) < 1.0E-11 THEN
 IF ABS(gen_rLastStoredStartingPos) > 0.0001 THEN
 testVerify := FALSE;
 testVarName := 'rLastStoredStartingPos';
 END_IF;

63

 ELSIF ABS(gen_rLastStoredStartingPos - cycle_rLastStoredStartingPos) > (0.0001 *
ABS(cycle_rLastStoredStartingPos)) THEN

 testVerify := FALSE;
 testVarName := 'rLastStoredStartingPos';
 END_IF;
 END_IF;
 IF testVerify THEN
 IF ABS(cycle_rControlStartPosition) < 1.0E-11 THEN
 IF ABS(gen_rControlStartPosition) > 0.0001 THEN
 testVerify := FALSE;
 testVarName := 'rControlStartPosition';
 END_IF;
 ELSIF ABS(gen_rControlStartPosition - cycle_rControlStartPosition) > (0.0001 *

ABS(cycle_rControlStartPosition)) THEN
 testVerify := FALSE;
 testVarName := 'rControlStartPosition';
 END_IF;
 END_IF;
 IF testVerify AND (gen_bMovementStartingError <> cycle_bMovementStartingError) THEN
 testVerify := FALSE;
 testVarName := 'bMovementStartingError';
 END_IF;
 IF testVerify AND (gen_bCheckMovementContinuos <> cycle_bCheckMovementContinuos) THEN

 testVarName := 'bCheckMovementContinuos';
 END_IF;
 IF testVerify AND (gen_bDirectionError <> cycle_bDirectionError) THEN
 testVerify := FALSE;
 testVarName := 'bDirectionError';
 END_IF;
 testCycleNum := testCycleNum + 1;
 END_IF;
END_IF;

Appendix 2: Matlab script: OPC-UA linking PLC and matlab

classdef PLCCOSIM < matlab.System
 % PLCCOSIM Add summary here
 %
 % This template includes the minimum set of functions required
 % to define a System object with discrete state.

 % Public, tunable properties
 properties

 end

 properties(DiscreteState)
 CycleNum;
 end

 % Pre-computed constants
 properties(Access = private)
 UAObj;
 DeviceNode;
 Cycle_U;
 Cycle_Y;
 Cycle_rConstSpeedTime;
 Cycle_rAcc;
 Cycle_rDec;
 Cycle_diDistance;
 Cycle_rInitialVel;
 Cycle_rMinVel;
 Cycle_rMaxVel;
 Cycle_rVelTarget_gen;
 Cycle_bSuccess_gen;
 Cycle_rVelTarget_ref;
 Cycle_bSuccess_ref;
 TestCycleNum;
 PreviousCycleNum;
 end

 methods(Access = protected)
 function setupImpl(obj)
 % Perform one-time calculations, such as computing constants
 % init opc UA server connection

64

 obj.UAObj = opcua('opc.tcp://192.168.254.127:4840');
 obj.UAObj.Endpoints(1) = [];
 connect(obj.UAObj);
 obj.DeviceNode = findNodeByName(obj.UAObj.Namespace,'DeviceSet','-once');
 obj.Cycle_U = findNodeByName(obj.DeviceNode,'cycle_U');
 obj.Cycle_Y = findNodeByName(obj.DeviceNode,'cycle_Y');
 obj.Cycle_rConstSpeedTime = findNodeBy-

Name(obj.DeviceNode,'cycle_rConstSpeedTime');
 obj.Cycle_rAcc = findNodeByName(obj.DeviceNode,'cycle_rAcc');
 obj.Cycle_rDec = findNodeByName(obj.DeviceNode,'cycle_rDec');
 obj.Cycle_diDistance = findNodeByName(obj.DeviceNode,'cycle_diDistance');
 obj.Cycle_rInitialVel = findNodeByName(obj.DeviceNode,'cycle_rInitialVel');
 obj.Cycle_rMinVel = findNodeByName(obj.DeviceNode,'cycle_rMinVel');
 obj.Cycle_rMaxVel = findNodeByName(obj.DeviceNode,'cycle_rMaxVel');
 obj.Cycle_rVelTarget_gen = findNodeByName(obj.DeviceNode,'cycle_rVelTarget_gen');
 obj.Cycle_bSuccess_gen = findNodeByName(obj.DeviceNode,'cycle_bSuccess_gen');
 obj.Cycle_rVelTarget_ref = findNodeByName(obj.DeviceNode,'cycle_rVelTarget_ref');
 obj.Cycle_bSuccess_ref = findNodeByName(obj.DeviceNode,'cycle_bSuccess_ref');
 obj.TestCycleNum = findNodeByName(obj.DeviceNode,'testCycleNum');
 obj.PreviousCycleNum = findNodeByName(obj.DeviceNode,'previousCycleNum');
 end

 function [rVeltarget_gen,bSuccess_gen,rVeltarget_ref,bSuccess_ref] = stepImpl(obj,

rConstSpeedTime, rAcc, rDec, diDistance, rInitialVel, rMinVel, rMaxVel)
 % Implement algorithm. Calculate y as a function of input u and
 % discrete states.
 obj.CycleNum = obj.CycleNum+1;
 writeValue(obj.UAObj, obj.Cycle_rConstSpeedTime, rConstSpeedTime);
 writeValue(obj.UAObj, obj.Cycle_rAcc, rAcc);
 writeValue(obj.UAObj, obj.Cycle_rDec, rDec);
 writeValue(obj.UAObj, obj.Cycle_diDistance, diDistance);
 writeValue(obj.UAObj, obj.Cycle_rInitialVel, rInitialVel);
 writeValue(obj.UAObj, obj.Cycle_rMinVel, rMinVel);
 writeValue(obj.UAObj, obj.Cycle_rMaxVel, rMaxVel);
 writeValue(obj.UAObj, obj.TestCycleNum, obj.CycleNum);

 valueUpdated = false;
 for rct = 1:100
 previousCycleNumValue = readValue(obj.UAObj, obj.PreviousCycleNum);
 if previousCycleNumValue == obj.CycleNum
 valueUpdated = true;
 rVeltarget_gen = readValue(obj.UAObj, obj.Cycle_rVelTarget_gen);
 bSuccess_gen = readValue(obj.UAObj, obj.Cycle_bSuccess_gen);
 rVeltarget_ref = readValue(obj.UAObj, obj.Cycle_rVelTarget_ref);
 bSuccess_ref = readValue(obj.UAObj, obj.Cycle_bSuccess_ref);
 break
 end
 pause(0.001)
 end

 if ~valueUpdated
 error('not get the value for cycle number %d', obj.CycleNum);
 end
 end

 function resetImpl(obj)
 % Initialize / reset discrete-state properties
 obj.CycleNum = 0;
 writeValue(obj.UAObj, obj.TestCycleNum, obj.CycleNum);
 writeValue(obj.UAObj, obj.PreviousCycleNum, obj.CycleNum);
 end

 function [out1,out2,out3,out4] = getOutputSizeImpl(obj)
 out1 = propagatedInputSize(obj,1);
 out2 = propagatedInputSize(obj,2);
 out3 = propagatedInputSize(obj,1);
 out4 = propagatedInputSize(obj,2);

 end

 function [out1,out2,out3,out4] = getOutputDataTypeImpl(obj)
 out1 = 'single';
 out2 = 'boolean';
 out3 = 'single';

65

 out4 = 'boolean';
 end

 function [out1,out2,out3,out4]= isOutputComplexImpl(obj)
 out1 = false;
 out2 = false;
 out3 = false;
 out4 = false;
 end

 function [out1,out2,out3,out4] = isOutputFixedSizeImpl(obj)
 out1 = true;
 out2 = true;
 out3 = true;
 out4 = true;

 end

 function s = getDiscreteStateImpl(obj)
 s = obj.CycleNum;
 end
 end
end

Appendix 3. Structured text: PI-controller generated from
model

IF need_init THEN
 (* SystemInitialize for MATLAB Function: '<Root>/PI controller' *)
 init_not_empty := FALSE;
 need_init := FALSE;
END_IF;

(* MATLAB Function: '<Root>/PI controller' *)

(* rIn : REAL; // Controller input (setpoint - actual meas-

ured value) *)
(* rKP : REAL := 1.0; // Gain *)
(* rKI : REAL := 1.0; // Integral Ki (Integral time) *)
(* MATLAB Function 'PI controller': '<S1>:1' *)
(* rLIM_L : REAL := -1.0E38; // Lower limit for output *)
(* rLIM_H : REAL := 1.0E38; // Higher limit for output *)
(* bRST : BOOL; // Resets internal integrator *)
(* rY : REAL; // Controller output *)
(* bLIM : BOOL; // indicates that the Output Y runs to one

of the limits rLIM_L or rLIM_H *)
(* init: BOOL; *)
(* tx: DWORD; *)
(* tc : REAL; *)
(* t_last: DWORD; *)
(* in_last : REAL; *)
(* i: REAL; *)
(* p: REAL; *)
(* (* initialize at power_up *) *)
(* '<S1>:1:31' if isempty(init) || bRST == 1 *)

IF (NOT init_not_empty) OR (bRST = 1.0) THEN
 (* '<S1>:1:33' init = 1; *)
 init_not_empty := TRUE;
 (* '<S1>:1:34' in_last = rIn; *)
 in_last := rIn;
 (* '<S1>:1:35' t_last = tCurtime; *)
 t_last := tCurtime;
 (* '<S1>:1:36' i = 0.0; *)
 i := 0.0;
 (* '<S1>:1:37' tc = 0.0; *)
 (* '<S1>:1:38' rY = 0; *)
 rY := 0.0;
 (* Outport: '<Root>/bLim' *)
 (* '<S1>:1:39' bLim = 0; *)
 bLim := 0.0;

66

ELSE
 (* '<S1>:1:40' else *)
 (* (read last cycle time in Microseconds *)
 (* '<S1>:1:42' tx = tCurtime; *)
 (* '<S1>:1:43' tc = tx - t_last; *)
 tc := tCurtime - t_last;
 (* '<S1>:1:44' t_last = tx; *)
 t_last := tCurtime;
 (* (* calculate proportional part *) *)
 (* '<S1>:1:47' p = rKP * rIn; *)
 b_p := rKP * rIn;
 (* (* run integrator *) *)
 (* '<S1>:1:50' i = (rIn + in_last) * 5.0E-7 * rKI * tc + i; *)
 i := ((((rIn + in_last) * 5.0E-7) * rKI) * tc) + i;
 (* '<S1>:1:51' in_last = rIn; *)
 in_last := rIn;
 (* (* calculate output Y *) *)
 (* '<S1>:1:55' rY = p + i; *)
 rY := b_p + i;
 (* (* check output for limits *) *)
 (* '<S1>:1:58' if rY >= rLIM_H *)

 IF rY >= rLIM_H THEN
 (* '<S1>:1:59' rY = rLIM_H; *)
 rY := rLIM_H;
 (* '<S1>:1:60' if rKI ~= 0.0 *)

 IF rKI <> 0.0 THEN
 (* '<S1>:1:61' i = rLIM_H - p; *)
 i := rLIM_H - b_p;
 ELSE
 (* '<S1>:1:62' else *)
 (* '<S1>:1:63' i = 0.0; *)
 i := 0.0;
 END_IF;

 (* Outport: '<Root>/bLim' *)
 (* '<S1>:1:65' bLim = 1; *)
 bLim := 1.0;
 ELSIF rY <= rLIM_L THEN
 (* '<S1>:1:66' elseif rY <= rLIM_L *)
 (* '<S1>:1:67' rY = rLIM_L; *)
 rY := rLIM_L;
 (* '<S1>:1:68' if rKI ~= 0.0 *)

 IF rKI <> 0.0 THEN
 (* '<S1>:1:69' i = rLIM_L - p; *)
 i := rLIM_L - b_p;
 ELSE
 (* '<S1>:1:70' else *)
 (* '<S1>:1:71' i = 0.0; *)
 i := 0.0;
 END_IF;

 (* Outport: '<Root>/bLim' *)
 (* '<S1>:1:73' bLim = 1; *)
 bLim := 1.0;
 ELSE
 (* Outport: '<Root>/bLim' *)
 (* '<S1>:1:74' else *)
 (* '<S1>:1:75' bLim = 0; *)
 bLim := 0.0;
 END_IF;

END_IF;

(* End of MATLAB Function: '<Root>/PI controller' *)

67

Appendix 4. StartingOfMotion-model

68

Appendix 5. StartingOfMotion-model test harness

69

Appendix 6. Cosimulation-model for PI-controller

