
OSS PESTO: An Open Source Software Project
Evaluation and Selection TOol

Xiaozhou Li and Sergio Moreschini

Tampere University
Kalevantie 4, 33100, Tampere, Finland

{xiaozhou.li, sergio.moreschini}@tuni.fi

Abstract. Open source software (OSS), playing an increasingly criti-
cal role nowadays, has been commonly adopted and integrated in var-
ious software products. For many practitioners, selecting and adopting
suitable OSS can help them greatly. Though many studies have been
conducted on proposing OSS evaluation and selection models, a limited
number are followed and used in the industry. Meanwhile, many existing
OSS evaluation tools, though providing valuable details, fall short on of-
fering intuitive suggestions in terms of framework-supported evaluation
factors. Towards filling the gap, we propose an Open Source Software
Project Evaluation and Selection TOol (OSS PESTO). Targeting OSS
on Github, the largest OSS source code host, it facilitates the evalua-
tion practice by enabling practitioners to compare candidates therein in
terms of selected OSS evaluation models. It also allows in-time Github
data collection and customized evaluation that enriches its effectiveness
and ease of use.

Keywords: Open source Software · Open Source Evaluation · Github
Mining

1 Introduction

During the last two decades, open source software (OSS) has been flourishing
with such trend continuing [10] and nowadays, OSS is adopted by the vast ma-
jority of IT companies [13][12]. On Github, the largest OSS source code host,
more than 60 million users1 have participated in over 100 million open source
projects2, among which many have been widely adopted by users and companies.
However, due to such a large number of candidates, for many practitioners, se-
lecting a suitable OSS product or library is difficult, especially when the relevant
information are not explicitly provided [12].

To support the OSS evaluation and selection practice, many studies provide
models and frameworks as guidance [7,18,21,24,23]. During the last two decades,
35 models are proposed with checklists, measures or both provided [12]. They
all work similarly with a process of “candidate software identification - factor

1 https://github.com/search?q=type:user&type=Users
2 https://github.com/search?q=is:public

ar
X

iv
:2

10
2.

12
26

7v
1 

 [
cs

.S
E

] 
 2

4 
Fe

b 
20

21



2 X. Li and S. Moreschini

evaluation - scoring”. In addition, many tools are designed and proposed to
facilitate such practice [18,21,4,23]. However, many tools are rigidly designed
and allow limited customization. Meanwhile, among those proposed, only two
are properly maintained with the majority being not available any more [12].

As the largest OSS host and platform, Github is a valuable channel restor-
ing and presenting OSS related information. Retrospective analysis of Github
repositories, based on the abundant information on code, developers, organiza-
tions and activities within, can yield valuable insights into the evolution and
growth of OSS and facilitate decision making processes [17]. Many studies have
used such data source and conduct research on various OSS related perspectives
[9,15,22]. However, the approaches towards using Github data for OSS evaluation
are limited, let alone tools to support such practice.

Herein, we propose OSS PESTO, an open source tool facilitating OSS eval-
uation and selection. Comparatively, besides being fully open sourced and free
to use, OSS PESTO has the following advantages: 1) it allows users to update
in-time Github data; 2) it allows users to customize evaluation with models or
preference; 3) it allows users to save data locally and to use it without network
connection; 4) it is always accessible as maintained in Github repository. It shall
largely help the practitioners to compare and evaluate OSS candidates freely,
timely and efficiently.

The remainder of this paper is organized as follows. Section 2 introduces
the related work on OSS evaluation tools. Section 3 presents OSS PESTO with
details. Section 4 presents an experiment validating its applicability. Section 5
concludes the article.

2 Related Work

The Open Source Maturity Model (OSMM) is the first proposed model and open
standard that aims for such purpose [7]. Guided by OSMM, the practitioners will
evaluate OSS by its maturity of each aspect, weight each aspect with importance,
and compute its overall maturity by the weighted sum. Compared to OSMM,
the Open Business Readiness Rating (OpenBRR) is an OSS evaluation method
with more indicators, the idea of target uses and the customized evaluation [24].
The method provides an index applicable to all OSS development initiatives.
Its main limits are related to the incompatibility of the requirements between
different targets and to the difficulty of choosing the proper reference applica-
tion for some projects. Similarly, a number of evaluation models are proposed,
for example, Qualification and Selection of Open Source Software (QSOS) [18],
OpenBQR [21], OSSPAL [23], which provide enhanced guidance and method-
ological support.

QSOS tool is designed to support the QSOS model which aims to qualify,
select and compare OSS products [18]. However, the rigidness of compulsory
Identity Card setting and all criteria inclusion is commonly seen as its limitation.
OpenQBR [21] requires specification on factor importance before the assessment



OSS PESTO 3

of the project. Compared to the QSOS tool, OpenQBR is more elastics as not
require to evaluate factors which are not relevant to the specific project.

OSS-PAL [23], though similar to QSOS, aims to partially automate the evalu-
ation of the projects. Despite the appealing goal of the project, it fails to provide
the automated data collection function. Other works investigated the availability
of the information on online portals [20][14], but they did not provide tools for
collecting or aggregating data.

In addition, many other tools are available over time but have been dis-
continued, including real-time OpenSSL execution monitoring system (ROSEN)
[4], RAP TOOL [8], SQO-OSS [19], OMM Tool [5], T-Doc Tool [16], QualiPSo
Trustworthiness Checklist [3], MOSST [6] and OP2A Checklist [1] and other
checklist included in marketing models for OSS [11][2].

With OSS PESTO, we aim to overcome some of the most common drawbacks
of all of these tools, such as, the focus on specific factors, the evaluation of
factors before adding a weight function or the lack of control for both internal
and external product quality.

3 OSS PESTO

We implement OSS PESTO3 by following the commonly acknowledged OSS
evaluation process summarized from previous studies [12]. It shall contain the
following main activities: 1) identify the OSS candidates; 2) elicit a list of factors
that need to be evaluated and the according metrics that measure such factors;
3) provide scores or selection recommendation as evaluation output.

In addition, in order to use the latest Github data to evaluate OSS, we in-
tegrate a data crawler module in OSS PESTO. It enables the users to crawl
the required repository and activities information of any existing OSS projects.
Additionally, it also allows them to crawl the data of a list of projects based
on the selected range of stars. Furthermore, OSS PESTO allows users to cus-
tomize evaluation factors based on the selection of models and/or their personal
preferences.

Fig. 1. OSS PESTO Framework

Shown in Fig. 1, OSS PESTO contains three individual modules as follows.

3 Source code: https://github.com/clowee/OSS-PESTO



4 X. Li and S. Moreschini

– Data Crawler: The data crawler module contains a set of Python scripts
that extract Github repository data via Github APIs4. It enables the users
to select the candidate OSS and extract the according data.

– Server: The server side is implemented by ReactJS5 while database with
MongoDB6. The evalaution model is described with the config.json file, which
can be altered with users’ preference of evaluation factors.

– Client: The client side is also implemented by ReactJS. It mainly displays
the candidate OSS projects with the selected attributes/factors shown. It
also shows the results of candidate comparison which facilitates OSS evalu-
ation and selection.

Fig. 1 also shows the activities of utilizing OSS PESTO to evaluate candidate
OSS projects as follows.

– Step 1. identifies the OSS candidates by running the data crawler module
to extract the according dataset.

– Step 2. select the evaluation model, configure evaluation preference, and
run the server module.

– Step 3. run the client module and compare the OSS candidates by the
selected factors.

The crawled data is saved locally in A comma-separated values (CSV) file
with each row containing the values of an individual OSS candidate. To be noted,
the required data can be selectively crawled according to the users, who deter-
mine which metrics are the important ones when evaluating particular aspects
of OSS. Such selection of data can be guided by the evaluation model chosen
by the evaluator. For example, when selecting only the most popular OSS, the
numbers of stars, watches, and download are the ones to be crawled.

Fig. 2. An example of Configuration File

Furthermore, the configuration file is a Javascript file mapping the category
tabs displayed by the client and the data features/metrics that are selected to
evaluate the according categories. Shown in 2 is an example of how a configura-
tion file works. By editing the configuration file, the users can customize their

4 https://docs.github.com/en/graphql; https://docs.github.com/en/rest
5 https://reactjs.org/
6 https://www.mongodb.com/



OSS PESTO 5

selection of metrics, the evaluation categories and the links in between. For ex-
ample, if the user chooses to focus on the popularity of OSS and uses the number
of watches as the metric for it, the according piece of code { Header: “#Watch”,
accessor: “watcher count” } shall be added to the “Popularity” tab block.

4 Experiment Showcase

In order to validate the applicability of OSS PESTO, we conduct a series of ex-
periments, including the testing of all three modules. The testing scenario is to
evaluate and compare three JavaScript frameworks, i.e., Angular7, Redux8 and
Vue9 using the OSSPAL model [23]. The evaluation categories include “Com-
munity”, “Support”, “Operational Software Characteristics”, “Documentation”,
“Software Technology Attributes”, “Functionality” and “Development Process”.
Herein, we focus on the “Community”, “Support” and “Software Technology At-
tributes” aspects, which can be well demonstrated by the obtained data.

To start crawling the Github data, given the user’s Github personal token
and the target OSS candidates as input, the data crawler module can be ran
individually and continuously. Towards the stated objective, the crawling process
takes within two minutes. When the data is ready, we prepare the config.json
by selecting the target metrics that are valuable towards evaluating each factors
of the candidates. For each of the selected factors, the according metrics are as
follows.

– Community: number of watches, number of stars, age, average issue active
time, average issue comments, number of pull requests, and number of issue
raiser.

– Support: average issue closed time, number of contributor, organization issue
raiser.

– Software Technology Attributes: number of open issues, number of depen-
dence.

Thereafter, when running both the server and the client, the comparison
result is shown in Fig. 3.

Based on such comparison, we can easily observe that despite not being the
oldest community, Vue is more popular than the other two candidates in terms of
watches and stars. However, these three communities are active in different ways,
as Angular has more comments on issues, pull requests, and different issue raisers
while the others are more responsive to issues (shown in Fig.3 (a)). Regarding
support, Angular has a much larger contributor group and organizational issue
raiser for support, while on software technology attribute aspect, Redux has
much less dependence and open issues (shown in Fig.3 (b) and (c)).

When adopting a different evaluation model, it is possible that by taking into
account particular overseen metrics, the user obtains new insights regarding the

7 https://angular.io/
8 https://redux.js.org/
9 https://vuejs.org/



6 X. Li and S. Moreschini

Fig. 3. Experiment Results Demonstration

selected candidates. For example, the SQO-OSS model [19] sees “Growth in
active developers” as a metric to evaluate the “Developer base” category, when
OSSPAL has not such category. However, due to the fact that same dataset is
used for all potential models, it is hardly possible to have opposite comparative
evaluation result for the same category from different models.

5 Conclusion

This paper presents OSS PESTO, an open source software project evaluation and
selection tool, to support the practitioners’ need towards OSS evaluation and se-
lection. This tool provides a Github-repository-data-oriented, easy-to-maintain,
customization-friendly solution. It shall benefit the practitioners in both indus-
try and academia in terms of the different focuses on either the OSS projects or
the OSS evaluation models respectively.

However, the current version of this tool can certainly be improved in the
following ways. Firstly, OSS PESTO has not yet supported the practitioners’
selection of OSS candidates at the identification phase in terms of their target
functionalities. As the accessible data obtained from Github does not provide
explicit information regarding the main features of the OSS, such candidate
selection cannot be automated via direct identification. A potential solution is to
apply natural language processing (NLP) techniques to identify and summarize
such main features from the description and Readme text of the projects. Such
a feature shall be implemented in our future work.

Furthermore, the current version only utilizes limited amount of the at-
tributes provided by the Github API. For many such attributes, the explicit
mappings towards particular OSS evaluation categories are not verified. For ex-
ample, the number of OSS downloads can be seen as a metric for its popularity.
However, unless a particular user insists it being a critical evaluation criterion for
his/her customized evaluation model, such value can be ignored when it does not
contribute to any pre-defined evaluation categories. Nonetheless, the inclusion
of more data features shall be taken into account in the future work. However,
it should be noted such work can result in the exhaustion of Github API query
limit, as some values (e.g., issues) can only be obtained via looping enumerated
results.



OSS PESTO 7

In addition, more features, in terms of the ease of use perspective of the
tool, shall be also considered. For example, a graphic user interface is needed
for the data crawler module which can also be integrated to the server side.
Furthermore, the data from Github has its limitation on reflecting certain as-
pects of OSS. For example, the development process of the projects cannot be
easily accessed externally, except for the number of releases and the release pace.
Thus, in order to improve the potential scope of this tool, more data sources are
required with more techniques required to process possibly unstructured data
as well. Meanwhile, more practical features, such as, exporting the evaluation
results, adding weight to different factors, editor of configure files, and model
customization interface, are also required.

Our future work shall focus on integrating the modules and enhancing the
overall quality of the tool according to the above mentioned limitation. It is also
important to investigate the ways of evaluating individual OSS by providing
unified quantified results. In addition, we shall systematically investigate the
availability of data from multiple sources that could be used to support OSS
evaluation.

References

1. Benlian, A., Hess, T.: Comparing the relative importance of evaluation criteria
in proprietary and open-source enterprise application software selection–a conjoint
study of erp and office systems. Information Systems Journal 21(6), 503–525 (2011)

2. del Bianco, V., Lavazza, L., Lenarduzzi, V., Morasca, S., Taibi, D., Tosi, D.: A
study on oss marketing and communication strategies. In: Open Source Systems:
Long-Term Sustainability. pp. 338–343. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2012)

3. del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: The qualispo ap-
proach to oss product quality evaluation. In: Proceedings of the 3rd International
Workshop on Emerging Trends in Free/Libre/Open Source Software Research and
Development. pp. 23–28 (2010)

4. Choi, S.j., Kang, Y.h., Lee, G.s.: A security evaluation and testing methodology
for open source software embedded information security system. In: International
Conference on Computational Science and Its Applications. pp. 215–224. Springer
(2005)

5. Del Bianco, V., Lavazza, L., Morasca, S., Taibi, D.: Quality of open source software:
the qualipso trustworthiness model. In: IFIP International Conference on Open
Source Systems. pp. 199–212. Springer (2009)

6. Del Bianco, V., Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: A survey on the
importance of some economic factors in the adoption of open source software. In:
Software Engineering Research, Management and Applications 2010, pp. 151–162.
Springer (2010)

7. Duijnhouwer, F.W., Widdows, C.: Capgemini expert letter open source maturity
model. Capgemini pp. 1–18 (2003)

8. Immonen, A., Palviainen, M.: Trustworthiness evaluation and testing of open
source components. In: Seventh International Conference on Quality Software
(QSIC 2007). pp. 316–321. IEEE (2007)



8 X. Li and S. Moreschini

9. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian,
D.: The promises and perils of mining github. In: Proceedings of the 11th working
conference on mining software repositories. pp. 92–101 (2014)

10. Kilamo, T., Lenarduzzi, V., Ahoniemi, T., Jaaksi, A., Rahikkala, J., Mikkonen, T.:
How the cathedral embraced the bazaar, and the bazaar became a cathedral. In:
Ivanov, V., Kruglov, A., Masyagin, S., Sillitti, A., Succi, G. (eds.) Open Source
Systems. pp. 141–147. Springer International Publishing, Cham (2020)

11. Lenarduzzi, V.: Towards a marketing strategy for open source software. In: Pro-
ceedings of the 12th International Conference on Product Focused Software Devel-
opment and Process Improvement. p. 31–33. Profes ’11, Association for Computing
Machinery, New York, NY, USA (2011). https://doi.org/10.1145/2181101.2181109

12. Lenarduzzi, V., Taibi, D., Tosi, D., Lavazza, L., Morasca, S.: Open source soft-
ware evaluation, selection, and adoption: a systematic literature review. In: 2020
46th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA). pp. 437–444 (2020). https://doi.org/10.1109/SEAA51224.2020.00076

13. Lenarduzzi, V., Tosi, D., Lavazza, L., Morasca, S.: Why do developers adopt open
source software? past, present and future. In: Open Source Systems. pp. 104–115.
Springer International Publishing, Cham (2019)

14. Li, X., Moreschini, S., Zhang, Z., Taibi, D.: Exploring factors and measures to
select open source software. In: Arxiv (2021)

15. Lima, A., Rossi, L., Musolesi, M.: Coding together at scale: Github as a collabora-
tive social network. In: Proceedings of the International AAAI Conference on Web
and Social Media. vol. 8 (2014)

16. Morasca, S., Taibi, D., Tosi, D.: T-doc: A tool for the automatic generation of
testing documentation for oss products. In: IFIP International Conference on Open
Source Systems. pp. 200–213. Springer (2010)

17. Munaiah, N., Kroh, S., Cabrey, C., Nagappan, M.: Curating github for engineered
software projects. Empirical Software Engineering 22(6), 3219–3253 (2017)

18. Origin, A.: Method for qualification and selection of open source software (qsos).
http://www.qsos.org (Accessed: 2021-01-22)

19. Samoladas, I., Gousios, G., Spinellis, D., Stamelos, I.: The sqo-oss quality model:
measurement based open source software evaluation. In: IFIP international con-
ference on open source systems. pp. 237–248. Springer (2008)

20. Sbai, N., Lenarduzzi, V., Taibi, D., Sassi, S.B., Ghezala, H.H.B.: Ex-
ploring information from oss repositories and platforms to support oss
selection decisions. Information and Software Technology 104, 104–
108 (2018). https://doi.org/https://doi.org/10.1016/j.infsof.2018.07.009,
https://www.sciencedirect.com/science/article/pii/S0950584918301526

21. Taibi, D., Lavazza, L., Morasca, S.: Openbqr: a framework for the assessment
of oss. In: Feller, J., Fitzgerald, B., Scacchi, W., Sillitti, A. (eds.) Open Source
Development, Adoption and Innovation. pp. 173–186. Springer US, Boston, MA
(2007)

22. Tsay, J., Dabbish, L., Herbsleb, J.: Influence of social and technical factors for eval-
uating contribution in github. In: Proceedings of the 36th international conference
on Software engineering. pp. 356–366 (2014)

23. Wasserman, A.I., Guo, X., McMillian, B., Qian, K., Wei, M.Y., Xu, Q.: Osspal:
finding and evaluating open source software. In: IFIP International Conference on
Open Source Systems. pp. 193–203. Springer, Cham (2017)

24. Wasserman, A.I., Pal, M., Chan, C.: The business readiness rating: a framework
for evaluating open source technical report (2006)

https://doi.org/10.1145/2181101.2181109
https://doi.org/10.1109/SEAA51224.2020.00076
http://www.qsos.org
https://doi.org/https://doi.org/10.1016/j.infsof.2018.07.009
https://www.sciencedirect.com/science/article/pii/S0950584918301526

	OSS PESTO: An Open Source Software Project Evaluation and Selection TOol

