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Abstract

In the scientific literature, it has been a common assumption that electric vehicles (EVs)
draw a constant current during the whole charging session. In reality, EV charging pro-
files are not linear, and the non-linearities have recently gained more attention. However,
a thorough analysis of the influences of different charging profile modelling methods is
not yet carried out. This paper aims to fill this gap by comparing experimental measure-
ments of four commercial EVs and results of a developed simulation model that con-
siders different charging profile modelling methods. According to the results, the use of
linear charging profiles may lead to notable modelling inaccuracies (error > 30%) whereas
the use of measurement-based non-linear charging profile models yields relatively accu-
rate results (error mostly ≤ 3.5%). The results also demonstrate that the use of a simple,
but justified, bilinear charging profile model is likely to be sufficiently accurate in most
scenarios.

1 INTRODUCTION

Over the past few years, a lot of work has been done to
improve the electric vehicle (EV) charging load modelling meth-
ods. This work is necessary in order to accurately predict EV
charging loads which further enables safe and efficient oper-
ation of the power grid [1]. However, at the present, there
remains a gap in the scientific literature regarding the modelling
accuracies.

1.1 Literature review

To give an outlook of the EV charging load modelling related
research found in the scientific literature, 25 recent studies are
listed in Table 1. For each study, the modelling method of the
EV charging profiles is presented. In this paper, a charging pro-
file refers to the charging current behaviour over the charging
session.

As seen in the Table 1, most of these recent studies con-
sider a linear charging profile (i.e. the simplest method where
the current stays constant over the whole charging session) to
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model the EV charging. In [24– 26], it is acknowledged that the
charging power is non-linearly dependent on the state of charge
(SoC). To overcome the issue, only SoCs between 5% and 95%
are considered in [24]. In [25] and [26], bilinear charging pro-
files are used. However, very little effort is made to justify the
modelling method or to assess its influence on the modelling
accuracy.

To classify different charging profiles, an iterative clustering
framework is developed in [27]. The results show that even
though the number of different charging profiles is significant,
they can be classified into a small number of types (in the study,
304 different charging profiles are successfully classified into
six types). These types can then be used to model charging
behaviour with a reasonable accuracy. In [28], machine learn-
ing is used to form charging profile models and predict charg-
ing currents. The simulation results show that the XGBoost
machine learning model yields the most accurate results with a
mean absolute error of 126 W. Additionally, an ablation study is
conducted to demonstrate that the exact EV model is not neces-
sary to attribute to accurately model charging profiles. Instead,
the necessary information includes charging features such as the
number of phases and the maximum current used for charging.
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TABLE 1 Recent studies

Ref. Charging profile modelling method

[1–24] Linear

[25] Bilinear: charging power decrease linearly to zero after 60% SoC

[26] Bilinear: charging power decrease linearly to zero after 80% SoC

Based on [27] and [28], it seems that there is no need to have
a separate charging profile model for each different EV model.
However, these studies do not assess the influence of the use of
simplified charging profiles on the modelling accuracy. There-
fore, the need to consider more accurate charging profile mod-
els remains currently unknown.

1.2 Contribution and structure

Based on the literature review, it seems necessary to assess the
influence of the EV charging profile modelling methods on
the charging load modelling. To fill the gap in the literature,
experimental measurements of a small charging site are com-
pared with simulation results obtained by using different charg-
ing profile models. Similar simulations are also carried out for a
large charging site using real charging data. The goal is to ana-
lyze the impact of different charging profile modelling methods
on the charging load modelling accuracy in different situations.
The results provide guidance and strengthen the scientific back-
ground for future studies related to EV charging load modelling.
It is worth emphasizing that this paper focuses on the charging
loads seen from the charging site point-of-view. The contribu-
tions of this paper are listed below.

∙ Assessing the accuracy of the linear charging profile mod-
elling method that is widely used in the scientific literature.

∙ Assessing the accuracy of a measurement-based non-linear
charging profile modelling method, in which the charging
profiles are formulated based on experimental measurements
of the considered EVs.

∙ Formulating bilinear charging profiles based on the experi-
mental measurements and assessing the modelling accuracies
of these charging profile models. Two bilinear charging pro-
file modelling methods are considered. The first utilizes a sep-
arate charging profile for each EV and for each current limit,
and the second utilizes a single bilinear charging profile that
is applied for all EVs and for all current limits.

∙ Evaluating the influence of using charging control together
with different charging profile modelling methods on the
modelling accuracy.

The rest of the paper is as follows. Section 2 describes the
assessment method including the simulation model and the
experimental hardware-in-the-loop (HIL) measurements. Sec-
tion 3 presents and analyses the results. The paper is finalized
with conclusions in Section 4.

2 ASSESSMENT METHOD

This section describes the key values of interest, the different
charging profile modelling methods, the used charging data, the
two examined scenarios, the used control method, the experi-
mental HIL laboratory setup, and the used simulation model.
Each topic forms its own subsection.

2.1 Key values of interest

This paper assesses the influence of different charging profile
modelling methods on the modelling accuracy in two different
scenarios. To achieve this, three key values are examined: the
highest peak power (P), the highest hourly peak power (Ph),
and the charged energy (E). These values are often needed to
determine, for example, the charging costs of an EV user, the
costs and profits of a charging site operator, and the EV user
satisfaction. Consequently, if these values are incorrect, the eco-
nomical assessment of the charging site will also be unreliable.
These values can also be used to estimate the optimal sizing of
the charging infrastructure, and thus, inaccurately modelling the
values could lead to over sizing or under sizing. Therefore, these
values should be modelled accurately, and thus, they are consid-
ered as the key values in the assessment.

The highest peak power simply refers to the highest peak
power measurement value of a single time step (10 s) in a day,
whereas the highest hourly peak power refers to the highest
average loading during a 1-h-long period in a day. The highest
hourly peak power is an interesting value because it can be the
basis for a power-based distribution tariff component as in [29].
The charged energy refers to the energy that is charged during
each 1-h time slot (i.e. 0:00–1:00, 1:00–2:00 etc.). This definition
is made because the temporal resolution in electricity pricing is
often 1 h, and thus, a modelling error in the hourly level may
affect certain cost or benefit analysis.

For each key value, a percentual root mean square error
(RMSE) is calculated by comparing the simulation results to the
results of the selected baseline (described in Section 2.4). The
percentual RMSE for the highest peak power and the highest
hourly peak power is calculated using (1), where Value is either
P or Ph, Nd is the number of cases or days (25 cases for Sce-
nario 1 and 89 days for Scenario 2, described in Section 2.4),
subscript b represents baseline, and subscript c represents the
compared value. Since an hourly charged energy can be zero,
the percentual RMSE for the charged energy is calculated using
(2) and (3), where ERMSE,abs is the absolute RMSE (in kWh) and
Eavg is the average hourly charging load (in kWh).

ValueRMSE,% =

√√√√ 1
Nd

×

Nd∑
n=1

(
Valueb,n −Valuec,n

Valueb

)2

× 100%.

(1)

ERMSE, abs =

√√√√ 1
Nd × 24

×

Nd×24∑
h=1

(
Eb,h − Ec,h

)2
. (2)
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FIGURE 1 Charging profile lookup table for Nissan Leaf 2012 with 11 A
current limit

ERMSE,% =
ERMSE, abs

EE
. (3)

2.2 Different charging profile models

In this study, five different charging profiles are compared: real
HIL measurement, measurement-based non-linear (NL) model,
bilinear (BL) model made separately for each EV and for each
current limit set by the EV supply equipment (EVSE), unified
bilinear (UBL) model which is used for each EV and for each
current limit set by the EVSE, and linear (L) model.

The NL charging profiles are obtained by measuring the cur-
rent drawn from the grid of each EV with all possible current
limits (integers) set by the EVSE in 10-s resolution. Only cur-
rent limit integers are considered as the used charging points
(described in Section 2.6) do not support floating point cur-
rent limits. The measurements are used to calculate the miss-
ing energy from the batteries in each time step. The calculation
begins from the end of the charging session where the miss-
ing energy, referred to as energy requirement, is zero (i.e. the
EV is fully charged). The process is illustrated in Figure 1 for
the charging of Nissan Leaf 2012 with a current limit of 11 A
set by the EVSE. In this case (Figure 1), the energy require-
ment (ER) of 400 Wh separates the constant power (CP) and
the constant voltage (CV) stages. After calculating the energies,
a lookup table is formed to link the calculated energy require-
ments to the measured charging currents.

The lookup table is formed only for the CV stage of the
charging profile. The charging current is assumed to be con-
stant over the whole CP stage in the modelling methods. This is
seen reasonably accurate because the charging current is shown
to be very steady (variation of less than 0.5 A) during the CP
stage [30]. After forming the lookup tables for all current limits,
a three-dimensional lookup table is formed which links the cur-
rent limit set by the EVSE (in amperes) and the missing energy
of the EV (in Wh) to the charging currents (each phase cur-
rent in amperes). A separate three-dimensional lookup table is
formed for each EV. The process and the received charging pro-
file models are similar than the ones mentioned in [30] and [31].
However, in this paper, other charging profile modelling meth-
ods (BL, UBL, and L) are also considered and compared.

TABLE 2 The used electric vehicles

EV Charging power

Nissan Leaf 2012 3.7 kW (1 × 16 A)

Nissan Leaf 2019 7.4 kW (1 × 32 A)

BMW i3 2016 11.0 kW (3 × 16 A)

Smart EQ for four 2020 22.1 kW (3 × 32 A)

FIGURE 2 Slope of charging current in CV stage

The BL charging profile model utilizes the previously men-
tioned measurements to determine the energy requirement (ER
in Wh) at which point the charging currents begin to decrease
(i.e. the point separating CP and CV stages). Then, Equation (4)
is used to calculate the slope α that leads to the same energy
(ER) being charged in the CV stage, where L denotes current
limit set by the EVSE, M denotes EV model, ICP denotes the
current in the CP stage, U denotes phase voltage (230 V). For
the three-phase EVs (namely BMW and smart, as shown later
in Table 2), separate slope for each phase is calculated. In the
BL charging profile model, the slope is calculated separately for
each EV and for each current limit set by the EVSE. The slopes
are illustrated in Figure 2. For current limits 6–16 A, the charg-
ing of smart stop without a clear CV stage. This results in a very
small ER and thus a very high α. These slopes are considered to
be outliers, and thus, they are excluded from the consideration
and from the figure. Additionally, only the average slope of the
three phases is presented for BMW and smart in the figure.

𝛼 (L,M ) = −
(ICP (L,M ))2

×U

2 × ER (L,M )
. (4)

The UBL charging profiles are formed using the same aver-
age slope for all EVs and all current limits set by the EVSE.
The slope is the result of first calculating an average slope of
each EV (Nissan Leaf 2012—12.8 mA/s, Nissan Leaf 2019—
15.9 mA/s, BMW i3 2016—19.4 mA/s, Smart for four 2020—
13.1 mA/s), and then calculating the average of all EVs which
is −15.3 mA/s. The same average slope is assumed to affect
each phase current, and thus, the charging powers of the three-
phase EVs are decreasing three times as fast as the powers of
the single-phase EVs.
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FIGURE 3 Illustration of Nissan Leaf 2012 charging profile

The L charging profile model assumes that the charging cur-
rents do not decrease when the EV is becoming fully charged.
The charging profiles are illustrated in Figure 3 for Nissan Leaf
2012. In the figure, the charging is uncontrolled (i.e. current
limit is ≥16 A) and the initial energy requirement is 5.2 kWh.
Regardless of the modelling method, the EV draws 5.2 kWh
from the grid. However, it can be clearly seen that different
modelling methods result in different currents in the CV stage.

It is worth noting that some deviations between the HIL mea-
surements and the simulation results are expected because the
simulation model does not consider battery temperatures in the
modelling. It is commonly known that a battery temperature
plays an important role in the charging management of an EV,
and thus, it should be considered the battery management sys-
tem of the EV. However, due to the increased complexity of
the modelling and the data requirements to form the model, the
temperature factor is excluded from the charging load simula-
tion model.

Additionally, this paper does not consider either percentual
SoCs or charging efficiencies. Since the HIL charging current
measurements were not able to record the SoCs of the EVs
during the charging and the considered charging session data
(described in Section 2.3) also measured charged energies in
kWh, it is more convenient to consider energy requirements
in kWh instead of utilizing SoC in this paper. Because this
paper only deals with charging energies and currents seen from
the grid point-of-view, the charging losses are being included.
Therefore, the impact of not considering charging efficiencies
explicitly is not expected to have a notable influence on the
results.

2.3 Used data

To evaluate a large charging site in a realistic manner, charg-
ing session data of REDI is used. REDI is a shopping cen-
tre located in Helsinki, Finland, which has over 200 charging
points that support 22-kW charging [32]. The data is gathered
over 89 days in 2020 (January–March) and contains 3801 charg-
ing sessions which results in 42.7 charging sessions per day. The
data includes arrival and departure time, active charging time,
charged energy, and charging peak power. All charging sessions
are uncontrolled.

TABLE 3 Examined scenarios

Site Nmax
a Control method Nd

b

1. A small charging site 4 PLM 25

2. A large charging site 21 Unc. / PLM 89

aNmax is the highest number of EVs simultaneously charging.
bNd is the number of investigated cases or days.

According to the data, the EVs have an average stay dura-
tion of 236 min, an average active charging time of 101 min,
and an average charged energy of 7.4 kWh. It is also seen that
in 59.3% of the charging sessions the stay duration is less than
5 min longer than the active charging time. This indicates that
the stay duration often acts as a bottleneck, and consequently,
most EVs are not fully charged before departure. It is worth
noting that a further analysis of the EV usage-related behaviour
(parking time and driving requirements) is excluded from the
paper. Instead, the focus is on the charging profiles (i.e. charg-
ing current drawn over the charging session) and the modelling
accuracies of the different charging profile models.

2.4 Examined scenarios

The simulations focus on two scenarios: a small charging station
with four charging points and a large charging site with up to 21
simultaneous charging sessions. Scenario 1 is carried out in 25
different cases. In each case, three or four of the EVs shown
in Table 2 are charged which results in 89 HIL charging ses-
sions in total. For each event, the arrival times, the departure
times, and the driving distances are randomly selected. In this
scenario, the average driving distance is 19.1 km (min 4.3 km and
max 65.0 km). This leads to an average energy requirement of
3.8 kWh (min 0.8 kWh and max 11.6 kWh) from the grid point-
of-view (i.e. the charging losses are included). The arrival times
of the EVs vary between 16 and 22 h and thus create circum-
stances where 1–4 EVs are simultaneously requesting charging.
Sojourn times are assumed to be long enough so that the EVs
can be fully charged. In each event, a peak load management
(PLM) with a total charging current limit of 3 × 32 A is used.
The used PLM is described in Section 2.5.

Scenario 2 is formed using the charging session data of the
89 days of REDI. For the modelling purposes, the recorded
charging peak powers are used to determine the type of the EV
according to (5), where Pp is the charging peak power. The sec-
ond scenario is divided into three subscenarios based on the
used control method: an uncontrolled charging (Unc.), PLM
with a total charging current limit of 3 × 160 A, or PLM with
a total charging current limit of 3 × 126 A. These limits are
chosen based on preliminary simulation results that show that
the highest peak current is 191 A in case of uncontrolled charg-
ing. The subscenarios are used to determine the impact of the
modelling method together with the use of charging control to
the modelling accuracy in a large charging site. The EVs and
the key parameters of the scenarios are presented in Tables 2
and 3, respectively. The control method is presented in the next
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subsection.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

EVtype = Nissan Leaf 2012, if 0 kW < Pp ≤ 4.5 kW

EVtype = Nissan Leaf 2019, if 4.5 kW < Pp ≤ 10 kW

EVtype = BMW i3 2016, if 10 kW < Pp ≤ 15 kW

EVtype = Smart EQ fourfour 2020, if 15 kW < Pp ≤ 25 kW

(5)

In Scenario 1, HIL measurements are used to set realis-
tic baselines for the comparisons. Due to the limited num-
ber of available EVs, Scenario 2 with up to 21 simultaneous
charging sessions can only be simulated. In that scenario, the
measurement-based NL charging profile models are used to
form the baselines because they are the most accurate in Sce-
nario 1 according to the results seen in Section 3.1.

2.5 Charging control method

In this paper, a benchmark control algorithm, fair sharing, pre-
sented in [33] is used. The algorithm divides the available charg-
ing capacity evenly among the EVs. The capacity allocation is
illustrated in (6), where IEV is the allocated current for each EV,
Itotal is the available total charging capacity, and N is the number
of active EVs requesting to be charged. The current limit is then
sent to the EV through the corresponding EVSE according to
IEC 61,851 charging mode 3.

IEV (t ) =
Itotal

N (t )
(6)

It should be noted that the following control method in itself
is not the focus of this paper. Instead, the goal is to create
a situation that is the opposite of uncontrolled charging: the
charging capacity is very limited and the state of a single EV
(charging or not charging) influences on the available charging
capacity of all EVs that are charging at the moment. In Sce-
nario 1, the maximum total loading of the charging station (3
× 32 A) allows all four charging sessions to be simultaneously
active. However, a dynamic PLM is required if more than one
EV is simultaneously charging. The subscenarios of Scenario 2
are effectively the same than Scenario 1 except that the total
loading is either not limited, limited to 3 × 160 A, or limited to
3 × 126 A.

2.6 Experimental setup

The idea of the experimental setup is to form the baselines for
Scenario 1 by measuring the real charging events. The experi-
ments are carried out as HIL simulations at TU Dortmund Uni-
versity [34]. The hardware components include the four EVs
mentioned in Table 2 and two charging stations (Wirelane Dop-
pelstele and RWE eStation). Both charging stations include two
22 kW (230 V, 3 × 32 A) sockets. The charging currents at the

FIGURE 4 The experimental setup for Scenario 1

FIGURE 5 The laboratory setup

RWE charging station are measured by using KoCoS EPPE
PX power quality analysers, whereas Wirelane charging station
includes built-in current measurement devices for both sockets.

PLM is implemented using Python programming language.
The algorithm is run on a computer that is connected to the
same local network with the charging points so that the system is
able to adjust the charging current limits of the EVSE and read
the measurements of the realized charging currents in real time.
The experimental setup for Scenario 1 is shown in Figure 4. The
simulated setup for Scenario 2 is similar than the setup shown in
Figure 4, but there are 21 virtual charging points instead of the
four physical charging points. A picture of the laboratory setup
is shown in Figure 5.

2.7 Simulation model

The idea of the simulation model is to allow the real charging
sessions to be replicated with different charging profile mod-
elling methods. These must be done as pure simulations without
any HIL components. A similar simulation model is used pre-
viously in [30] and [31]. However, in these studies, only a single
charging profile modelling method (NL) was considered, and
thus, the influence of different modelling methods could not be
assessed.

The operation of the simulation model is illustrated in
Figure 6. At the beginning, the model reads general input
data and EV related input data. After the initialization, the
model simulates the EV charging until all EVs have either been
fully charged or been departed. In each time step, the model
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FIGURE 6 Block diagram of the simulation model

determines the status of each EV (away or plugged in). For
the EVs that are plugged in, the charging control algorithm
determines the charging current limits according to (6). After
that, the charging currents are determined according to the
considered charging profile models and the determined current
limits. Finally, at the end of each time step, the remaining
energy requirements of the EVs are updated based on the
determined charging currents. The simulation model uses a
temporal resolution of 10 s.

3 RESULTS

3.1 Scenario 1: A small charging site

The results of Scenario 1 are presented in Figure 7. It can be
seen that the highest hourly peak power and the charged energy
can be modelled most accurately using the NL charging profiles

FIGURE 7 Results of scenario 1

FIGURE 8 RMSE of the highest peak powers in Scenario 2

FIGURE 9 RMSE of the highest hourly peak powers in Scenario 2

(RMSE of 1.62% and 3.45%, respectively). The use of separate
BL charging profiles or the UBL charging profile yields smaller
RMSEs in terms of the highest peak power (8.30% and 5.80%,
respectively) and slightly higher RMSEs in terms of the high-
est hourly peak power (2.88% and 2.72%, respectively) and the
charged energy (3.49% and 4.39%, respectively). Most signifi-
cantly, the results show that the use of L charging profile leads
to notable modelling errors (31.21% for the highest peak load,
7.62% for the highest hourly peak power, and 9.05% for the
charged energy).

3.2 Scenario 2: A large charging site

The modelling RMSEs of each key value of Scenario 2 are pre-
sented separately in Figures 8–10. Again, the results clearly indi-
cate that the use of L charging profiles yields the highest RMSEs
(5.59%–5.86% for the highest peak power, 2.29%–6.52% for
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FIGURE 10 RMSE of the charged energy in Scenario 2

the highest hourly peak power, and 2.95%–7.84% for the charge
energy). Compared to each other, the use of BL or UBL charg-
ing profiles yields similar results (1.87%–3.37% for the highest
peak power, 0.64%–2.83% for the highest hourly peak power,
and 1.19%–3.65% for the charged energy) even though the BL
charging profile is slightly more accurate in each scenario.

4 DISCUSSION

The results of Scenario 1 demonstrate that the use of NL charg-
ing profiles can be made to enable a high modelling accuracy
for the EV charging load simulations even though the battery
temperatures are not taken into account. However, some mod-
elling inaccuracies were expected and seen due to this simplifi-
cation. According to the results, the highest hourly peak power
and the charged energy can be modelled accurately (RMSE of ≤

3.45%), whereas the highest peak power is more susceptible to
modelling errors (RMSE of 9.29%).

In general, the results show that the use of L charging pro-
files is likely to lead to significant modelling errors (RMSE of
2.29%–31.21%). Conversely, the use of BL or UBL charging
profiles seems to be reasonably accurate compared to the HIL
measurements and to the results obtained using NL charging
profiles (RMSE of 0.64%–4.39% when excluding the highest
peak power in Scenario 1). These results indicate that the use of
a simple BL charging profile is likely to be sufficiently accurate
in most cases as long as the slope of the CV stage is justified.
This kind of result was expected because the studies [27] and
[28] indicated that an EV model-specific charging profile model
(such as the non-linear profile model considered in this paper)
may not be needed in order to model charging loads relatively
accurately.

The comparison of the three subscenarios of Scenario 2
shows that the uncontrolled charging can be modelled more
accurately in terms of the highest hourly peak power (seen in
Figure 9) and the charged energy (seen in Figure 10) than the
controlled charging. This is assumed to be due to two rea-
sons. Firstly, in case of controlled charging, the capacity allo-
cation is influenced by the number of EVs actively requesting
energy. Secondly, compared to the usage of the other modelling
methods, the EVs become fully charging faster when using lin-
ear charging profile model (seen in Figure 3). This means that
the use of linear charging profiles is inaccurate to model the

charging states of the EVs (requesting to be charged or not)
which further influences the control algorithm. In general, these
results indicate that the more complex the considered con-
trol algorithm is, the more complex charging profile modelling
methods should be used. In terms of the highest peak power,
there does not seem to be a similar correlation to the use of
charging control (seen in Figure 8) even though the loads are
affected in case of controlled charging by the two reasons just
mentioned. This is expected to be due to the fact that the high-
est peak load only takes into account the single highest value.
So, despite the loads being modelled more inaccurately over the
course of the simulated periods in case of controlled charging, it
seems that the highest momentary power is often achieved with
a similar accuracy regardless of the use of charging control. It
is also worth noting that the highest peak load seems to be less
susceptible to modelling inaccuracies when the number of EVs
increases. This can be seen by comparing the results of Scenar-
ios 1 and 2.

5 CONCLUSIONS

In this paper, the influence of the charging profile modelling
method on the EV charging load is assessed. Laboratory exper-
iments with up to four commercial EVs are carried out to form
realistic baselines for the comparisons. In addition, to evaluate
charging at a large charging site, charging session data of REDI
shopping centre is used.

The results show that the use of linear charging profile can
lead to significant modelling errors, and thus, it is not recom-
mended to be used especially in case of controlled charging. It is
shown that the use of measurement-based non-linear charging
profiles is likely to lead to the most accurate modelling. How-
ever, the results also demonstrate that the use of a simple, but
justified, bilinear charging profile model can also lead to reason-
ably accurate results.

According to the measurements and calculations of this
paper, the charging currents of commercial EVs decrease
around 15.3 mA/s per phase on average in the constant volt-
age stage. Also, the results shown in this paper demonstrate that
using this value to model charging profiles leads to reasonable
low modelling errors of 0.64%–4.39% for the highest hourly
peak power and the charged energy. Therefore, it can be used
in future studies, which relates to EV charging load modelling
from the charging site point-of-view, to ensure reasonable mod-
elling accuracy with reduced computational requirements. Addi-
tionally, the results of this paper show that the battery tempera-
tures do not have a notable influence on the charging loads seen
from the charging site point-of-view, and thus, it may not be
necessary to consider them in the related studies.

The results of this paper indicate that uncontrolled charging
can be modelled more accurately than controlled charging. To
investigate the accuracies of different charging profile modelling
methods in case of different control algorithms, more work
is required. However, this can be a challenging task because
the commercially available EVs may have some limitations. For
example, some EVs may not support vehicle-to-grid, or they
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may not be able to communicate certain information, such as
SoC, to the control system. And, if real measurements are not
used as a baseline for the comparisons, it may be difficult to
assess the accuracies of different modelling methods in differ-
ent scenarios.
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