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In recent years, Building Information Modeling (BIM) has become one of the
leading techniques to maintain data from the lifespan of the building in the Ar-
chitecture, Engineering and Construction industry. Compared to the traditional
modeling methods, BIM requires less human contribution, making it an advanta-
geous approach to represent the characteristics of buildings digitally. In addition,
one interesting innovation regarding BIM is semantic enrichment in which an ex-
isting model is used to obtain new features and include them in the data entity.
Despite the increasing use of BIM, the literature concerning the subject remains
limited and thus, the full potential of BIM-based applications appears not to be
achieved yet.

In this thesis, the objective is to review the potential to employ Machine Learn-
ing solutions for BIM-related supervised prediction tasks. Beginning with the BIM
dataset, different approaches to formulate 3D data are considered and based on
the selected format, the experiments are made by predicting the envelope for each
building using a supervised Machine Learning algorithm. Eventually, the build-
ings are decided to be formatted as graphs and the chosen algorithm is a Graph
Convolutional Neural Network with varying architectures that emphasizes the re-
lationships between elements in different ways. This type of graph-based approach
for BIM-related classification problems is an area that has not been much examined
previously.

Comparing three different neural network models, the classification is performed
in two different scenarios. In the first scenario, data utilized for the training and
testing are from the same building whereas in the second one, both the training and
testing data comprise distinct, complete buildings. In the first scenario, the Graph
Convolutional Neural Network is observed to improve classification performance
especially for the minor classes compared to the traditional neural network. Also
in the second scenario, the accuracy is higher when employing the graph models,
although this type of classification task turns out to be more challenging compared
to the one in the first scenario.

The results illustrate a great potential for solving BIM-related classification prob-



lems using Machine Learning algorithms. For the first prediction task, a potential
application area could be dealing with missing data that occur in BIM models fre-
quently. The second scenario, in turn, has an even higher potential to produce useful
tools for semantic enrichment. These types of investigations play an important role
in developing new methods to process BIM models.

Keywords: Neural networks, Machine learning, Graphs, Graphical representation,
Graph convolutional neural networks, Building Information Modeling, BIM
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1 Introduction
Building Information Modeling (BIM) is a shared digital framework to manage the
data that covers the whole lifespan of the building process from the design and con-
struction to the use and maintenance phases. In detail, it often refers to a set of
object-oriented entities, their properties and features as well as information about
the interaction between the components that would not be flexible to represent dig-
itally using the traditional methods such as line drawings with textual descriptions.
(Penttilä, 2005.) For instance, compared to Computer-Aided Drafting (CAD) sys-
tems, BIM appears to be beneficial since it maintains information not only about the
geometry but also more specific details such as spatial relationships and materials of
the objects without significant human intervention (Dastbaz, Gorse & Moncaster,
2017, p. 50–55).

The earliest applications of BIM were designed already in the 1970s (Eastman
et al., 1974). Nevertheless, for wider use, BIM had not been well established un-
til the twenty-first century. Along with digitalization, the awareness of BIM has
now rapidly become almost universal, with 73 % of the Architecture, Engineering
and Construction (AEC) industry professionals utilizing it worldwide in 2020 (Bain,
2020). Finland has traditionally been known as one of the pioneers in adopting BIM
in its construction industry with 92 % of the respondents in the BIM Survey 2013
either using or planning to use it in near future (Finne, Hakkarainen & Malleson,
2013). Despite the promising trend, the full potential of BIM-based simulation and
its application areas still appears not to be achieved yet, which provides opportuni-
ties to implement completely new supporting tools (Sidani et al., 2021).

Almost similarly, artificial intelligence and its sub-field machine learning have
started to play a more fundamental role in society following the swift increase of
computer efficiency, amount of data from highly diverse sources as well as new for-
malizations of the machine learning problems caused by practical applications. In
essence, machine learning refers to a discipline of computer algorithms whose per-
formance improves automatically through experience in order to run prediction and
decision tasks. Suitable application areas have already been found in a wide range
of fields such as medicine, bioinformatics and natural language processing. Still,
machine learning remains a relatively recent concept providing various unexplored
research areas. (Jordan & Mitchell, 2015.)

Due to the more automated nature of the BIM compared to the other traditional
modeling methods, it appears somewhat intuitive that artificial intelligence could
be employed to process the building data as well as to develop new BIM-related
tools. In recent years, a concept of semantic enrichment has generally been approved
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Figure 1.1 An example of publication frequencies for the three keywords combined with
search terms ’tunnel’ or ’underground’ between 2010 and 2020. (Huang, Ninic & Zhang,
2021.)

to describe the process in which domain-specific rule sets are used to identify new
features about building objects and their relationships in an input building to include
them in the model (Belsky, Sacks & Brilakis, 2016).

Machine learning has been proved to be a promising approach to solve various
semantic enrichment problems as it is directly applicable and efficient on many
occasions. However, the performance of the machine learning algorithms of one type
can vary significantly depending on the problem context and the characteristics of
the input data. Overall, the literature on applying artificial intelligence to BIM
remains still fairly restricted and for numerous types of investigation areas, machine
learning solutions have yet to be implemented at all. (Bloch & Sacks, 2018.)

In this thesis, the aim is to further investigate machine learning solutions for
BIM-related supervised prediction tasks. In particular, the interest is in the format
of data of 3D building geometry as well as performing classification tasks that take
into account sets of multiple BIM objects and relationships between them. The
actual experiments are made by transforming the object-level BIM dataset of vari-
ous buildings into graphs and applying several graph convolutional neural network
architectures to them. Employing these types of graph-based machine learning al-
gorithms to BIM-related classification problems is an area that has not been much
investigated previously.

In the classification, the main objective is to train the models to automatically
recognize the envelopes of the buildings. To demonstrate the significance of the
relationships of the individual building elements in this type of classification task,
comparisons are carried out between different models that learn by using only the
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graph node features, models also using the edges of the graphs, and finally, models
using the edge features. Classification outcomes are also compared between a situa-
tion in which the training and testing data comprise objects from the same building
and a situation in which the training and testing data consist of separate, complete
buildings.

This thesis proceeds so that in Chapter 2, the theoretical background of the
subject is provided. At first, the key concepts of BIM are covered and after that, the
methodology of machine learning is considered beginning with the general concepts
and continuing to graph convolutional networks in more detail. In Chapter 3, a
literature review is made considering previous machine learning applications for the
BIM-based learning tasks as well as different 3D geometry representations since it
arises as a highly essential aspect in the BIM-related research.

In Chapter 4, the data employed in this thesis is introduced. At first, the raw
BIM dataset and its properties are reviewed and following that, the graph construc-
tion process is described. The actual experiments using different neural networks
are described in Chapter 5 beginning with the classification of parts of the buildings
and then continuing to the more general situation where the labels for all the objects
in the building are unknown. Finally, in Chapter 6, the summary and the conclusion
are given in addition to the limitations of this research and ideas for further work.
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2 Methodology

2.1 Building Information Modeling

In general, BIM refers to an entity of digital information about the building process
from its entire life cycle. However, more accurate definitions tend to vary depending
on the context. To illustrate, Penttilä (2007) defines BIM as "an integrated digital
framework that forms the information management basis for all building project col-
laboration over the lifespan of the building in the design-construction-maintenance
-chain", while Kymmell (2008, p. 25) puts the emphasis on the shared nature of the
information stating that BIM is a simulation of the construction project which has
the advantage of considering and communicating most of its relevant aspects even
before the project is actualized.

Despite differences in definitions, they often share a vision of better visualiza-
tion, coordination and management that meets better the needs of the digitalized
environment compared to the traditional modeling methods. Until this century, the
CAD system was one of the most widely adopted technologies in the AEC industry
but, even though 3D representations have been later developed also for CAD, vari-
ous factors have made BIM a more advantageous alternative in many circumstances.
For example, BIM requires notably less human intervention, making it time-saving,
cheaper and less laborious to maintain the whole data entity as well as simulate
various scenarios diversely. (Dastbaz et al., 2017, p. 48–55.)

In the BIMmodels, it is highly common that the content can be branched out into
objects and assemblies. Assemblies refer to a series of multiple stand-alone objects
that together form a single element. The most common examples of assemblies are
walls, floors and ceilings. As their attributes, assemblies typically have references
not only to their own individualistic properties but also the interrelating objects.
Furthermore, assemblies can also have references to other assemblies. These linked
relationships form the basis of the typical BIM hierarchy. (Weygant, 2011, p. 15–
22.)

To make the BIM hierarchies universally understandable and accessible, Indus-
try Foundation Classes (IFC) has become a widely utilized data format. IFC refers
to a STEP EXPRESS (ISO 10303) based entity-relationship (ER) model, developed
by BuildingSMART, that consists of data stored as entities in an object-based in-
heritance hierarchy. It is intended to be a high-level data model that is independent
of any platform and thus fully interoperable between software applications used by
the various participants in the AEC industry throughout the whole life cycle of the
building. (Laakso & Kiviniemi, 2012.)
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IFC has been in development since 1994, and since then, the IFC-based in-
teroperability has received significant support from various sources, perhaps most
remarkably the AEC sector government client organizations from Finland, the US,
Denmark, Norway and the Netherlands. The most current version, IFC4, was re-
leased in 2012, but the previous version, IFC2x3, has also remained in use up to
date. (Laakso & Kiviniemi, 2012.)

Figure 2.1 An illustration of the BIM model in Simplebim.

In practice, the IFC hierarchy must begin from an abstract IfcContext class
which has two possible subtypes, IfcProject and IfcProjectLibrary. IfcContext forms
a starting point of the whole project from which the rest of the IFC data always
relate back to the context. At the lower level of the hierarchy, there is an IfcGeo-
metricRepresentationContext class that contains the spatial coordinate systems as
well as the highest spatial container, most commonly IfcSite. Each container can
have zero or more subclasses. For instance, IfcSite can have multiple IfcBuilding
classes whereas each IfcBuilding may contain multiple IfcBuildingStoreys. Then,
each IfcBuildingStorey can have multiple IfcSpaces, et cetera. Finally, there is an
IfcElement class that contains the physically built elements, such as IfcWall and
IfcSlab. All the objects have a reference to their subclasses which they contains, as
well as to their superclasses which they are contained by. (buildingSMART, 2021.)

Although the IFC-based data typically contains all the relevant information
about the building and the construction, it is more flexible to represent the ge-
ometry in some other format on many occasions. For example, several software
libraries exist to convert the implicit geometry in IFC files into explicit representa-
tion so that software CADs and modeling packages are able to comprehend it better.
In general, the selection of the most suitable processing methods is dependent on
the context and the purpose of the study. Moreover, one of the biggest issues with
BIM is the fact that the IFC models from different sources are inconsistent and lack
essential information. In this thesis, an Open BIM IFC application Simlebim (as
illustrated in Figure 2.1) is employed to standardize and enrich the IFC models into
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the final dataset.
One interesting innovation regarding BIM is semantic enrichment which refers

to an automatic or semiautomatic procedure to develop and insert new meaningful
information into the already existing BIM model. The new data can be produced by
utilizing, for instance, the 3D geometry as well as the material and mechanical prop-
erties of the building. In addition, functional classification, as well as topological and
aggregation relationships, play an important role in the semantic enrichment process,
all of which are based on the relative locations of objects to one another. (Belsky et
al., 2016.) The new information is typically derived by employing domain-specific
rule sets but recently, also other approaches, such as machine learning algorithms,
have been adopted.

2.2 Machine Learning

In this section, the methodology of machine learning is reviewed. At first, the basic
concepts are introduced and following that, the fundamental methods in the context
of this thesis are presented in more depth. Particularly, the focus is on supervised
machine learning and one of its subfields, classification.

In general, machine learning refers to a computer-based method of data analysis
in which the performance of algorithms is improved autonomously by learning from
the data. It is a subfield of a larger entity of artificial intelligence (AI) which refers
to the simulation of human intelligence and humanlike decision-making without an
actual human intervention during the process. The main idea of machine learning
is to build and adjust a model using sample data and employ it to resolve various
prediction and decision problems. A typical machine learning process comprises
an exploration of the properties of the data, preprocessing, splitting the data into
training and testing sets, building and training a model based on the training data
as well as testing the accuracy of the model by the testing data and ideally, also by
a separate external dataset. (Baloglu, Latifi & Nazha, 2021.)

The first investigations of machine learning procedures were conducted in the
1950s and their aim was to program the computer to play draughts. The early
algorithms were simple but verified to be both efficient and remarkably fast to train.
(Samuel, 1959.) Since then, numerous application areas have been discovered in
many essential sections of society from medicine to engineering (Baloglu et al., 2021).
The development has been accelerated by the increase of the computing resources
because it provides opportunities to perform more complex machine learning tasks
but on the other hand, also produces so enormous masses of data known as Big Data
that it is unachievable to process them with pure human supervision (L’Heureux,
Grolinger, Elyamany & Capretz, 2017).

Nowadays, two main objectives can be identified from modern machine learning
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problems, the first being making predictions and estimations and the second be-
ing classification and pattern recognition. These tasks are traditionally branched
into three subcategories, supervised, unsupervised and reinforcement learning. Su-
pervised learning requires pre-defined input-output pairs that are utilized to train
the algorithm whereas unsupervised learning is fully based on the unlabeled data.
Many of the prediction and labeling tasks fall under supervised learning whilst un-
supervised learning is often employed to discover clusters and other previously un-
known features from the data sample. In reinforcement learning, however, labeled
input/output pairs are not usually presented but the focus is on the sequence of
corrective actions to reach the objective. (Alpaydin, 2014, p. 4–14.)

In supervised learning, the key idea is to employ known input, say X, and output,
Y, to learn the mapping from the input to the output, and the function inferred by
the algorithm is then used to label new instances outside the data sample. The
accuracy of the supervised machine learning process depends highly on the input
feature representation, thus an important step is to collect an appropriate training
set with a list of features that are most relevant to describe and distinguish one
instance from another. Another important phase is testing which refers to the
evaluation of the fitted model computing the testing error based on separate test
data. On some occasions, also a third dataset is employed for evaluating the fit of
the model already during the training process. Such a data sample is referred to as
a validation set. Typical issues in the supervised machine learning process are, for
instance, ill-posed problem in which data by itself is not sufficient to find a unique
solution, and underfitting/overfitting in which the complexity of the hypothesis does
not correspond to the function underlying the data e.g. due to noise. (Alpaydin,
2014, p. 9–39.)

The most common examples of supervised learning are regression and classifica-
tion. While in regression the outputs are continuous, classification refers to a task of
learning and predicting a discrete value, i.e. a class label. For classification, typical
algorithms include k-nearest neighbor, logistic regression, Support Vector Machine
(SVM) as well as various deep learning methods. The accuracy and time complexity
of all of these classifiers are dependent on the characteristics of the input data and
the purpose of the study, making the selection of the most appropriate algorithm
not always straightforward. In the following sections, the concepts of artificial neu-
ral networks and deep learning are discussed further, as they have been detected to
contain several major advantages, especially in the context of Big Data processing.
(L’Heureux et al., 2017.)
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2.3 Artificial Neural Networks

As a part of the simulation of humanlike decision-making by artificial intelligence,
several computing systems that aim to correspond to human brains has been de-
veloped. Such procedures fall into a super-category called artificial neural networks
(ANN) and they are inspired by the biological neural networks that are the basis
of the high performance of the human brain in various information processing tasks
such as vision, speech recognition and learning. To execute similar applications by
machines, the main idea in ANNs is to collect connected nodes called artificial neu-
rons that receive, process, and forward signals transmitted by the other neurons in
the network. Typically, the neurons are assembled into layers with an order and the
computation process lasts until signals have reached the last layer which outputs
the final result. (Alpaydin, 2014, p. 267–271.)

2.3.1 Architecture

Figure 2.2 An example structure of the neural network with 10 inputs and 3 final outputs.

In detail, a typical neural network consists of neurons, weighted connections be-
tween them as well as a propagation function. Typically, the neurons are aggregated
into multiple groups, known as layers, and the neurons of each layer are connected
only to the neurons that are located in the immediately previous or following layer.
The first layer receives the raw input from the external data and is called an input
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layer, whereas the last layer outputs the final result of the process and is known as an
output layer. Between the input and output layers, there can possibly be additional
layers which are called hidden layers. Figure 2.2 illustrates an example structure
of the neural network. The networks that do not contain cycles but the signals
that pass in only one direction are called feedforward neural networks. Moreover,
each connection has a certain weight, defining the influence of one neuron on the
other. The sum of these influences on each neuron is computed by the propagation.
(Shanmuganathan & Samarasinghe, 2016, p. 4–11.)

The set of weighted inputs and the propagation function of one neuron comprise
the basic processing element which is also known as a perceptron. Typically, also a
bias term is included to increase the generality of the model. In addition, to convert
the output value of the neuron to the desirable range and make the model nonlinear,
some activation function is utilized. Overall, the perceptron of one neuron can be
written as:

yi = ϕ(
n∑

j=1

wijxj + bi), (2.1)

where yi is the output of the ith neuron, xjs are the inputs from the connected
neurons, bi is the bias of the neuron and ϕ is the activation function. wij is the
synaptic weight and its value represents the relative importance of the jth input
for the ith neuron, being either positive or negative; the larger its absolute value,
the larger the impact. Figure 2.3 represents the perceptron as a component of the
neural network. (Alpaydin, 2014, p. 271–274.)

Figure 2.3 The structure of the perceptron.

One of the major challenges with the neural networks is to choose the most
appropriate architecture of the network, i.e. how many hidden layers and neurons
on each layer should be included in the model. Hastie, Tibshirani & Friedman (2009,
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p. 400) state that the choice of the number of hidden layers should be made based
on the background knowledge and experimentation, and the inclusion of additional
layers allows the construction of hierarchical features at different levels of resolution.
For the optimal number of neurons, Shanmuganathan & Samarasinghe (2016, p. 10)
introduce two widely adopted methods:

1. Growing: Starting with the small number of neurons and inserting new neu-
rons as long as the training error decreases.

2. Pruning: Starting with the larger number of neurons and omitting the neu-
rons that have weak connections during the training. After the removal, the
network is trained again and the remaining connections take the functions of
the omitted ones.

Hastie et al. (2009, p. 400) add that in general, it is preferable to have too many
hidden neurons than too few as the model might lose its ability to capture the
nonlinearities in the data with an insufficient number of neurons. They suggest the
number of hidden neurons to come from the range of 5 to 100.

A feedforward artificial neural network with at least one hidden layer is known
as a multilayer perceptron (MLP) (Shanmuganathan & Samarasinghe, 2016, p. 10).
It has a following layer-wise propagation rule:

H(l+1) = ϕ(H lW l +Bl), (2.2)

where H l is the output of the lth layer, with H0 = X, i.e. the raw input, ϕ the
activation function, W l the weight matrix for the inputs and Bl the bias matrix.
A multilayer perceptron with a single layer of hidden units is the most widely used
network architecture and is sometimes considered as a "vanilla" neural network and
even a synonym for a (simple) artificial neural network (Hastie et al., 2009, p. 392–
395).

2.3.2 Activation Function

In neural networks, one of the highly important components is an activation func-
tion that defines the range from which the output of the neuron can have values.
The motivation for utilizing activation functions is the fact that when performing
more complex learning tasks, there must be nonlinear relationships in the model;
if the output of all intermediate layers were linear, the linear combination of linear
combinations would be just another linear combination and thus, the intermediate
layers would become useless since the same output would be achievable to obtain
also with a simple input-output model. Hence, choosing an appropriate activation
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function is a critical phase in the design of the neural network and the usage of dif-
ferent functions strongly influences the capabilities of the model. (Alpaydin, 2014,
p. 279–281.)

Most often, activation functions are employed for the outputs of the neurons of
the intermediate layers, similarly as in Figure 2.3. On such occasions, the function
most typically is of the same type for each neuron. However, for the output, the
choice of the activation function depends on the purpose of the prediction task and
can differ from the intermediate outputs or is not defined at all. Overall, there are
numerous different activation functions but for certain types of neural networks,
only a couple of potential functions are usually recommended. (Goodfellow, Bengio
& Courville, 2016, p. 164–223.)

Traditionally, a sigmoid (also known as a logistic) function has been utilized for
the activation in neural networks. It is the same function as used in logistic regression
and therefore highly common in machine learning applications. The sigmoid function
is defined as

σ(x) =
1

1 + e−x
, (2.3)

where x is the raw output of the neuron having real numbers from the range (−∞,∞)

as its value. The function returns values from the range (0, 1), meaning that small
values of x approach value 0 and large ones 1. The function forms an S-shaped curve
that is illustrated in Figure 2.4. (Hastie et al., 2009, p. 392–395.)

Figure 2.4 A comparison of the outputs of the sigmoid and the ReLU activation func-
tions.

Despite having been in wide use, the sigmoid function has several limitations
such as the problem of diminishing gradients during the backpropagation when there
are multiple layers in the model. To overcome these inadequacies, a rectified linear
activation (ReLU) has become a well-established function in modern neural networks
models. The ReLU maps all the positive inputs identically while all the negative
inputs become 0, meaning that neurons with negative outputs become "inactive".
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The notation of the ReLU is as follows:

ReLU(x) = max(0, x). (2.4)

The advantages of ReLU, in addition to improved gradient propagation, are its
simpleness, invariance to the scale of the input as well as efficiency since the compu-
tations are straightforward and neurons get activated sparsely. On the other hand,
ReLU has several disadvantages as well: for example, it is not differentiable at zero,
which requires a solution, for example encoding the derivative at zero as 0 or 1.
(Goodfellow et al., 2016, p. 164–223.)

Recently, several modifications of ReLU have been implemented. One of them
is Parametric Rectified Linear Unit (PReLU) that can be seen as a generalization
of different activation functions of the ReLU family. He, Zhang, Ren & Sun (2015)
observe that including a learnable parameter in the convolutional network improves
the classification accuracy. Hence, the equation of PReLU is formed as follows:

PReLU(x) =

x, x > 0

ax, x ≤ 0
, (2.5)

where a is a layer-specific coefficient that controls the slope of the negative part.
During the training of the model, the value of a is updated with a momentum
method:

∆a = µa+ ϵ
∂ε

∂a
, (2.6)

where µ is the momentum, ϵ the loss function and (∂ε)/(∂a) is the gradient of the
loss function with respect to a that is computed as:

∂ε

∂a
=

∑
x

∂ε

∂PReLU(x)

∂PReLU(x)

∂a
, (2.7)

where the term (∂ε)/(∂PReLU(x)) is the gradient propagated from the deeper layer
whereas (∂PReLU(x))/(∂a) is the gradient of the activation defined by:

∂PReLU(x)

∂a
=

0, x > 0

x, x ≤ 0
. (2.8)

Now, when a = 0, the activation becomes ReLU and when a = 0.01, for example,
it becomes close to another widely used activation function, a Leaky ReLU. Indeed,
the main reason why PReLU appears to achieve better classification outcomes is the
fact that different layers might require different types of nonlinearities. When the
parameter a is left learnable, the optimal activation function for each layer can be
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found without particular human contribution. (He et al., 2015.)
In multiclass classification tasks, a common practice is also to apply a softmax

function for the final output of the network. For example, if the output layer of the
network has three neurons (i.e. there are three possible final classes), the softmax
function maps the outputs of the neurons into a vector of length 3 whose values
indicate the probability of belonging to the corresponding class. That is, the output
of each neuron gets values from the range (0, 1) so that the sum of them is 1. The
softmax function is defined by the formula:

s(xi) =
exi∑K
j=1 e

xj

, (2.9)

where xi is the raw output of the ith neuron and K is the total number of neurons.
Thus, the denominator of the function is the sum of the exponents of all neurons.
The softmax function is often employed together with an argmax function, which is
a function that assigns each unit to the class with the highest probability so that
the final output is a single value instead of the probability vector. (Hastie et al.,
2009, p. 392–397.)

All in all, in modern neural networks such as multilayer perceptrons and con-
volutional networks, the most used activation function nowadays is the ReLU and
its modifications. However, in certain situations, sigmoid and softmax functions are
beneficial as well. Such occasions can especially be the activation of the output
layers when using the neural network for classification. (Goodfellow et al., 2016, p.
164–223.)

2.3.3 Training

The artificial neural networks are trained similarly to other supervised machine
learning applications, by processing training data with known input-output pairs.
For the neural networks, training essentially means adjusting the synaptic weights
wij and biases bi so the model fits the training data optimally. For feedforward neural
networks, this is typically done by an algorithm called backpropagation. (Hastie et
al. 2009, p. 395.)

Backpropagation refers to a two-pass procedure that consists of a forward pass
and a backward pass. In the forward pass, the final output of the network is predicted
using current weights and the prediction is then compared to the true label value.
The difference between the predicted and the true value is called a prediction error
and is measured via a loss function. The procedure then continues with the backward
pass in which the vector of the partial derivatives, i.e. gradient, of the loss function
with respect to the weights is computed. Finally, the gradient is passed to an
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appropriate optimization algorithm to update the weights. One iteration where all
the training data is used once is referred to as an epoch. The training typically begins
with randomly set weights and lasts for several epochs until the adjusted weights
converge and produce a sufficiently low error. (Hastie et al. 2009, p. 395–397.)

The backpropagation algorithm has been found advantageous since, during the
process, each hidden neuron exchanges information only with its adjacent units,
and such simple and local nature enables to implement the algorithm efficiently
on a parallel architecture computer (Hastie et al. 2009, p. 397). However, the
backpropagation as such is not a sufficient procedure for training but always requires
a loss function as well as an optimization algorithm. In the following subsections,
the relevant loss functions and optimization methods in the context of this work are
discussed more in-depth.

When training a large network with a relatively small training sample, a com-
mon consequence is overfitting, meaning that the model learns also the noise in
the data which is not present in other samples, for example, the test data. This
problem would be efficiently resolved by training numerous competing models and
averaging their predictions over the test data but in practice, it is a computationally
expensive and thus not very reasonable solution. However, to simulate similar dif-
ferent architectures in a single neuron network, each hidden neuron can be randomly
omitted from the model with a probability p within every iteration. This procedure
is referred to as a dropout. With a significantly lower time complexity, dropout
prevents the co-adaptation of neurons and trains each unit to detect a generally dis-
tinguishing feature in the combinatorially wide variety of internal context, making it
widely utilized in many modern neural networks. (Hinton, Srivastava, Krizhevsky,
Sutskever & Salakhutdinov, 2012.)

Another efficient method to avoid overfitting is to randomly split the training
data further into training and validation samples and in addition to the training
error, obtain the same measure using the validation set, known as a validation
error. Then, anytime when the validation error decreases, the weights of the model
are saved. The procedure is advanced until no improvement has occurred for some
number of pre-defined epochs, such as 10 or 20. Finally, when the training is finished,
the weights saved most recently are restored and returned instead of the latest ones.
This approach is known as early stopping. (Goodfellow et al., 2016, p. 241–249.)

2.3.4 Loss Function

As discussed earlier, an essential aspect of the training procedure is to employ an
appropriate loss function. In general, a loss function refers to a function that ex-
presses deficiencies of all aspects of the model as a single number, enabling the
comparison of competing models, for instance. The training of the model is based
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on minimizing the loss function which is also called an optimization problem. One
simple example of a loss function is a squared error loss in which the prediction Ŷ

of the model is directly compared to the real value Y as (Y − Ŷ )2. Computing the
mean of these values across all the training units is generally a sufficient loss metric
for linear models but with a model with nonlinear activation functions such as ReLU
or softmax, a different approach is preferred. (Goodfellow et al., 2016, p. 164–223.)

In the multiclass classification tasks, the final output is typically calculated by
the softmax activation function. In these scenarios, a commonly used loss function
is known as a cross-entropy loss. In the cross-entropy loss, the idea is to compare
the predicted probability to the true class output that has a binary value 0 or 1
and define the loss based on the distance from the expected value: the closer the
output is to zero, the more accurate is the prediction. Due to the logarithmic output,
cross-entropy is highly sensitive to changes in node probabilities, meaning that small
differences between the predicted and expected values do not cause significant loss
but with increasing distance, the loss quickly becomes larger. (Goodfellow et al.,
2016, p. 164–223.)

One important aspect in the cross-entropy loss is that when there are more than
two final classes, they must be one-hot encoded. One-hot encoding is a common
procedure to convert categorical variables into numeric by generating a binary vari-
able for each class. For example, if the label variable contains three possible classes,
in the one-hot encoding process three binary variables are created. Then, if the ob-
servation belongs to class 2, the new variable corresponding to the class 2 gets 1 as
its value and all the other variables remain 0. (Goodfellow et al., 2016, p. 164–223.)

Finally, when the one-hot encoding has been performed, the equation of the
cross-entropy loss can be expressed as follows:

loss = −
N∑
i=1

K∑
c=1

yi,clog(
exi,c∑K
j=1 e

xi,j

), (2.10)

where yi,c is the binary variable indicating whether sample i is in class c, xi,j

is the softmax output for i corresponding to class j, from which c refers to the
actual class. N is the total size of the training sample and K is the number of
classes. (Alpaydin, 2014, p. 274–277.) In fact, the fraction given as an input to the
logarithm function in Equation 2.10 is the same as the softmax function presented
in Equation 2.9, which demonstrates the relatedness of the cross-entropy loss and
the softmax.

2.3.5 Optimizer

After determining the training loss of the neural network, the following phase is to
adjust the weights of the model in order to decrease the loss. For that purpose, there
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are several potential algorithms whose efficiency and accuracy can vary depending
on the context.

For optimizing neural networks, the most common method is known as gradient
descent. In the gradient descent process, the parameters θ ∈ Rd of the objective
function J(θ) are updated in the opposite direction of the gradient of the function
with the respect to the parameters ∇θJ(θ). The simplest example of the gradient
descent function is batch gradient descent which defines the gradient of the cost
function for the entire dataset as follows:

θ = θ − η · ∇θJ(θ), (2.11)

where η refers to the learning rate, the proportion that the weights are updated.
Nevertheless, such basic methods can pose problems on some occasions, for example
when choosing the most appropriate learning rate or when the frequencies of the
features vary so that the same learning rate does not fit all of the parameters well.
In addition, as batch gradient descent calculates the gradients for the entire dataset,
the convergence can turn out to be unreasonably slow. (Ruder, 2016.)

Nowadays, Adaptive Moment Estimation (Adam) is often perceived as the best
overall choice for the optimization algorithm. It adjusts the learning rates for each
parameter individually between iterations so that the good optimization outcome is
usually achieved with the default learning rate value. The optimization of Adam is
based on the estimates of an exponentially decaying average of past gradients m̂t,
also known as the first moment (the mean), as well as an exponentially decaying av-
erage of past squared gradient v̂t, i.e. the second moment (the uncentered variance).
Initializing mt and vt as 0-vectors, their zero bias -corrected estimates for the time
step t can be denoted as

m̂t =
1

1− βt
1

β1mt−1 + (1− β1)gt

v̂t =
1

1− βt
2

β2vt−1 + (1− β2)g
2
t ,

(2.12)

where β1 and β2 are exponential decay rates and g refers to the gradient of the
objective function, i.e. ∇θtJ(θt). With these moment estimates, the parameters are
eventually updated by the formula

θt+1 = θt −
η√

v̂t + ϵ
m̂t, (2.13)

where ϵ is a smoothing term that prevents division by zero. (Ruder, 2016.)
Along with the non-fixed learning rates, the advantages of the Adam include

little memory requirements, invariance to diagonal rescale of the gradients, and
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feasibility to process a large amount of data and parameters, for instance (Kingma
& Ba, 2014). In the neural network considered in this thesis, the default parameters
β1 = 0.9, β2 = 0.999 and ϵ = 1e−8 generally produce decent optimization results.

2.3.6 Deep Learning

Typically, a linear model is not sufficient to learn more complex tasks. To overcome
this limitation, an efficient approach is to include multiple hidden layers to the
network and instead of employing the explicit data features, let the hidden layers
to transform the raw input into abstract representations to run the task. Such
networks that aim to learn feature levels of increasing abstraction are known as
deep neural networks and the procedure in general as deep learning. (Alpaydin,
2014, p. 306–309.)

The major advantage of deep learning is the fact that the features are learned
directly from the data without human contribution. As there is no need to employ
domain knowledge to extract significant features from the raw data, deep learning
appears to be appealing especially in the context of Big Data where the number
of features might be too large to process manually. In addition, the abstraction
procedure decreases the influence of noisiness and uncertainty of the data as well as
the effect of diverse data types and sources, making algorithms more flexible and
robust for data heterogeneity. (L’Heureux et al., 2017.)

On the other hand, since the deep learning process occurs in the hidden layers,
it is not transparent to the user, making it more challenging to analyze the perfor-
mance of the model and, for instance, review which features turned out to be most
significant and how the model could be improved (Bloch & Sacks, 2018). Moreover,
deep learning algorithms are not fundamentally designed to learn incrementally, and
therefore they are sensitive to lost computational efficiency with high dimensional
data (L’Heureux et al., 2017). In any case, deep learning is nowadays a well-adapted
method to deal with complex learning tasks.

2.4 Graph Convolutional Network

In general, even relatively simple artificial neural network architectures, such as
multilayer perceptrons (MLP), are able to generate auspicious classification results
in numerous application areas. However, they process each observation separately
and do not take into account possible interactions between the units in the sample.
Hence, these basic models are typically not ideal for analyzing geometric data where
every unit has a specific location in the context of a larger entity, such as a building
complex. To improve the performance of the classification algorithm in such sce-
narios, several variants of the artificial neural network have been developed. In this
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section, one of them, referred to as a graph convolutional network, is discussed in
more detail.

2.4.1 Graph Terminology

In this subsection, some key concepts of graph theory are introduced. Overall,
graphs are known as a highly flexible and general format to express various types
of data, such as chemical bonds, geometric structures as well as many other sets
of objects that tend to interact with each other. They maintain information not
only about the own properties of each unit but also the relationships between them,
making them advantageous in various application areas.

Let G = (V,E) be the graph. It consists of two principal elements, V 6= ∅ which
refers to a set of the nodes (also known as vertices) and E ⊆ {(u, v) | u, v ∈ V } which
is a set of the edges, i.e. the connections between the nodes in V . In a weighted
graph, numeric features are assigned to each edge, making their weights differ. In
addition, graphs can be either directed or undirected, depending on whether the node
pairs in E are ordered or not. In the context of this thesis, however, all the graphs
are undirected and thus for every edge {u, v} = {v, u} | u, v ∈ V . Furthermore,
every node v ∈ V has a degree d(v) that refers, in the undirected graph, to the total
number of edges connected to the node. The neighborhood N(v) of the node v, on
the other hand, refers to the subset of the graph consisting of the nodes that are
connected to the node v. (Diestel, 2017.)

It is common to store and represent the structure of the graph in a matrix. The
most general matrix representation is known as an adjacency matrix A that is a
symmetric square matrix of size n × n, where n is the number of the nodes. For
every cell ai,j in the adjacency matrix of the undirected graph, the following holds:

ai,j =

1, {vi, vj} ∈ E

0 otherwise
, (2.14)

meaning that the value of the element ai,j is 1 if the corresponding nodes vi and vj

share an edge and 0 otherwise. The diagonals of the adjacency matrix remain 0. If
the graph is weighted, the cells are scaled by the weights of the respective edges.
(Diestel, 2017.)

A degree matrix D, in turn, is a n×n matrix that stores the information about
the degrees of the nodes to its diagonal elements. For every element di,j, a value is
assigned as follows:

di,j =

d(vi), i = j

0 otherwise
. (2.15)
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From the adjacency matrix A and the degree matrix D, another highly informative
matrix representation, known as a Laplacian matrix L, is derivable. It is a n × n

matrix that is a result of subtracting the adjacency matrix from the degree matrix:
L = D − A. However, from the perspective of graph convolutional networks, a
normalized Laplacian matrix is more informative. Thus, the Laplacian matrix is
defined from now on as its normalized form:

L = I −D− 1
2AD− 1

2 , (2.16)

where I is the identity matrix of shape n×n and the diagonals of the degree matrices
D are raised to power −1/2. The Laplacian matrix has in total n eigenvalues
λ0 ≤ λ1 ≤ · · · ≤ λn−1 and the set of the eigenvalues is called a Laplacian spectrum.
The Laplacian matrix and particularly the Laplacian spectrum store a wide set of
information about the properties of the graph and therefore plays an important role
also in the theoretical motivation of the graph convolutional network, discussed in
more detail in the following subsections. (Diestel, 2017.)

A =


0 0 1 0
0 0 1 1
1 1 0 1
0 1 1 0

 L =


1 0 −0.58 0
0 1 −0.41 −0.50

−0.58 −0.41 1 −0.41
0 −0.50 −0.41 1


Figure 2.5 A simple example of a graph and the corresponding adjacency and normalized
Laplacian matrices.

A simple example of an undirected, not weighted graph is presented in Figure 2.5.
Here, V = {v0, v1, v2, v3} and E = {{v0, v2}, {v1, v2}, {v1, v3}, {v2, v3}}. The degree
of the node v1, for example, is d(v1) = 2 and the neighbourhood N(v1) = {v2, v3}.
The respective adjacency and normalized Laplacian matrices are included in the
figure. The normalized Laplacian spectrum is {0, 0.77, 1.50, 1.73}.

2.4.2 Generalization of Convolution Networks to Graphs

The family of convolutional neural networks is intended to maintain the spatial
structure of the objects that are stored in the data with a known grid-like topology.
Their functionality is based on the procedure known as a convolution that occurs
in the hidden layers, i.e. convolution layers. The convolution layers aim to abstract
the observations into so-called feature maps by computing the output of connected
neurons each of which produces a dot product between the weights and inputs.
Such feature maps are beneficial as they put the emphasis on whether some feature
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is present in general instead of its exact location, making the network invariant to
local translations. (Goodfellow et al., 2016, p. 326–341.)

Having a notable application area in two-dimensional computer vision tasks such
as image and video processing, the convolution layers typically take an input, such
as an image represented as a matrix of pixel values, and employ a weighted filter
that is a submatrix with smaller dimensions. The main idea is to apply the filter
repeatedly throughout the input matrix so that the filter-sized patches of the input
matrix slightly overlap. By doing this, the filter is able to detect the feature anywhere
in the input matrix. Finally, the output is a two-dimensional array that represents
the filtering of the input, referred to as the feature map. (Goodfellow et al., 2016,
p. 326–341.)

Figure 2.6 An example of applying a 2×2 filter to a 3×3 matrix of pixels and representing
the same structure as a graph.

Nevertheless, when applying such a procedure directly to graphs, several sig-
nificant obstacles occur. For example, the structures of graphs, unlike images, are
typically inconsistent as they may have a varying number of nodes as well as edges
and they can be of different types. Furthermore, the nodes of the graph lack in-
herent ordering, meaning that the plain convolution procedure is inapplicable as it
is dependent on the absolute positions of the input units. However, there exists
an underlying relation between images and graphs as it is possible to present each
image as a highly consistent graph where each node represents one pixel and there
is an edge between two nodes if and only if the corresponding pixels are adjacent in
the image. Thus, the convolution in the graph convolutional networks can be seen
as a generalization of the ordinary convolutions performed in the image processing
tasks. (Daigavane, Ravindran & Aggarwal, 2021.)

In Figure 2.6, a simple 3×3 matrix of pixels is converted into a graph in which
the corner cells have three, the other bordering cells five, and all the rest cells eight
neighbors. The numbers represent indices of the pixels and the corresponding nodes.
Now, when the convolution is performed on the pixel at index 0 by a 2×2 filter, the
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participating pixels are at indexes 1, 3 and 4 (highlighted by turquoise). Turning
this into a graph, the corresponding nodes participating in the convolution are all
the immediate neighbours of the node v0, N(v0)∪{v0} = {v0, v1, v3, v4}. Hence, the
graph convolutional networks are able to simulate the basic convolutional neural
networks by performing localized convolutions in which the neighbors of the nodes
participate. In addition, by retaining the other components such as weights and
bias constant across all the nodes, the parameters are not dependent on the size
of the graph, enabling the network to process a diverse set of inconsistent graphs
(Daigavane, et al., 2021).

Figure 2.7 Typical architecture of the graph convolutional network (Defferrard, Bresson
& Vandergheynst, 2016).

In detail, the convolution in graph neural networks is based on the spectrum
of the normalized Laplacian matrix. The normalized Laplacian matrix can be de-
composed into eigenvalues and eigenvectors by a Graph Fourier transform such that
L = UΛUT , where U = [u0, . . . ,un−1] is the matrix comprising of the eigenvectors
ui, i.e. the Fourier basis, and Λ = diag(λ0, . . . , λn−1) is the diagonal matrix of the
normalized Laplacian spectrum. Denoting the filter as gθ, the graph signal x, i.e.
the feature vector across all the nodes, is filtered as

x
′
= gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UTx. (2.17)

This procedure is known as a spectral filtering of graph signals. A filter whose
parameters are all free becomes a non-parametric filter gθ(Λ) = diag(θ), consisting
of a diagonal matrix of the Fourier coefficients θ ∈ Rn. (Defferrard et al., 2016.)

Nevertheless, using a non-parametric filter has certain disadvantages such as the
fact that they are not localized in space. In addition, the time complexity of the
multiplication with the eigenvector matrix U is O(n2) and also the eigendecom-
position of L can be time-consuming for large graphs. To overcome these restric-
tions, one option is to approximate the filter by using a polynomial parametrization
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Figure 2.8 The neighbourhoods of the node vi by different values of K.

gθ(Λ) ≈
∑K

k=0 θkΛ
k, where the parameter θ ∈ RK becomes now a vector of polyno-

mial coefficients. The signal x becomes now filtered as the Laplacian polynomials:

x
′
= Ugθ(Λ)UTx

= U (
K∑
k=0

θkΛ
k)UTx

=
K∑
k=0

θk(UΛUT )kx

=
K∑
k=0

θkL
kx.

(2.18)

Now, the spectral filter can be straightforwardly localized by including the Kth-
order polynomials of the Laplacian matrix. In other words, the filter size can be
adjusted by determining the degree K ≤ n − 1 of the polynomials, and thus the
nodes participating in the convolution are the ones that are exactly K edges away.
The learning complexity of the spectral filter represented as these polynomials be-
comes restricted to O(K), which is equal to the time complexity of the traditional
convolutional neural networks, but the cost of the convolution remains O(n2) due
to the multiplication with the Fourier basis U . (Defferrard et al., 2016.)

Figure 2.8 illustrates the sizes of the convolution filters by various values of K:
the larger the value is, the more hops away the neighboring nodes participate in the
convolution. In many graph convolutional layers, the value of K and thus the size
of the filter become directly proportional to the total number of the convolutional
layers in the model, as will be discussed in the next subsection.

To reduce the time complexity of the convolution of the signal x, another alter-
native to approximate the filter is to employ polynomials derived from a recurrence
relation, known as Chebyshev polynomials. The Chebyshew polynomial of order k
is obtained by the equation Tk(x) = 2xTk−1(x)−Tk−2(x), where T0 = 1 and T1 = x.
In that occasion, the filter becomes gθ(Λ) ≈

∑K
k=0 θkTk(Λ̃), where θ ∈ RK is the
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vector of Chebyshev coefficients and Λ̃ = 2
λmax

Λ − I the matrix of the eigenvalues
scaled so that all its values are in range (−1, 1). Deriving it similarly as in Equation
2.18, the convolution procedure for the signal x is now defined as follows:

x
′
=

K∑
k=0

θkTk(L̃)x, (2.19)

where L̃ = 2
λmax

L− I is now the scaled Laplacian. The filter can now be computed
recursively from L so that for the polynomial k, the following holds: x̄k = Tk(L̃)x =

2L̃x̄k−1− x̄k−2, with x̄0 = x and x̄1 = L̃x. This reduces the time complexity of the
entire filtering procedure to O(K|E|), where |E| is the total number of the edges in
the graph. By stacking these or any other similar polynomial filters with appropriate
activation functions multiple times, the actual graph convolutional network model
can be built. (Defferrard et al., 2016.)

In addition to convolutional layers, a traditional convolutional neural network
may also contain pooling layers that aggregate the outputs of neuron clusters of each
layer into single neurons in the following layers, reducing the spatial size of the rep-
resentation (Goodfellow et al., 2016, p. 326–341). In graph convolutional networks,
a similar procedure requires some kind of clustering of the similar nodes within each
graph. For instance, Dhillon, Yuqiang & Kulis (2007) introduce an efficient Gra-
clus multilevel clustering algorithm that repeatedly selects an unmarked vertex vi

and combine it with its unmarked neighbour vj that maximizes the normalized cut
function aij(

1
d(vi)

+ 1
d(vj)

), resulting a so-called coarser version of the graph, where
the number of nodes halves on every coarser level.

After coarsening, there are multiple alternatives to perform the actual pooling.
Defferrard et al. (2016) execute such an operation in two phases: by creating a
balanced binary tree from the coarser levels of the graph, where each node has two
children, and then rearranging the nodes. Pooling plays a relevant role especially
in graph-level prediction tasks (Daigavane et al., 2021). However, in this thesis, the
main focus is on the classification of graph nodes.

2.4.3 Multi-Layer Graph Convolution

Although most modern graph convolutional networks share a slightly universal ar-
chitecture, discussed in the preceding subsection, the layer-wise propagation rules
tend to vary between them, emphasizing different matters such as efficiency and
types of relationships within the node neighborhood. For example, the PyTorch
Geometric Python library by Fey & Lenssen (2019) consists currently of more than
50 different convolutional layers. In the following subsections, the most applicable
propagation rules in the context of this work are considered in more detail.



24

Kipf & Welling (2016) introduce an idea to utilize the convolution parametrized
by the Chebyshev polynomials so that the degree K is restricted to 1 and λmax ≈ 2.
Recalling that T0(L̃)x = x, T1(L̃) = L̃x and L̃ = 2

λmax
L−I, the formula presented

in Equation 2.19 simplifies as follows:

x
′
=

1∑
k=0

θkTk(L̃)x

= θ0x− θ1L̃x

= θ0x− θ1(L− I)x

= θ0x− θ1D
− 1

2AD− 1
2x.

(2.20)

Such an assumption of the maximum eigenvalue works since the parameters of the
neural network are typically able to adapt to the different scales during the training
phase. In addition, by stacking multiple similar convolution layers, the variety of
convolutional filter functions remains high despite the fact that K = 1. The two
parameters θ0 and θ1 become shared over the whole graph and the convolution of
kth order neighborhood of a node can now be reached by including exactly k layers
in the neural network. (Kipf & Welling, 2016.)

Furthermore, to avoid overfitting as well as minimize the operations per layer,
Kipf & Welling (2016) reduce the number of parameters by setting θ = θ1 = −θ0.
This procedure simplifies the formula further as:

x
′
= θ0x− θ1D

− 1
2AD− 1

2x

= θx+ θD− 1
2AD− 1

2x

= θ(x+D− 1
2AD− 1

2x)

= θ(I +D− 1
2AD− 1

2 )x.

(2.21)

They also propose a so called renormalization trick, where I + D− 1
2AD− 1

2 is re-
placed by D̃− 1

2 ÃD̃− 1
2 , with Ã = A + I and D̃ii =

∑
j Ãij. This is done to avoid

issues such as vanishing gradients, as using a single parameter results in the Lapla-
cian eigenvalues coming now from the range (0, 2). Finally, when generalizing the
operator over the entire input data X ∈ RN×C , where N is the sample size and C

the length of the feature vector for each node, the result is the following layer-wise
propagation rule (in contrast to the propagation of the linear MLP model illustrated
in Equation 2.2):

H(l+1) = ϕ(D̃− 1
2 ÃD̃− 1

2H lW l +Bl), (2.22)

where H l is the output of the lth layer (H0 = X), ϕ the activation function and W l

and Bl the respective weight and bias matrices. A network comprising these con-
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volutional layers is referred to as a multi-layer graph convolutional network (GCN).
The GCN layers are beneficial since the number of parameters and operations is re-
duced and thus the time complexity remains relatively restrained (O(|E|FC), where
F is the number of features). They also appear more accurate than the layers based
on the traditional convolution methods presented in Equations 2.19 and 2.20, for
example. On the other hand, they also have several limitations such as the lack
of support for edge features and directed graphs. However, it is possible to assign
a single numeric feature for the edges as the edge weights stored in the weighted
adjacency matrix. (Kipf & Welling, 2016.)

2.4.4 Dynamic Edge-Conditioned Convolution

Although multi-layer graph convolutional filters achieve high computational effi-
ciency, they mainly ignore the properties of edges and result in a rather homoge-
neous view of local graph neighborhoods. This is because the learning is based on
the spectrum of the Laplacian matrix which makes the graph structure completely
fixed. To cover this limitation, Simonovsky & Komodakis (2017) introduce an idea
to assign labels also for the edges and then condition each filtering weight by the cor-
responding edge label. Such a convolution operator is referred to as edge-conditioned
convolution (ECC).

In detail, the edge-conditioned convolution extends the function H(l+1) : V 7→
Rdl+1 , assigning the signals to the nodes (with dl+1 being the number of neurons in
the (l+1)th layer) to include also the function L : E 7→ Rs, assigning signals to the
edges, resulting a filter-generating network F l : Rs 7→ Rdl+1×dl with edge-conditioned
weight matrix W l

i,j ∈ Rdl+1 , where i and j correspond to two adjacent vertices. For
the node vi, this procedure results in the following propagation rule (in contrast to
the rules presented in Equations 2.22 and 2.2):

H
(l+1)
i = ϕ(

1

|N(vi) ∪ vi|
∑

j∈N(vi)∪vi

F l(Li,j;w
l)H l

j +Bl)

= ϕ(
1

|N(vi) ∪ vi|
∑

j∈N(vi)∪vi

W l
i,jH

l
j +Bl),

(2.23)

where W l
i,j = F l(Li,j;w

l) is now the edge-conditioned weight matrix, with Li,j being
the label for the edge between the nodes i and j and wl the learnable weight (if j = i,
then the weight is fully based on the node signal). H l

j is the output of the lth layer
for the node vj ∈ N(vi)∪ vi and as previously, ϕ is the activation function and Bl is
the bias matrix. 1/|N(i)∪vi| is the normalization term. (Simonovsky & Komodakis,
2017.)

The filter-generating network F l can use any differentiable network architecture,



26

such as a simple multi-layer perceptron (MLP) from Equation 2.2. It maps the
edge features using in total d(l+1) × dl neurons, where d(l+1) is the output and dl

the input channels of the layer. This procedure increases the time complexity to
|E| evaluations of F l combined with 2|E| + |V | per layer. Nevertheless, the edge-
conditioned convolution generally appears to lead to better classification accuracy,
especially with meshes and point clouds, where the graph structure varies within
the dataset. (Simonovsky & Komodakis, 2017.)

2.4.5 Normalization Layers

As discussed in previous subsections, in the graph convolutional networks, the size
of each node’s neighborhood participating in the convolution is proportional to the
depth of the model. That is, the more convolutional layers are included in the
network, the more hops away the representation of each node is mixed with the
representations of its surrounding nodes. This can rapidly cause the model to process
a large number of nodes homogeneously and predict all of them to belong to the
dominant class, which is a major limitation with small or imbalanced datasets, for
instance. This issue is known as over-smoothing. (Li, Han & Wu, 2018.)

To maintain decent performance with deeper graph convolutional networks and
enable the model to learn more complex node representations, one solution is to
include normalization layers to the model. In general, normalization in neural net-
works refers to a procedure that linearly transforms the layer inputs to have zero
means and unit variances as well as making them decorrelated, in order to decrease
internal covariate shift and improve the training of the model (Ioffe & Szegedy, 2015).
Such a process has recently been adopted to overcome also the over-smoothing prob-
lem in graph convolutional networks by applying normalization to different subsets
of nodes in graphs, such as batches or pairs (Zhou et al., 2020).

Zhou et al. (2020) achieve a competent normalization outcome by perform-
ing differentiable group normalization after each convolutional layer. Differentiable
group normalization layers are based on the idea of assigning each node to one of
the multiple independent groups and making the node embedding within each group
similar by rescaling them with a particular mean and variance.

Let G be the number of different groups and n the number of nodes. Firstly,
nodes from the preceding convolutional layer H l are mapped into groups employing
a cluster assignment matrix of shape n×G that has a form:

Sl = softmax(H lU l) ∈ Rn×G, (2.24)

where U l is a trainable weight matrix of shape dl×G (with dl remaining the number
of neurons in the l convolutional layer). Softmax function is employed row-wise as
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introduced in Equation 2.9 to obtain the normalized vector of the probabilities for
a node to belong each group. In the resulting cluster assignment matrix, the ith
column, denoted as Sl[:, i] represents the probabilities of the nodes to be assigned
to the ith group. Based on it, the soft node clustering for the group i is performed
as follows:

H l
i = Sl[:, i] ◦H l ∈ Rn×dl , (2.25)

where ◦ corresponds a row-wise multiplication and H l
i the resulting embedding

matrix for the group i. Further, the embedding matrix is normalized as:

H̃ l
i = γi(

H l
i − µi

σi

) + βi ∈ Rn×dl , (2.26)

where γi is a trainable scale vector, µi a vector of running mean, σi a standard
deviation vector and βi is a trainable shift vector. Finally, the normalized embed-
dings of G groups are tied together as the final output of the normalization layer as
follows:

H̃ l = H l + λ
G∑
i=1

H̃ l
i , (2.27)

where λ denotes a balancing factor that determines the trade-off between the raw
feature preservation and the normalization. (Zhou et al., 2020.)

The overall performance of the differentiable group normalization layer is mostly
dependent on the choice of the hyperparameters G and λ. The optimal number
of groups G varies between different datasets as well as purposes of the study but
generally increases along with the number of class labels. The balancing factor λ,
in turn, favors larger values with deeper networks due to the fact that the high
number of graph convolution layers increases the over-smoothing. All in all, the
best hyperparameters for each model are usually found by testing. (Zhou et al.,
2020.)

2.4.6 Mini-Batching of Graphs

To process graphs of different sizes and shapes, a worthwhile approach is to merge
them into a single massive graph that contains each graph as an isolated subgraph.
That is, the adjacency matrices of each graph in the dataset are stacked in a di-
agonal fashion to result in a single sparse block-diagonal adjacency matrix whereas
the feature and target matrices are just concatenated in the node dimension. This
procedure corresponds to the rescaling and padding operations in the traditional
convolutional networks but without unnecessary graph modification or memory con-
sumption. The method is referred to as mini-batching and it is demonstrated in
Figure 2.9. (Fey & Lenssen, 2019.)
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Figure 2.9 An example of batching two different graphs into one large graph (Fey &
Lenssen, 2019).

A major advantage of mini-batching is the fact that it allows to create larger sets
of graphs and process them in parallel instead of operating one graph at a time. The
node neighborhood aggregation methods are still applicable since messages remain
not exchanged between isolated subgraphs. The sizes of the groups, i.e. batches can
be modified depending on the context of the work. In any case, the use of mini-
batches tends to lead to lower time complexity which is essential especially when
working with large graph datasets. (Fey & Lenssen, 2019.)

2.5 Model Evaluation

In the machine learning process, one essential phase is to indicate how well the
model is performing, enabling the comparison of two different models as well as
the analysis of the behavior of the same model by tuning its parameters (Grandini,
Bagli & Visani, 2020). However, in the classification problems, there typically are
no obvious distances between nominal labels. For example, if the task is to classify
building elements and the true label y is a window but the first classifier ŷ1 suggests
a door and the second one ŷ2 a slab, there does not exist any reasonable method to
measure which classifier is closer to the true label. Thus, the testing procedures of
the classification models have their own characteristics.

In the training phase, the training error based on some loss function is used
to optimally fit the model. However, for the testing purpose, the training error is
not an applicable measure since the error rate on the training set is always smaller
than on the test set that contains previously unseen observations. In addition, the
training error typically favors more complex models that have more parameters over
simpler ones and hence, it is not suitable for the comparison of two algorithms. For
these reasons, it is always necessary to employ a different indicator that is based on
the test dataset. (Alpaydin, 2014, p. 547–550.)

In the following subsections, typical principles on testing and comparing the
classification methods are introduced. In addition to these numeric measures, the
decision of the most suitable algorithm can also be affected by other criteria such as
time and space complexity for training and testing, the difficulty level of program-
ming as well as interpretability (Turney, 2000).
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2.5.1 Performance Metrics

Many classification performance metrics are based on the confusion matrix that is
a cross table having a form

C =


c1,1 c1,2 . . . c1,n

c2,1 c2,2 . . . c2,n
... ... . . . ...

cn,1 cn,2 . . . cn,n

 = (ci,j) ∈ N0, (2.28)

where n denotes the total number of classes and each element ci,j is equal to the
number of observations whose true class is i but which are predicted to be in the
class j, making the main diagonal elements ci,i to express the number of correctly
classified units within the group i. In a normalized confusion matrix, each row is
divided by the number of the elements belonging to the corresponding class so that
the sum of the elements in each row is always 1. This gives a better insight to the
overall performance especially when the class distribution is unbalanced. (Grandini
et al., 2020.)

From the confusion matrix, it is straightforward to obtain accuracy, denoted as
ACC, that is one of the most commonly used metrics in multi-class classification:

ACC =

∑n
i=1 ci,i∑n

i=1

∑n
j=1 ci,j

=

∑m
i=1 I(ŷ(i) = y(i))

m
. (2.29)

The formula of the accuracy can be seen as a fraction between the sum of the diagonal
elements and the sum of all the elements in the confusion matrix or, more generally,
as a fraction of correctly classified entries, where m denotes the sample size and
I(ŷ(i) = y(i)) is an indicator function returning 1 if the predicted class corresponds to
the true class ŷ(i) = y(i) and 0 otherwise. Since the accuracy averages over all possible
label values, it is an insufficient measure on some occasions, for example when the
data is imbalanced and different classes occur with highly varied frequencies. On the
other hand, the major advantages of this metric are its simpleness and commonness.
Overall, accuracy is usually sufficient if the aim is to predict the highest number of
individuals in the right class, without caring about other indicators. (Grandini et
al., 2020.)

To get a more detailed insight of the multi-class classification results, there are
also several other useful metrics obtainable from the confusion matrix. The first of
them is precision which indicates how many units that are predicted to be in the
class i actually belong to that class. In other words, it is the proportion of the
correctly classified observations divided by the total number of samples predicted to
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be in class i, having the following equation:

Precision(i) =
ci,i∑n
j=1 ci,j

, (2.30)

where ci,i refers to the diagonal element corresponding the class i and the denomi-
nator is the sum of all the elements in the row i of the confusion matrix. Similarly,
using the sum of all the elements in the column i as the denominator, another
worthwhile indicator is computed, referred to as recall:

Recall(i) =
ci,i∑n
j=1 cj,i

. (2.31)

Recall, in contrast to precision, expresses how many units in a class i are predicted to
be in that class and is the proportion of the correctly classified observations divided
by the total number of units belonging to the class i. Precision and recall provide
different yet highly illustrative perspectives of the performance of the model that
would be largely ignored by the accuracy. (Grandini et al., 2020.)

To compare different models more efficiently, it is ideal to express the precision
and recall as a single number. To achieve this, a typical procedure is to first calculate
the harmonic mean of the precision and recall within the class i and then average
the means across all the classes. This measure is referred to as an F1-score. For the
class i, the F1-score is computed as follows:

F1(i) = 2 · Precision(i) ·Recall(i)

Precision(i) + Recall(i)
. (2.32)

The advantage of the harmonic mean, compared to the arithmetic mean, is the fact
that it gives a lot of weight to lower values. For example, even if the precision was
100%, the F1-score would still remain 0% if the recall was 0% and vice versa. This
gives a more realistic evaluation of the overall performance of the model. (Grandini
et al., 2020.)

The F1-score for the whole model is also known as a macro F1 and can be
computed as an arithmetic average across all the classes:

MacroF1 =

∑n
i=1 F1(i)

n
, (2.33)

where n is the total number of the classes. It is also possible to assign weights
for each class based on the number of units in each class, which would make the
F1 behave slightly similarly to the ACC. However, by keeping the weights equal,
the macro F1 is a good metric to indicate how the model identifies different classes
regardless of their size. (Grandini et al., 2020.)
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2.5.2 Cross-Validation

As discussed in previous sections, one of the main principles of the machine learn-
ing process is to split the data into training and testing samples. However, it is
important to bear in mind that based on the no free lunch theorem, the accuracy
of one algorithm always varies between different datasets, also meaning that it is
possible that the performance of the algorithm can be highly poor over one test
sample despite being good over another one (Alpaydin, 2014, p. 548–549).

In practice, datasets are most often not large enough to make perfect conclusions
of the performance of the algorithm. Nevertheless, to gain better approximations
with a small set, Alpaydin (2014, p. 554) introduces three important principles:

1. Randomization: To ensure that the results are independent, the test sample,
as well as the testing running order, should be determined randomly.

2. Replication: To average the effect of uncontrollable factors, the same testing
procedure should be performed multiple times.

3. Blocking: To eliminate the effect of uninteresting factors, essentially the differ-
ences between data properties, the comparison of different algorithms should
be done using the same set of resampled test sets.

In machine learning, one of the simplest and most widely used methods to meet
the aforementioned criteria is to perform cross-validation which means using repeat-
edly the same data with different divisions. In k-fold cross-validation, the idea is to
randomly split data into k equally sized parts and then perform in total k iterations
where each of the k parts are employed exactly once as the testing sample whilst the
remaining k − 1 sub-samples are used to fit the model. The obtained k validation
results can then be averaged to get a single metric and, as long as the data division
remains the same (blocking), these averages can be utilized to compare different
models. (Hastie et al. 2009, p. 241–245.)

For example, let X be the complete dataset. When performing the k-fold cross-
validation on X, the result is in total k pairs, written as:

V1 = X1, T1 = X2 ∪X3 ∪ · · · ∪Xk

V2 = X2, T2 = X1 ∪X3 ∪ · · · ∪Xk

...
Vk = Xk, T2 = X1 ∪X2 ∪ · · · ∪Xk−1,

(2.34)

where Vi refers to the ith testing set out of the k sub sets and similarly, Ti to the
training set and Xi to the sub sample of X. The suitable value of k varies but
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most often it is 10 or 30. When the value of k increases, the training sets become
larger and the estimators more robust but simultaneously, the size of the test sets
decreases and the time complexity gets higher. In addition, one important aspect is
to retain the proportions of each label within each sub sample as similar as in the
whole data, i.e. if the data consist of 20 percent of units belonging to one label, then
the proportion should be approximately similar in all of the sub samples. (Alpaydin,
2014, p. 559–560.)
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3 Related work
In this chapter, previous literature concerning machine learning concepts related to
Building Information Modeling is reviewed. Firstly, recent machine learning based
implementations are presented and after that, a more thorough evaluation of 3D
geometry data representation concepts is performed, as it arises as one of the most
fundamental aspects in most of the previous studies.

3.1 Machine Learning and BIM

In recent years, the potential of artificial intelligence and machine learning has been
better recognized in the AEC industry. The trend has been affected by the increased
size and complexity of the construction projects as well as the scarcity of time and
budget that have been pushing pure human intelligence to its limits. (Eber, 2020.)
In addition, in the current BIM research, one of the most prominent topics is se-
mantic enrichment which provides promising tools to overcome current limitations
such as interoperability, enhanced topology relationships and extensions to standard
schemas (Dinis, Poças, Guimarães & Rangel, 2021). Semantic enrichment has now
become a well-established term that describes various processes such as classifica-
tion of building objects, grouping and unique identification (Sacks et al., 2017) all of
which are also typical machine learning problems, providing opportunities to imple-
ment artificial intelligence -based solutions for the semantic enrichment assignments.

The amount of literature concerning machine learning methods with BIM has
increased since the mid-2010s. One of the pioneering investigations regarding the
potential of machine learning was performed by Krijnen & Tamke (2015) when they
employed an unsupervised algorithm for anomaly detection as well as a supervised
neural network to distinguish between residential and non-residential facilities. Us-
ing relatively simple examples, the results implied machine learning to have a high
potential to serve as an alternative to traditional query mechanisms and provide a
diverse area for future research (Krijnen & Tamke, 2015).

Various later studies have demonstrated that even relatively simple machine
learning applications are able to provide efficient solutions for certain BIM-related
tasks. For example, to predict the total BIM labor cost, Huang & Hsieh (2020)
proposed a hybrid strategy to choose the most appropriate model between random
forest and simple linear regression based on the result of a cluster analysis. The result
proved that the simple linear regression with effective floor area as the predictor
produced the most stable predictions whereas the random forest regression, although
performing better on some occasions, was more sensitive to data heterogeneity and
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varying sample size (Huang & Hsieh, 2020).
For BIM-related classification problems, several machine learning approaches

have already been applied as well. For instance, Koo, La, Cho & Yu (2019) em-
ployed support vector machines to automatically classify BIM elements based on
their bounding box representations and relational features. The implemented al-
gorithm was demonstrated to reach an accuracy of over 0.9 when classifying the
objects into not only their main IFC classes but also element subtypes, providing
evidence of high power and generality even for a relatively limited dataset (Koo et
al., 2019).

Furthermore, in comparison with the support vector machines, Koo, Jung & Yu
(2021) managed to achieve even higher performance utilizing deep neural networks.
However, the results appeared to vary between the different data representations
significantly: while a multi-view and a point cloud format both gained a superior
accuracy when classifying solid objects with a regular appearance, the point cloud
lost essential information e.g. about the openings on the wall, leaving the multi-view
convolutional neural network (MVCNN) one of the most promising novel approaches
to distinguish between the comprehensive set of BIM element subtypes (Koo et al.,
2021).

While various efficient machine learning methods have been successfully devel-
oped for single objects and their data formats, the research of detecting larger entities
remains more limited. All in all, a high number of this kind of prediction tasks face
the question of how the individual elements interact with each other and what kind
of information they and their neighbors provide to the algorithm in the context of
the entire building complex.

The relevance of topological and spatial relations has been illustrated in the
problem of classification of room types in residential apartments, comprised of char-
acteristic furniture as well as geometry. In the study, a multiclass neural network
was utilized and the most significant relationship turned out to be direct access from
one room to another, requiring additional iterations of classification with the respect
of already classified spaces. The results proved that the inclusion of this type of rela-
tional information improved the accuracy between the iterations. Nevertheless, the
research was limited by the lack of a larger dataset that would have demanded auto-
matic preprocessing instead of performing it manually as in this research procedure.
(Bloch & Sacks, 2018.)

To perform a sustainability analysis for the 3D building, Mao & Li (2020) made
use of decision trees to detect the main structures (roof, wall and floor) of the
building and then their connected parts such as windows and doors. The process
was eased by representing the building structure and the relationships between the
objects as a graph and drawing conclusions based on the graph theory, e.g. a finding
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that the cut vertices usually represents the main structure of the building where the
other components are connected (Mao & Li, 2020).

To summarize, machine learning has provided auspicious tools for semantic en-
richment and the amount of research has increased during the last years. However,
as discussed by Eber (2020), the recent study of machine learning for Building In-
formation Modeling has been limited especially by the lack of literature, too low
volume of data to provide statistically significant results on a company level as well
as the weak efficiency in distributing consistent information between organizations.

3.2 3D Geometry Representations

The raw 3D data, along with the IFC schema, has numerous potential representa-
tions whose structures and geometric properties vary significantly, making the choice
of the most applicable format somewhat reliant on the requirements of the analyzing
method. Ahmed et al. (2018) divide the 3D data representations into Euclidean and
non-Euclidean data structures, whose main difference is that the 3D Euclidean data
has an underlying grid structure. The grid structure enables a global parametriza-
tion and a common system of coordinates, both of which are fundamental aspects in
extending classical deep learning techniques to 3D data formats. Overall, the main
3D representations that typically fall under the Euclidean structures are descriptors,
projections, RGB-D, voxels, octrees and multi-views, whereas point clouds, graphs
and meshes are most commonly seen as non-Euclidean, although it is possible to
obtain Euclidean characteristics to point clouds and meshes as well by employing
global scales during preprocessing. (Ahmed et al., 2018.)

Ahmed et al. (2018) conclude that based on the reported results in the liter-
ature, the multi-view representations appear to achieve the highest classification
performance, which is consistent with the BIM element classification result by Koo
et al. (2021), discussed in the previous section. In detail, the multi-view data struc-
ture refers to a combination of numerous 2D images that represent the 3D object
from different viewpoints, reducing the noise effect, incompleteness, and illumina-
tion problems on the captured data as well as the required computational power
compared to other Euclidean formats (Zhao, Xie, Xu & Sun, 2017). However, as a
major disadvantage, Ahmed et al. (2018) mention that the multi-view representa-
tion always demands a sufficient number of correctly derived views, which might be
too laborious to achieve in some applications. In any case, other Euclidean tech-
niques appear to be slightly lagging behind the multi-view structure and some of
them, such as projections and RGB-D, tend to lose precious geometrical informa-
tion and therefore they were early left out of the consideration in the context of the
objectives of this thesis.

On the non-Euclidean branch, 3D point clouds refer to a set of unstructured
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points that aim to describe the shape of 3D objects while 3D meshes are polygons,
i.e. faces, that consist of vertices indicating how the mesh is positioned in the
3D space. From the mesh, the graph representation is derivable by notating the
vertices as the graph nodes and the connectivity between vertices as the graph
edges. Despite the fact that traditional machine learning methods are typically not
able to process irregular representations of this sort, several novel architectures have
been developed, achieving almost perfect accuracy in certain tasks. However, most
of the reported experiments were performed on ideal data with no noise and, as
discussed also in the previous section, these non-Euclidean methods are prone to
fail in detecting relevant details in the shape of the object, leaving significant room
for improvement for future machine learning algorithms. (Ahmed et al., 2018.)

In various previous semantic enrichment investigations, bounding box represen-
tations have also been utilized. The bounding box is a relatively simple concept of
a rectangular box whose size is the smallest measure within which all the points of
the corresponding objects are located, and one of its most common applications in a
3D space is an axis-aligned bounding box (AABB) that has its face normals parallel
with the axes of the given coordinate system (Ericson 2005, p. 75-79). Sacks et
al. (2017) illustrated the effect of using the bounding box representation for single
objects in a task of classifying bridge elements and the obtained bounding box fea-
tures turned out to be highly informative in this context since each element type
had a significantly different bounding box representation (e.g. columns are vertical
whereas girders horizontal).

However, in a room classification problem performed by Bloch & Sacks (2018),
bounding box representations alone were not sufficient since they were highly similar
between different room types, making it inevitable to include additional geometric
and relational features to the dataset. Another significant disadvantage of bounding
boxes is the fact that they entirely lose the information about the geometry of
complex shaped objects (Ericson 2005, p. 76).

Finally, Mao & Li (2020) introduced the graph-based representation in which an
entire building model was converted to a surface-line graph whose nodes represented
the surfaces of the building and each edge a common line between the corresponding
surfaces. The procedure turned out to be highly efficient because it enabled to
include information about the interaction between objects (e.g. the angle and the
length of the shared line) to the graph edges and thus detect patterns based on the
connectivity as well as other properties of the graph (Mao & Li, 2020). Concerning
this method, one of the main questions remains how to define the graph edges based
on the geometry since IFC modeling may be inconsistent and contain, for example,
gaps between objects that do not exist in reality.

To summarize, there are various possibilities to represent 3D geometry in the
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3D repre-
sentation Pros Cons Example ML al-

gorithm

Multi-view
Robust to noise,
superior perfor-
mance

High number of
proper views re-
quired

Multi-view Con-
volutional Neural
Network (Koo et
al., 2021)

Point cloud
Expressive, flexi-
ble and relatively
simple

Weak ability to
identify voids and
other details

PointNet (Koo et
al., 2021)

Bounding
box

Extremely simple
and computation-
ally efficient

High loss of
geometrical in-
formation for
non-rectangular
objects

Support Vector
Machine (Bloch &
Sacks, 2018)

Object-
level graph

Easy inclusion of
attributes for the
object relation-
ships, deployment
of graph theory

Challenges at
determining the
nodes and the
edges of the graph

Decision Tree
(Mao & Li, 2020)

Table 3.1 Summary of certain 3D representation formats.

context of performing machine learning applications. In Table 3.1, the advantages
and disadvantages of certain formats are outlined. Although the multi-view repre-
sentations appear to be superior on many occasions, a worthwhile performance can
potentially be achievable also with relatively simpler approaches, such as bounding
boxes. However, a large proportion of previous literature focuses mostly on single
objects, leaving less attention paid to the interactions between them. In the context
of this work, several characteristics of the most auspicious approaches are combined
to overcome this problem.
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4 Data

4.1 BIM Dataset

The dataset considered in this work contains a diverse set of 14 buildings modeled
originally in IFC2x3 and IFC4 formats. Typically, the buildings are of significantly
different sizes and shapes (e.g. single-family detached homes vs. high-rise buildings)
and they may have been designed for different uses (e.g. residential, institutional
or industrial buildings). Efforts have been made to take this diversity into account
in the dataset to generalize the classification model for all the building types. Each
building has been represented in an assembly-level, meaning that each unit in the
sample represents a physically built object or element from the IfcElement class such
as IfcWall, IfcColumn or IfcSlab. The models have been gathered across multiple
projects and thus, the raw data is likely to contain profuse inconsistency, complexity
and missing values, which is still a common issue with BIM.

Figure 4.1 Properties of the objects in the dataset.

To enable the meaningful comparison of these BIM data samples despite their
deficiencies, the models have been standardized and enriched using Simplebim. Par-
ticularly, numerous joint features have been derived from the geometry of the build-
ings such as the area and elevation of each object. Each object also has a bounding
box representation, i.e. minimum and maximum (x,y,z)-coordinates as well as the
coordinates of the center of the gravity. Some features have also been derived to
describe the complexity of the shape of the object, for example, the number of
openings and the number of triangles. The categorical variables, in turn, contain
information e.g. about the object class (such as a wall, a window or a door) as well
as the object container class.
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In addition, each object has an ID that is unique within each model whereas for
the training and testing purposes, a label value for each unit has been assigned: the
label is envelope if the object is part of the building envelope, in if the object is
located inside the envelope, and out if the object is outside the envelope.

Figure 4.1 illustrates the distribution of labels (on the left) as well as object
classes (on the right) in the full and raw dataset. As it can be seen, the most
common object class is a wall, followed by an element proxy (i.e. an object without
a predefined meaning of the special type) and furniture. The label distribution is
highly imbalanced since most of the units belong inside the building whereas the
sizes of the envelope and out labels are somewhat equal. This sets some limitations
in using certain classification models and validation metrics.

Figure 4.2 The cross tabulation of the label and the object class.

Figure 4.2, in turn, displays the row-normalized cross-tabulation of the label
and the object class. Overall, it is highly typical that each label contains objects
of certain types. For instance, most of the furniture belongs to inside the building
while windows are most commonly part of the envelope. Walls, on the other hand,
are significantly present in every label, making it unachievable to assign a label to
them based on the object class only. The chi-square test of independence produced
a p-value of near to 0 and thus confirmed that there are significant dependencies
between the label and the object class in the dataset.

In addition, a one-way analysis of variance test was performed for the numeric
features. As a result, in total 23 features received a p-value below 0.05, thus imply-
ing that their means vary between the labels at the 5 % significance level. Figure 4.3
illustrates the boxplots of several features with the outlier values hidden. Although
deep neural networks most often select the most meaningful features without hu-
man contribution and find more complex dependency relationships than the ones
discovered, the aforementioned analyses can give worthwhile insights into the typical
characteristics of the objects belonging to each label.
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Figure 4.3 The boxplots of the selected numeric features.

The preprocessing steps included the encoding of the labels so that 0 corresponds
to the class envelope, 1 to the class inside and 2 to the class outside. In addition, the
other categorical variables were converted into numeric binary features by one-hot
encoding. Within each building, the numeric features were also normalized into the
range (0,1) by Min-Max scaler: x

(i)
norm = (x(i) − xmin)/(xmax − xmin). The units

whose label information was missing were omitted from the dataset.

Figure 4.4 An example of the space objects (the grey, transparent boxes).

Furthermore, the objects whose class were space (as illustrated in Figure 4.4)
were omitted from the dataset. This is because the space objects are somewhat more
abstract concepts compared to physical building elements. They also have a large
volume, leading to numerous unnecessary relationships between objects which affects
the time complexity and potentially also to the classification outcome. However,
most of the space objects belong inside the building and none of them to part of
the building envelope, which could turn out to be valuable information in machine
learning. Further investigations are required on whether the space elements could
improve the classification accuracy in some format.

After the preprocessing operations, the total number of objects in the dataset
became 94995 with a number of features of 69, of which 29 are the original numeric
attributes and the remaining 40 are the result of the one-hot encoding process for
the categorical variables.
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4.2 Graph Construction

The main obstacle with the raw object-level data is the fact that it lacks information
about how each unit relates to nearby elements as well as the whole building and
what kind of properties these kinds of interactions pass to the single object. To
overcome this issue, it was decided to represent the standardized dataset as a set
of graphs, where each graph represents one building, each node an object and each
edge an interaction between two objects. As discussed in the previous chapters, both
the bounding box and graph representations have provided promising results also
with the 3D building models. Hence, the characteristics of the former are employed
to express the geometry of the single object whereas the latter is used to indicate
the structure of the whole entity of objects.

PyTorch Geometric, the Python library for the analysis of the graph-structured
data, was utilized to create the graph dataset. In the library, each graph is described
by the Data object with the following structure:

G = (X, (I,E)), (4.1)

where X ∈ RN×F is the node feature matrix of shape N (the number of nodes,
i.e. objects) and F (the number of node features). (I,E) is the sparse adjacency
tuple, where I ∈ N2×E is the matrix of edge indices with shape 2 and E (the
number of edges) in COOrdinate (COO) format and E ∈ RE×D is the optional
edge feature matrix with shape E and D (the number of edge features). These
features are assigned to the Data object as attributes that also allows the inclusion
of customized properties. Typically, the label vector Y ∈ NN×1 is inserted for the
machine learning purpose. (Fey & Lenssen, 2019.)

The remaining question is how to determine the edges between nodes in each
graph since the inconsistencies between various models set restrictions also on the
neighbor detection. For instance, the surfaces that touch each other in reality have
often been modeled so that a false gap of some millimeters is formed between them.
Despite several potential approaches for solving this problem, Expanding Polytope
Algorithm, an extension of the Gilbert-Johnson-Keerthi Algorithm appeared to pro-
duce sufficiently good results. In the application used, also the objects within a
certain distance were marked as neighbors, in addition to the touching and colliding
ones. Here, the maximum distance between two adjacent objects was set at 100
millimeters.

One major advantage of formatting the data as a graph is the fact that it allows
to include features also to the resulting edges. Here, edge features were obtained
from the collision detection process and included, for example, the distance between
neighbours, with a negative value expressing the collision of them. In addition, a
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Figure 4.5 Building 1 converted to the graph format.

binary attribute indicating on which side the neighbour is located relative to the
face of the object with the largest area was included in the edge features. Even-
tually, the graph data ended up including in total 6 edge features. The derived
neighbourhood of each object was stored as a semicolon-separated string attribute
of form ”id1; attr1,1; ...; attr1,m; ...; idn; attrn,1; ...; attrn,m”, where idi refers to the ID
of the ith neighbour and attri,j to the jth feature of the edge between the node and
the corresponding neighbour. From this type of adjacency list, it became straight-
forward to parse the matrices of edge indices I as well as edge features E in the
required format.

Figure 4.5 demonstrates an example outcome of the graph construction process
with each node coloured according to their true labels (green if it is part of the
envelope, turquoise if inside and grey if outside the building). For instance, the
balcony supported by the two columns is located outside of the building envelope
and thus, the corresponding nodes are coloured grey in the graph, whereas all the
objects inside the envelope are turquoise.

Figure 4.6 The 1-hop neighbourhood of the outer door in Building 1.

It is notable how there are already clusters visible especially between the nodes
belonging to the labels envelope and inside in the graph. The reason can be con-
sidered somewhat intuitive: for example, most windows are a part of the envelope
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and typically they are attached only to the walls which are a part of the envelope
as well. This observation suggests that classification with at least a reasonable ac-
curacy could be achievable. On the other hand, the objects located outside seem
mostly appear as outliers in the graph.

Figure 4.6 demonstrates the 1-hop neighbourhood of an outer door (indexed as
0). The door touches two outer walls (3 and 4) from two different floors as well
as two floor slabs, one belonging inside (1) and another outside (2) of the building,
resulting in a total of four neighbours in the graph. In the subgraph, both walls have
four neighbours as well whereas the slabs are not connected to each other, as they
are separated by the walls, i.e. the building envelope. Indeed, it is highly common
that objects located inside are not neighbours with the objects located outside and
vice versa, as the objects belonging to the envelope distinguish between them.

Figure 4.7 The 1-hop neighbourhood of the inner wall in Building 3.

Similarly, the neighbourhood of an inner wall (0) in Building 3 is illustrated in
Figure 4.7. Here, most of the neighbours belong inside as the wall is in contact with
another inner wall (5), one inner beam (1) and two inner slabs (2 and 3). In addition,
there is one object belonging to the building envelope in the neighbourhood as the
wall is also connected to a large outer wall element (4). Again, most of the elements
belonging inside are separated from the elements belonging outside and hence, there
are no objects from outside in this neighbourhood.

Figure 4.8 The relation of the number of nodes and the number of edges in the graphs.
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Building Nodes Edges Avg. node degree Isolated nodes
1 449 3,324 7.40 False
2 5,343 56,880 10.65 True
3 14,125 130,310 9.23 True
4 10,143 103,384 10.19 True
5 5,455 50,172 9.20 True
6 7,914 80,040 10.11 True
7 8,230 93,730 11.39 True
8 20,324 174,562 8.59 True
9 3,623 34,031 9.39 True
10 3,878 31,850 8.21 True
11 2,538 24,704 9.73 True
12 3,188 35,246 11.06 False
13 2,940 34,370 11.69 False
14 6,845 53,582 7.83 True

Total 94,995 906,185 9.54 True

Table 4.1 Properties of constructed graphs.

Table 4.1 summarizes the properties of the 14 constructed graphs. In total,
the graph dataset consists of 94,995 nodes and 906,185 edges divided between the
graphs. Within the individual graphs, the number of nodes varies from 449 to 20,324
and the number of edges from 3324 to 174,562. The average node degree is 9.54,
meaning that the number of edges rapidly becomes large as the number of nodes
increases. This strongly affects the time complexity of the algorithms that process
the edges of graphs. The relationship of the number of nodes and the number of
edges is illustrated in Figure 4.8, where the graphs are sorted by the number of the
nodes.

Moreover, not all the graphs are connected as they contain isolated nodes. In
most cases, the isolated nodes represent elements that are located outside of the
building such as columns or outdoor furniture. Occasionally, they can also be due
to the inconsistency and modeling errors in the raw data. However, the average
node degrees confirm that the issue is not highly common and most of the nodes in
each graph are non-isolated.
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5 Experiments
The neural networks were implemented in Python using libraries such as pandas,
NumPy and scikit-learn as well as PyTorch Geometric which provides a wide range
of tools for geometric deep learning. The experiments were divided into two parts:
firstly, the objective was to classify objects into three categories (0 = part of the
building envelope, 1 = inside the envelope, 2 = outside the envelope) so that both the
training and the testing data were obtained from the same building. Secondly, the
aim was to generalize the classification for all the objects in one building by training
the network solely with other buildings, which can be seen as a more common
prediction task.

5.1 Experiment I

To classify the objects within a single building, a relatively simple neural network
architecture with three layers was constructed. The hidden layer mapped the input
neurons into 60 hidden neurons which were further mapped into three outputs cor-
responding to the three final labels. For the output of the hidden layer, the ReLU
activation function presented in Equation 2.4 was used to include non-linearity to the
model. For the output layer, on the other hand, the softmax activation introduced
in Equation 2.9 combined with the argmax function was utilized to assign each test
unit to the most likely class. Moreover, to train the network by backpropagation,
one-hot encoded cross-entropy from Equation 2.10 was used as a loss function, and
Adam from Equation 2.13 with a learning rate η of 0.01 was used as an optimizer.
Finally, to simulate different network architectures and avoid overfitting, dropout
with the probability of 0.5 was employed.

Three competing models were implemented, all of them using the same architec-
ture but different propagation rules. The first model utilized the simple multi-layer
perceptron (MLP) introduced in Equation 2.2 that completely ignored the relations
between the objects and learned solely based on the node features. The second
one used the multi-layer convolutional layers (GCN) from Equation 2.22 to include
the edges between nodes to the model. The third model, in turn, aimed to in-
clude also edge features and thus utilized the edge-conditioned convolution layers
(ECC) demonstrated in Equation 2.23 that assigned the features of each edge to in
total three signals by employing an inner MLP network with the ReLU activation
function.

Figure 5.1 demonstrates the training process on epochs 1, 10, 50 and 100 within
Building 1. From the outputs of the trained networks concerning training units, it
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can be seen that the GCN and ECC models are starting to learn node embeddings
according to the labels already by the 10th epoch while for the MLP model, the
learning seems to be somewhat slower. However, by the 100th epoch, all the models
appear to have learned to distinguish between the classes at least to some degree of
accuracy. The learned embeddings are the most distinct with the ECC model that
has also successfully separated the nodes belonging outside (colored grey).

Figure 5.1 The node embeddings learned by different models during the training process.

For testing, a sub-sample of the building dataset of size 10 containing Buildings
1, 2, 5, 6, 8, 10, 11, 12, 13 and 14 was employed. The aim was to include buildings
of highly varying sizes and shapes in the sample. Then, the testing procedure
was carried out by using the 10-fold cross-validation that split the objects of each
building into 10 randomly determined parts of which every sample was once used
for testing and the others for training as illustrated in Equation 2.34. The neural
networks based on each training were trained using a loop of 100 epochs. For each
test sample, a confusion matrix introduced in Equation 2.28 was obtained as well as
several validation metrics such as the mean accuracy from Equation 2.29, precision
from Equation 2.30, recall from Equation 2.31 and macro F1 from Equation 2.33.

Figure 5.2 presents the normalized confusion matrices from the classification of
several buildings with the row and column indices 0 corresponding to the objects
belonging to the envelope, 1 to the objects belonging inside and 2 to the objects
belonging outside the building. Overall, the objects belonging inside (class 1) are
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Figure 5.2 The normalized confusion matrices for Buildings 1, 8, 10, 11 and 12 by
different neural networks (index 0 := envelope, 1 := inside, 2 := outside).

highly well recognized by each model with the recall values varying from 0.94 to 1.00.
This is most likely because of the highly unequal distribution of labels which enables
the model to use more examples from inside during the training phase compared
to the other labels. Therefore, the classification results for the objects belonging to
the envelope (class 0) as well as outside (class 2) appear to vary more from fairly
good to extremely poor. The bias is most obvious with the MLP model that has
incorrectly predicted the objects to belong to class 1 on many occasions.

From this sample, the classification of Buildings 10 and 11 turned out to be most
challenging. For example, in Building 11, both the MLP and GCN models almost
entirely failed to select any objects belonging outside with the recall values of only
0.03 and 0, respectively. Mostly, the GCN model confused the objects belonging
outside with the envelope while with MLP, the distribution of predictions appears
to be more random. However, it was only the ECC model that was able to classify
more than half of the objects belonging outside correctly with 0.51 recall. Similarly,
for Building 10, the ECC model managed to increase the recall of class 2 to 0.65
from 0 obtained by the MLP model. In contrast, all the models performed almost
equally well with Buildings 1 and 12. It is notable how the ECC model managed to
perform almost perfect classification for Building 1 with a recall of 1.00 for class 2
and only one misclassified object overall.

Figure 5.3 visualizes the incorrectly classified elements of Building 1 coloured by
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Figure 5.3 Incorrectly classified objects by different models within Building 1 coloured
by the predicted class (0 := envelope, 1 := inside, 2 := outside).

the predicted class. On most occasions, the misclassified objects are located near the
boundaries of the clusters of the objects belonging to the same label. Although the
mean accuracies of the MLP and GCN models are fairly similar, the classification
results of the MLP model seem more irregular. In addition, MLP is the only model
that has confused notably many objects belonging inside and objects belonging
outside: for example, several balcony elements have been classified to inside and an
inner slab to outside.

The performance of the GCN model appears to be more consistent as the doors
and the railings have been classified incorrectly from both sides of the building as well
as almost all the walls from the first floor, for example. The challenges in classifying
the elements such as outer doors were expected since they are typically located in
the interface of multiple labels and have neighbours from every class, as illustrated
in Figure 4.6. The outer walls, in turn, are connected to numerous inner walls. The
ECC model managed to classify almost all the objects correctly but predicted a
compact inner roof element to belong to the building envelope incorrectly. This can
also be due to a large number of neighbours as the element touches multiple roof
elements as well as outer walls.

Similar classification was performed also for the other 10 buildings and the cor-
responding accuracies, macro F1 values and execution times have been plotted in
Figure 5.4. Due to the imbalanced data, all the accuracies are fairly high whereas
there is more variety in the macro F1 metrics. Both the lowest accuracy (0.851)
and F1 (0.539) were obtained by the MLP model for Building 11. The ECC model
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Figure 5.4 The comparison of the performance of the three models.

struggled most with the same building but managed to significantly increase the
accuracy to 0.931 and F1 to 0.802. The best accuracy (0.993) was achieved by the
ECC model for Building 2 whereas the highest F1 (0.982) was retrieved as well by
the ECC for Building 1. The summary statistics across the 10-fold cross-validations
for the buildings are listed in Table 5.1, with the best value of each metric bolded.

Model mean(ACC) median(ACC) mean(F1) median(F1)
MLP 0.926 0.929 0.794 0.849
GCN 0.949 0.955 0.857 0.913
ECC 0.972 0.974 0.931 0.945

Table 5.1 The summary statistics of the accuracies and macro F1-scores across the
10-fold cross validations performed for different types of buildings.

All in all, the ECC model had the best performance with every building. The
GCN model had the second best overall performance, having a lower F1 value than
the MLP model only with Building 12 that was relatively easy to classify for every
model. However, the execution times of the ECC were significantly higher, especially
with the larger samples and the time complexity was proportional to the size of the
building. For example, performing the 10-fold cross-validation for Building 6 with
20324 objects lasted 6722 seconds which corresponds to nearly two hours whereas
the MLP model performed the same procedure in 11 and the GCN model in 154
seconds. On the other hand, for Building 1 with 499 objects, the MLP model
performed the 10-fold cross-validation in 1, the GCN in 6 and the ECC in 113
seconds. The differences are due to the fact that complex buildings have a massive
number of edges each of which the ECC layer must assign a label. Hence, despite
the best performance of the ECC model, the GCN model can on some occasions
considered to be a fine compromise in regard to accuracy and time complexity.

5.2 Experiment II

The second experiment was to attempt to generalize the classification to situations
where the true label of any object in one building is not known. In other words, both
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the training and the testing data consist of different, complete buildings. In general,
this type of classification tasks is more common in real-life situations but on the
other hand, it is more challenging as there is considerably more variation between
the properties of different buildings as well as inconsistency between BIM models.
Thus, the selection of the most suitable neural network architecture requires more
careful consideration.

To train models with multiple graphs of varying sizes and shapes, the graphs
belonging to the training sample were stored in the DataLoader class offered by
PyTorch Geometric, similarly as illustrated in Figure 2.9. Then, within one epoch,
each mini-batch in the class was used exactly once to perform backpropagation. The
data was stored in a similar manner for the testing sample (if it contained more than
one graph) as well as the possible validation sample and the testing and validation
metrics were computed as a mean of the outputs from each mini-batch.

5.2.1 Model Depth Test

At first, the influence of the model depth, i.e. the number of layers, on the classifi-
cation performance was examined. The basic architectures of the models were fairly
similar to the model employed in the previous section with the Adam optimizer of
the learning rate 0.01 and the dropout with the probability of 0.5. Nevertheless,
the activation function was changed to PReLU (from Equation 2.5) to generalize
the nonlinearities in the model and the number of hidden neurons was decreased
to 23 to enable faster testing. In addition, to better overcome the imbalanced class
distribution, weights were assigned to the classes in the cross-entropy loss function
by dividing the number of the units in the largest class by the number of the units
in each class.

Then, different neural network architectures with the number of layers from 1 to
7 were tested by performing a 5-fold cross-validation to the sample of 14 graphs con-
taining in total 94995 objects. Each tested model was trained with 100 epochs. Due
to the class imbalance and the particular interest to predict the minor classes enve-
lope and outside, macro F1 statistics were compared instead of accuracies. The F1
values for both the training and testing samples were measured as a mean from each
of the 5 cross-validation iterations. Using the same train-test splits, the validation
was repeated to the models utilizing MLP, GCN and ECC layers.

Furthermore, to evaluate the impact of the layer normalization (as introduced
in Equation 2.27) to the performance of the models of different depths, the same
testing procedures were carried out using normalization layers with the fixed number
of groups G = 13 and various lambda values λ from the set {5·10−4, 1·10−3, 2·10−3, 3·
10−3, 5 ·10−3, 1 ·10−2, 2 ·10−2, 3 ·10−2, 5 ·10−2}. The optimal number of groups G was
found by brief testing and it might be related to the number of different object types,
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for example. The resulting macro F1 statistics with a few different lambda values
are plotted in Figure 5.5. λ = 0 is equal to the network with no layer normalization.

Figure 5.5 The effect of the depth on the classification performance by different models.

Overall, in the context of this work, a sufficient number of layers appears to
come from the range 2–5. This can most likely be due to the class imbalance and
the general structures of the buildings combined with the fact that in various graph
convolutional networks, the filter size is typically related to the number of layers.
Hence, as the filter size increases, more nodes participate in the convolution and
more likely the participating nodes belong to the dominating class. Thus, the model
starts to rapidly overfit and predict most of the objects to belong to only one class,
resulting in over-smoothing and a massive drop in the macro F1 value.

The aforementioned issue is particularly visible with the GCN model whose
performance peaks already with only 2 layers. After that, the test F1 score begins
to rapidly decrease and becomes below 0.60 already with more than 6 layers. The
ECC model, on the other hand, appears to be more robust to the over-smoothing
and it achieves decent performance also with larger numbers of layers. Here, the
best macro F1 scores are obtained with 5 layers. It is also notable how the train F1
score increases above 0.85 when including normalization layers with a moderate λ

value to the network. The testing of even deeper ECC models was limited due to
the insufficient time resources in this work.

The effect of normalization seems to be smaller on the test metrics but during
the training phase, it appeared to accelerate the backpropagation process in any
case. Thus, the inclusion of normalization layers with a small λ value might be a
worthwhile idea. With a too large λ, however, both the training and testing per-
formance drop drastically with the graph neural networks, thus the selection of the
optimal hyperparameters in the normalization layers requires careful consideration.

The behavior of the MLP model appears to differ significantly from the GCN and
ECC networks. For example, it achieves the best performance when including the
normalization layers with a large λ value to the model, which is a complete opposite
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of the characteristics of the GCN and ECC models. In any case, the training F1
score never exceeds 0.70 and the test F1 0.60, proving a major inadequacy to solve
this research problem. Hence, in the following experiments, the main focus will
be on the GCN and ECC models, although the MLP model will also be used for
comparison purposes.

5.2.2 Selected Models

Figure 5.6 The selected GCN model architecture.

Based on the results in the previous subsection, the two most promising graph
convolutional neural network architectures were selected. The first of them was
rather simple, consisting of only two GCN layers, as illustrated in Figure 5.6. More-
over, immediately after the first convolutional layer, a normalization layer with
hyperparameters G = 13 and λ = 0.0004 was utilized. As discussed, normalization
layers can improve the training and potentially overcome the over-smoothing prob-
lem so they were included in both models; however, the value of λ was decided to
be low since the networks were not particularly deep.

After the normalization layer, the PReLU activation function was employed,
followed by the dropout layer that randomly omits hidden neurons with a certain
probability and is utilized only during the training. The effect of the dropout is
further investigated in the next subsection. The second convolutional layer, in turn,
mapped the 23 hidden neurons into 3 neurons which were further transformed into
the probabilities of belonging to the corresponding classes by the softmax activation
function (from Equation 2.9). Finally, in the testing, the output of the softmax
activation function was mapped into the predicted class by choosing the output
neuron with the highest probability by the argmax function.

The second model consisted of ECC layers and is presented in Figure 5.7. Since
the ECC layers appeared to allow using deeper graph neural network architectures,
the number of layers was increased to 4. Each of the ECC layers utilized a relatively
simple MLP neural network (demonstrated as the dotted-line box above each ECC
layer in the figure) with a ReLU activation function to map the 6 edge features
into the shape [input neurons × output neurons], as defined by the corresponding
ECC layer. Otherwise, similar layers as in the first model were utilized after each
convolution operation; the dropout layer, however, was placed only after the first and
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Figure 5.7 The selected ECC model architecture.

the third convolutional layer. The number of hidden neurons in all the intermediate
layers was fixed to 23 in both of the models.

5.2.3 Training the Models

The selected models were once more trained using the weighted cross-entropy loss
function and Adam optimizer with the learning rate η of 0.01. In addition, several
different training techniques were examined, including employing the early stopping
method based on a randomly determined validation set in proportion 80:20 as well as
dropout layers with varying probabilities. In Figure 5.8, an example of the behavior
of the weighted cross-entropy loss with a certain train-test-validation-split as well
as a dropout with the probability p = 0.5 is presented.

Figure 5.8 Cross-entropy loss during training the models.

As illustrated, the cross-entropy loss drops significantly already within the first
20 epochs. After that, the decrease of the loss begins to get slower. The weights of
the GCN model typically converge around the training loss of 0.4, reaching values
below that occasionally. The loss of the ECC model, in turn, gets as low as 0.2.
The validation loss and the training loss with dropout get higher values, which is
expected behavior.

Interestingly, in the experiments, the best test performance was achieved when
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applying the early stopping fully based on the training loss and dropout with a low
probability. It was observed that results became somewhat unstable when employing
a validation set, leading to superior accuracy with certain train-test-validation splits
and lousy performance with others. It is possible that the number of buildings in
the dataset was not yet sufficiently large to create a comprehensive representation
for the randomly determined training and validation samples. On the other hand, in
the situations where the performance turned out to be fine, the train and validation
losses appeared to be correlated, as can also be seen in Figure 5.8. In the analysis,
overfitting appeared to occur to a lesser extent.

The dropout layers seemed to lead to more stable test results. Nevertheless,
again there was a correlation between the training loss with dropout and the train-
ing loss without it, and the differences between the model performances were not
massive. This is in line with the observation made by You, Ying & Leskovec (2020)
whose candidate models did not gain improvement with dropout layers. As a po-
tential explanation, they mentioned the fact that graph neural networks involve
neighborhood aggregation, making them already robust to noise and outliers.

Based on the analysis, the early stopping based on the training loss was selected
for the training technique. That is, each tested model was trained with a maximum
of 500 epochs and the weights leading to the minimum training loss were saved. If
there were no decrease in the loss within the 25 epochs, the training process was
interrupted and the most recently saved weights were restored. In addition, being
aware of the risk of overfitting, the dropout layers were decided to be kept in the
models, although with a reduced probability p.

5.2.4 Final Tests

With the selected network architectures, the final experiments were made by per-
forming 14-fold cross-validation so that each building was used once in full for testing
and the remaining 13 buildings were used for training the models. The same testing
procedures were performed using the network comprising GCN layers (introduced
in Figure 5.6) as well as the network utilizing ECC layers (Figure 5.7). For com-
parison, also an MLP network was tested. Its architecture was also chosen based on
the results of the depth test illustrated in Figure 5.5 and was decided to contain 3
MLP layers in addition to normalization layers with hyperparameters G = 13 and
λ = 0.0004.

A summary of the cross-validation outcome using the GCN model is presented
in Figure 5.9. The overall accuracy is 0.800, meaning that the model managed to
predict the correct class for 80 % out of a total of 94995 objects. The corresponding
macro F1 score is 0.708. Again, the most challenging class to predict was 2 (outside),
receiving both the lowest precision (0.430) and the lowest recall (0.697) and resulting
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Figure 5.9 The summary of the performance of the GCN model (0 := envelope, 1 :=
inside, 2 := outside).

in the F1 score of 0.532. The highest precision (0.956), however, was achieved for
the class 1 (inside) and the highest recall (0.822) for the class 0 (envelope).

However, when the same performance metrics are calculated as means across
the separated iterations of the 14-fold cross-validation, the resulting scores become
slightly lower. With the GCN model, the mean accuracy is 0.760 whereas the
mean of macro F1 scores is 0.638. The scores are affected by specific buildings that
were, for uncertain reasons, significantly challenging to classify. For this reason, the
corresponding median of accuracies is as high as 0.834. On the other hand, the
median of the F1 scores is lower, 0.617.

Figure 5.10 The summary of the performance of the ECC model (0 := envelope, 1 :=
inside, 2 := outside).

A similar summary of the overall performance of the tested ECC neural network
architecture is given in Figure 5.10. With the ECC model, approximately 83 % of
the 94995 objects were correctly classified. There is also improvement in the macro
F1 score with the value of 0.734. According to the confusion matrix, the ECC
model struggled mostly with distinguishing between the classes 0 (envelope) and 2
(outside), predicting several outside elements to belong to the building envelope and
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thus causing a drop in the precision score for the class 0 (0.498) compared to the
GCN model. Nevertheless, this can be thought to be a more intuitive behavior as
the elements located in the envelope and outside are spatially closer to each other
than the elements located inside and outside.

In any case, the lowest recall score was once again obtained by class 2, with no
significant improvement compared to the GCN model. The recall scores for classes
0 and 1, in turn, gained a slight improvement. The highest recall was achieved by
class 0 (0.862) and the highest precision by class 1 (0.970).

For the ECC model, the mean accuracy across the cross-validation iterations
is 0.781, and the mean of the macro F1 scores 0.665. The corresponding medians
are both higher, 0.845 and 0.699, respectively. Based on these results, the tested
ECC model outperformed the GCN model according to every test metric but not so
significantly as expected based on the results presented in Section 5.1 and the fact
that the ECC model was deeper.

For comparison, the tests were also performed for the MLP network as well as
the models that were trained without the class weights in the cross-entropy loss
function. As expected, the MLP model performed poorly compared to the graph
neural networks with the mean accuracy of only 0.669 and the mean macro F1
of 0.508. Training the models without weighted loss, in turn, improved the mean
accuracy of the GCN model to 0.824 and the ECC model to 0.804 but caused
expectedly a massive bias for the dominating class 1. Surprisingly, also the macro
F1 scores improved for the GCN model but the differences remained not large.
Nevertheless, the highest macro F1 scores were still achieved by the ECC model
trained with weighted loss. The summary of the considered metrics is given in
Table 5.2 with the highest values bolded.

Model mean(ACC) median(ACC) mean(F1) median(F1)
MLP 0.669 0.656 0.508 0.503
GCN 0.760 0.834 0.638 0.617
ECC 0.781 0.845 0.665 0.699
MLP* 0.787 0.807 0.545 0.552
GCN* 0.824 0.850 0.653 0.642
ECC* 0.804 0.864 0.649 0.639

Table 5.2 The summary of the results by the considered models. The symbol * refers to
the models trained without weighted loss.

The individual scores for each tested buildings are given in Figure 5.11. As
illustrated, the results vary significantly between the tested buildings. The highest
accuracies were achieved by the ECC model for Buildings 1, 2 and 4 and also the
corresponding macro F1 scores receive values over 0.8. The worst metrics, in turn,
were obtained for Buildings 5 and 11, with Building 11 having accuracy lower than
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50 % with every tested model.
The considered ECC model outperformed the GCN model for a total of 8 build-

ings, and the differences are most notable in the F1 score for Building 7 and in the
accuracy for Building 13. The GCN model, on the other hand, had a remarkably
better performance for Buildings 11 and 12. All in all, the results of the ECC model
vary from the best to worst in the performed tests. One possible explanation is the
fact that due to the deeper architecture and the usage of edge features, the ECC
model was able to learn the features of the buildings more in-depth and failed to
classify the test data that differed drastically from the training data. The shallow
GCN model, on the other hand, potentially learned characteristics and object rela-
tionships at a more general level, thus causing more balanced classification results.

Figure 5.11 The comparison of the performance of the three models.

Incorrectly classified objects in Building 1 by the considered GCN and ECC
networks are illustrated in Figure 5.12. All in all, Building 1 turned out to be one of
the easiest samples to classify with high performance scores by both models. There
are no significant differences between the sets of misclassified objects between the
GCN and ECC models, although the ECC was the only model that managed to
predict all the objects belonging outside correctly, thus achieving a slightly higher
F1 score.

Figure 5.12 Incorrectly classified objects within Building 1 coloured by the predicted class
(0 := envelope, 1 := inside, 2 := outside).

Both models predicted a total of 7 outer doors to belong to class 1 (inside)
incorrectly, possibly because the doors share similar geometry with inner doors and
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also have neighbours from inside, as shown in Figure 4.6. It is also notable how
several inner slab elements were misclassified into class 0 (envelope) as well as once
into class 2 (outside). The areas of the slabs are large so the result might be due to
the over-smoothing problem because massive building elements tend to have more
neighbours from the differing class and hence have a higher risk to become classified
into the same class with them. For instance, all the misclassified slabs in Building 1
are connected to outer walls that are parts of the envelope, thus their neighbourhood
consists of many objects belonging to a different class than them.

Figure 5.13 Incorrectly classified objects by the ECC network within Building 3 coloured
by the predicted class (0 := envelope, 1 := inside, 2 := outside).

The potential over-smoothing problem is even more visible in the set of incor-
rectly classified objects within Building 3, as illustrated in Figure 5.13. Although
the testing of Building 3 also produced a relatively good overall accuracy of 0.878,
area-wise a higher percent of the building remained classified incorrectly. Again,
the set of the misclassified objects mostly contains massive elements such as walls
and slabs that extend into several different floors and spaces in the building, thus
having notably many neighbors from different classes. There appears to be most
confusion between the classes 0 (envelope) and 1 (inside) that are spatially next to
each other and contain elements that share similarities in their geometry. On the
other hand, most of the smaller elements were classified correctly, including almost
all the objects inside the rooms, leading to fine overall performance metrics.

To overcome the over-smoothing problem, additional testing with larger lambda
values λ in the normalization layers was performed for the presented Buildings 1 and
3. The classification performance for the large elements slightly improved with the λ
larger than 0.0005 but the overall accuracy decreased. In addition, different buildings
appeared to favor different values of the λ. More investigations are required to find
a robust solution for the over-smoothing as well as the optimal hyperparameters for
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the normalization layers.
The objects in Building 11 turned out to be extremely demanding to classify

already in the investigations made in Section 5.1, but whereas the ECC model then
managed to improve the accuracy over 0.9 and the macro F1 score over 0.8 (as
illustrated in Figure 5.4), now it performed the poorest, with both the accuracy
and macro F1 scores below 0.2. With both GCN and ECC networks, the bias was
particularly significant for class 2 (outside) whereas elements of class 1 (inside) were
notably hard to retrieve, as illustrated in the confusion matrices in Figure 5.14.

Figure 5.14 The graph representation and confusion matrices for Building 11 (0 :=
envelope, 1 := inside, 2 := outside).

Overall, it is challenging to give a certain explanation why the prediction failed
so remarkably for Building 11 but several points can be considered. Firstly, it is a
multi-storey building as many others in the dataset but its shape is slightly more
diverse instead of a regular "box". The building is also relatively narrow, making its
front and rear façades close to each other. Secondly, the graph representation looks
fairly reliable with a typical node degree but its shape is rather oblong compared
to the other graphs in the dataset, as shown in Figure 5.14. It is also possible that
the features that lead to the incorrect classification were spread within the graph,
resulting in incorrect classification outcomes also for the neighbors as an unfortunate
chain reaction.
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6 Conclusion and Discussion
The experiments in this thesis have been concerned with the possibilities to ap-
ply graph convolutional neural networks for the task of the automatic identification
of the envelopes of the buildings. Starting with the raw BIM dataset of 94995
objects from 14 buildings in the Industry Foundation Classes (IFC) format, vari-
ous approaches to formulate the 3D data were considered, including point clouds
and multi-view representations. Eventually, it was decided to construct object-level
graphs for each building where the information of the geometry of the individual
objects was collected into the corresponding nodes whereas the features obtained
from the interactions between two adjacent objects were stored into the connecting
edges. To analyze that type of graph data, various types of graph convolutional
network layers, using different propagation rules and emphasizing different features,
appeared to offer a somewhat auspicious, yet uninvestigated approach.

Three competing neural network layers were selected, the multi- layer perceptron
(MLP) that considered only the node features, the multi-layer convolution (GCN)
that recognized also the edges between nodes and the edge-conditioned convolution
(ECC) that employed also the edge features. Comparing the performances of these
three neural networks, the experiments were divided into two parts, with the first
one using data for training and testing from the same building and the second one
from the different buildings so that both the testing and training data consisted of
distinct, complete buildings.

In the first experiment, even an almost randomly chosen network architecture
was proved to produce a superior classification performance. This is most probably
due to the fact that within a single building, the data is highly consistent and know-
ing the label of one or more neighbors beforehand tends to facilitate predictions.
Possibly due to the consistency of the object features, also the "vanilla neural net-
work" MLP was able to achieve decent accuracies but had occasionally significant
difficulties in predicting minor classes such as outside. Particularly in that sense,
the graph neural network was proved to be a more appropriate algorithm to ana-
lyze this type of geometrically structured data. All in all, these first investigations
gave precious guidelines for the choice of the model for more complex classification
problems. With more careful consideration of the model architecture, even higher
classification performance could potentially be achievable.

The second experiment turned out to be a more demanding task, most likely
because of the fact that there was notably more variety in geometric properties
between buildings of different shapes and purposes. In addition, more inconsistency
occurred because the building models were gathered from different sources. The
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neural network architectures used in the first experiment performed poorly for this
purpose so more attention was paid to the model selection, with the goal of finding
an architecture that would capture the most underlying common factors between
buildings of various types.

With the selected GCN and ECC network architectures, the average classifica-
tion outcome reached a satisfying level in the second experiment. However, there
was significantly more variation in the separated test results for different buildings
compared to the performance metrics in the first experiment. Particularly, the mean
accuracy and F1 scores were massively affected by the test buildings whose elements
turned out to be extremely challenging to classify correctly. The best performance
appeared to be achieved for the buildings with rather regular shapes, although sev-
eral issues such as over-smoothing occurred also with the buildings with otherwise
high classification accuracies. In any case, it is possible that more training data
is required to generalize the neural network better for all the building types. The
obstacles and development ideas are further discussed in the next section.

Perhaps the most surprising results concerned the fact that the relatively simple
GCN model with no edge features reached almost as good classification performance
as the more complex ECC network in the second experiment. One possible expla-
nation could be that a neural network that utilizes information, whether there is
a relationship between two objects or not without taking into account what kind
of relationship it is, generalizes better for the buildings that are constructed and
modeled in different ways. On the other hand, the GCN layers performed poorly
with deeper models and thus the ECC layers might still have a higher potential to
find new underlying relations between features.

In addition, investigations made in this work confirmed previous observations
that graph neural networks are less sensitive to overfitting than traditional neural
models. In the performed tests, no significant improvement was gained when dropout
layers or a validation sample were employed during training the model. However,
not much research has been made concerning this subject and in the context of
BIM, it is still necessary to be aware of the fact that noise appears frequently in the
datasets gathered across different construction projects.

6.1 Limitations and Future Research

Several areas for improvement were observed during this research process. Perhaps
most notably, the lousy performance of the considered graph convolutional neural
networks for certain buildings in the second experiment remains a problem that
should be overcome before applying them for actual semantic enrichment applica-
tions. One potential solution could be to gather even more training data so the
model would be more able to learn properties of more unusual building types. With
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a sufficiently large and diverse training dataset, it could also become achievable to
train own synaptic weights for each building type. It is possible that obtaining even
more new features for the building elements could help the network to find new
underlying relations and thus improve its performance.

In this work, a fair number of units were omitted from the dataset as they
belonged to the more abstract space class. In future work, it could be beneficial to
review whether they could improve the classification performance. However, doing
so could require resolving the over-smoothing problem that is particularly visible
with the massive objects with a large number of neighbors.

Moreover, less attention was paid to the graph construction process in this re-
search. Although the relatively simple collision detection algorithm in most occa-
sions produced a connected graph with credible node degrees, it could still cause
latent errors, for example, due to the inconsistency and dirtiness of BIM datasets
from different sources. All in all, it is possible that the poor test performance of
certain buildings was also because of inaccuracies in their graph representations. In
the end, it could be a good idea to develop a more sophisticated graph construction
algorithm, intended for this particular application area.

In general, checking the full validity of the graphs turned out to be a highly
challenging task. Visualizing graphs with even more than 20,000 nodes and 170,000
edges as a whole was not achievable in this work. Splitting graphs into smaller
subgraphs and plotting them, in turn, gave better insights into their structures
but going through all of the subgraphs remained still a laborious task that did not
give an efficient summary of the outcome of the graph construction process. Since
visualization arises as a highly important aspect in the data analysis, better solutions
for plotting the graphs could be considered.

One interesting future approach could also be to apply graph theory in prepro-
cessing as well as the classification procedure. In previous studies, graph theory as
such has been successfully utilized to detect the main structures of the buildings.
In the context of classifying BIM data, analyzing cut vertices could produce pre-
cious additional information, for example. As predicting the correct class for the
massive building elements turned out to be one of the most challenging tasks due
to the over-smoothing issue, one potential alternative approach could be fixing their
classes already based on the graph theory. Also, pruning edges based on some graph
processing algorithm could potentially lead to a better classification performance in
addition to lower time complexity.

Furthermore, the testing of extremely deep neural network architectures was
limited due to the high time and memory consumption. For example, in the depth
test performed as a part of this work, the test performance of the ECC neural
network did not decrease with a larger number of layers, demonstrating potential
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also with deeper architectures. However, the time complexity increased significantly,
preventing large-scale testing of deep models. The faster GCN layer, in turn, suffered
from the over-smoothing problem that caused a drop in the performance already with
more than 2 layers. The differentiable group normalization layers utilized in this
work have been recognized as a promising approach to maintaining decent accuracy
also with deeper models but in general, over-smoothing remains a complex problem
that could require a better solution in the context of this research area.

Finally, less attention was also paid to more efficient programming. Especially
with a higher amount of data and more complex neural network architectures, it
will become necessary to implement a more advanced machine learning environment
in which data can be processed efficiently in parallel. In addition, the overall best
neural network architecture is typically only found utilizing some automated testing
platform, such as GraphGym, offered by the PyTorch Geometric library. The Py-
Torch Geometric library is continuously evolving and new useful tools were released
also in the course of this research process. The library also contains numerous other
graph convolutional layers that could be worth investigating. However, many of the
novel methods are still lacking proper documentation and user experience but in
the near future, the family of graph neural network algorithms can offer numerous
interesting approaches to improve the performance of the neural network model.

6.2 Conclusion

In this thesis, the objective has been to explore machine learning approaches for the
prediction tasks related to Building Information Modeling (BIM) that has rapidly
become one of the leading procedures to store, share and analyze data across all the
phases of the building process in the Architecture, Engineering and Construction
(AEC) industry. A major restriction in producing new BIM-related tools for tasks
such as semantic enrichment has traditionally been the limited amount of scientific
literature concerning the possibilities to exploit BIM data, including investigations
of machine learning solutions.

Likewise, machine learning has also been known as a relatively new discipline
that, despite the drastic growth in applications within the last decade, still has a
large amount of unexplored potential. The family of artificial neural networks has
already become established in many areas to simulate humanlike decision-making
but graph neural networks appear as a more recent application area without an
equally comprehensive amount of previous literature. In this thesis, one of the pio-
neering investigations was made concerning the possibilities to predict the envelope
of BIM models using a graph convolutional neural network.

To summarize, the results obtained in the two experiments demonstrated a high
potential of machine learning solutions for the BIM-related classification tasks. In
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both k-fold cross validation assessments, the considered graph convolutional neural
network approach produced better average results than the traditional neural net-
work model and was the only one to take into account the geometric entity formed
by individual data units as well as the relationships of the spatially close objects.

For the prediction task in the first experiment, one potential application area
could be dealing with missing data, which is also a common issue with BIM datasets.
According to the high values of the obtained performance metrics, such applications
could already be well achievable. The second prediction task, in turn, has even
more potential to revolutionize the field of semantic enrichment with an automatic
recognition of the entire envelope fully based on the other buildings. However, to
produce a tool that is applicable for all types of buildings, more training data and
large-scale testing of model architectures are perhaps still required. Nevertheless, as
one of the first investigations regarding the subject, the results were promising as
well.

In any case, artificial intelligence and machine learning have proved to be a
highly appropriate approach to deal with BIM-related datasets, and graph neural
networks appear to be a particularly interesting innovation due to their ability to
capture geometric properties. In the coming years, it is likely that more libraries,
implementations and documentation will be released to ease the future semantic
enrichment tasks. New scientific literature will also be playing an important role in
exploring the full potential of applying machine learning to BIM.
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