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Multichannel Blind Sound Source Separation using 
Spatial Covariance Model with Level and Time
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Abstract—This paper presents an algorithm for multichannel
sound source separation using explicit modeling of level and
time differences in source spatial covariance matrices (SCM).
We propose a novel SCM model in which the spatial properties
are modeled by the weighted sum of direction of arrival (DOA)
kernels. DOA kernels are obtained as the combination of phase
and level difference covariance matrices representing both time
and level differences between microphones for a grid of prede-
fined source directions. The proposed SCM model is combined
with the NMF model for the magnitude spectrograms. Opposite
to other SCM models in the literature, in this work, source
localization is implicitly defined in the model and estimated
during the signal factorization. Therefore, no localization pre-
processing is required. Parameters are estimated using complex-
valued non-negative matrix factorization (CNMF) with both
Euclidean distance and Itakura Saito divergence. Separation
performance of the proposed system is evaluated using the two-
channel SiSEC development dataset and four channels signals
recorded in a regular room with moderate reverberation. Finally,
a comparison to other state-of-the-art methods is performed,
showing better achieved separation performance in terms of SIR
and perceptual measures.

Index Terms—multichannel source separation, spatial covari-
ance model, interaural time difference, interaural level difference,
non-negative matrix factorization, direction of arrival estimation.

I. INTRODUCTION

In the context of audio signal processing, sound source
separation aims at recovering each source signal from a set
of audio mixtures of the original sources, such as those
obtained by a microphone array, a binaural recording or an
audio CD. Source separation has been widely applied for
several audio processing tasks, including music remixing [1],
automatic karaoke [2], instrument-wise equalization [3] or
music information retrieval systems [4].

In this work, we propose a method for blind source separa-
tion (BSS). The term blind is used to emphasize that very
little information about the sources or the mixing process

Manuscript received XX XX, XXXX; revised XX XX, XXXX; accepted
XX XX, XXXX. Date of publication XX XX, XXXX; date of current version
XX XX, XXXX. This work has been funded by the Academy of Finland
project number 290190. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Huseyin Hacihabiboglu.
(Corresponding author: Julio Carabias.)

J.J. Carabias-Orti, J. Nikunen and T. Virtanen are with the Depart-
ment of Signal Processing, Tampere University of Technology, Tampere
33720, Finland (e-mail: carabiasjulio@gmail.com; joonas.nikunen@tut.fi; tuo-
mas.virtanen@tut.fi).

P. Vera-Candeas is with the Department of Telecommunication Engineering,
University of Jaen, Jaen, Spain. (e-mail: pvera@ujaen.es).

is known. A common approach to this type of problem is
based on independent component analysis (ICA), in which
the underlying source signals are constrained to be statistically
independent and non-Gaussian [5]. Unfortunately, ICA-based
methods are subject to the well-known scale and source per-
mutation ambiguity (i.e. the energies and order of the sources
cannot be determined). Several methods in the literature have
used time difference of arrival (TDOA) to interpret the ICA
mixing parameters [6], [7], [8]. These methods assume the
multichannel audio file corresponds to the recorded channels
from a microphone array with known configuration. Other
methods use the information from the TDOAs between mi-
crophones to create time-frequency masks to cluster all the
time-frequency points with similar spatial properties [9], [10].

Beamforming techniques can be also applied for BSS
obtaining satisfactory perceptual results [11], although the
isolation of the target sources is limited. To improve the
separation results, several works propose to use postfiltering
techniques (see [12] for a review).

More recent methods are based on non-negative matrix
factorization (NMF). However, while most music recordings
are available in multichannel format (commonly, stereo1),
standard NMF is only suited to single-channel data. Extensions
to multichannel data have been considered, either by stacking
up the spectrograms of all the channels into a single matrix
[13] or by using nonnegative tensor factorization (NTF) under
a parallel factor analysis (PARAFAC) structure, where the
channel spectrograms form the slices of a 3-valence tensor
[14], [15], [16]. In these approaches, the multichannel spec-
trogram is modeled by linear combination of the individual
source magnitude (or power) spectra, which approximates the
instantaneous mixing in time domain only if the sources have
identical phase spectra and under anechoic conditions. Another
interesting extension is complex non-negative matrix factoriza-
tion (CNMF) [17], which employs a factorization-type model
for the magnitude of a time-frequency representation similar
to NMF but additionally estimates a phase matrix for each
source. The phase information can be used to improve the
separation quality of overlapping partials, especially when
phase cancellation occurs [18]. However, due to the size and
number of elements in the phase matrices, the number of
free parameters in CNMF is considerably higher compared to
NMF, which in practice can lead to poor local minima during

1Stereo signals relate to the loudspeaker channels that are typically created
through artistic mixing of recorded sources.
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model fitting.
Another way of modeling the spatial properties is based on a 

spatial covariance matrix (SCM) as signal representation [19],
[20], [21], [22]. For each time-frequency point in the STFT, 
the SCM represents the mixing of the sources by magnitude 
correlations and phase differences between channels. Opposite 
to the complex NMF model in [17], it is not dependent on the 
absolute phase of the source signal.

The CNMF algorithms in [19], [20] estimate unconstrained 
SCM mixing filters together with NMF magnitude (or power) 
model to identify and separate repetitive frequency patterns 
corresponding to a single spatial location. Another strategy of 
estimating the covariance matrices is Gaussian modeling. For 
the task of source separation, studies [25] and [26] proposed 
to estimate the SCMs using iterative EM algorithm together 
with a multichannel Wiener filter t o e xtract s ources from 
the mixture. The mixing model is assumed to be frequency 
dependent and no cross-frequency information is utilized in 
SCM parameter estimation. Recently, the NMF spectrogram 
model has been replaced by deep learning strategies, and use 
of deep neural networks (DNNs) for modeling the source 
spectrogram in combination with Gaussian SCM model was 
proposed in [27], [28] where it was reported to outperform 
NMF-based models.

When dealing with spectrally similar sources (e.g. sev-
eral speech signals), without further constraints, NMF-based 
approaches can lead to the situation where a single NMF 
component together with the corresponding SCM mixing 
filter r epresent m ultiple s ources t ogether a t d ifferent spatial 
locations. To enforce SCMs at different frequencies to cor-
responds to the same location, Nikunen and Virtanen [21],
[22] proposed a SCM model based on DOA kernels that 
represent the phase difference between microphones caused 
by a single spatial location and its analytic TDOA for a given 
array geometry. Thus, the SCMs of each source were modeled 
as a weighted combination of the DOA kernels scanning 
all possible directions of arrivals for sources. The DOA-
based SCM model only requires estimation of frequency-
independent directional weights. As a result, the effect of the 
spatial aliasing is mitigated since the model accounts for phase 
difference evidence across frequency by single frequency-
independent time delays of individual DOA kernels.

Several source localization and DOA estimation methods 
[29], [30] also assume that the soundfield c an b e represented 
as a spatially sparse distribution of sound sources over an 
overcomplete linear equation of the observations. However, in 
those methods no assumptions are imposed on the structure of 
the source signals in the time-frequency domain. Alternatively, 
NMF approximates the time-frequency spectrogram of the 
source signal as the product of two nonnegative low-rank 
matrices, allowing further constraints on the source signal 
model. For instance, a recent approach in [31] combines super-
vised CNMF and sparse sound field decomposition, obtaining 
superior results for DOA estimation than other methods using 
sparse representations.

The SCM methods in [21] and [22] have three limitations. 
First, DOA kernels account for time difference between array 
channels (using phase differences), while level (or intensity)

differences between channels are estimated during the fac-
torization, independently for each frequency. Consequently,
a large number of parameters has to be tuned and thus,
without any prior information, these methods are prone to
converge to local minima. Second, the source reconstruction
requires a post-processing clustering stage to group the NMF
components together with their associate SCM mixing filters
to sources, or as in [22], prior information about the spatial
cues before associating components to sources. Third, both
methods used CNMF with Euclidean distance (EUC) whereas
other cost functions such as Itakura Saito (IS) divergence are
better suited for audio modeling [32].

In this paper, we propose a novel SCM-based model and a
constrained CNMF algorithm for BSS that enables to estimate
both source localization and separation jointly during the
factorization, without the need of any prior information about
the source location nor post-processing stage. The main con-
tributions of this paper are summarized as follows. 1) A SCM
kernel based model where the mixing filter is decomposed
into two direction dependent SCMs to represent both time
and level differences between array channels. The level dif-
ferences are represented using a panning-inspired frequency-
independent covariance matrix. On the contrary, time delays
are modeled using a frequency-dependent phase difference
covariance matrix. The main benefit of explicitly modeling
the panning-inspired level-difference covariance matrix is the
reduction of the number of free parameters avoiding non-
coherent level differences between channels across frequency.
2) Two novel group sparsity constraints for source localization
that enforce non-overlapping DOAs between sources and a
single DOA for each source. 3) Algorithms for minimizing the
IS divergence between the SCM kernel based CNMF model
and the observations.

In order to evaluate our approach, we have used the two
channels recordings from the SiSEC’08 [33] development
dataset. Moreover, to test our system performance with more
sensors, we have created a multichannel dataset using impulse
responses (IR) captured with two microphone arrays in a
reverberant room and convolving the anechoic signals from
SiSEC’08 development dataset with the IRs to create mixtures
of two and three sources. Both microphone arrays consist of
four microphones with 5 cm and 54 cm distance between
sensors, respectively. A comparison to other multichannel
methods is performed demonstrating the reliability and robust-
ness of our proposal independently of the recording conditions.

The rest of the article is organized as follows. The signal
mixing representation using spatial covariance matrices (SCM)
is presented Section II. Section III describes the proposed
SCM model using both time and level differences between
channels. Formulation of the proposed SCM model into the
CNMF framework and update rules for the model parameter
optimization are presented in Section IV. Section V describes
the source reconstruction method. Experimental setup and
evaluation of the proposed method is performed in Section
VI. Finally, conclusions are presented in section VII together
with a discussion about future work.
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II. SIGNAL MODEL USING SPATIAL COVARIANCE
MATRICES

In this section we define t he p roblem o f t he s ound source 
separation with spatial audio captures and present the spatial 
processing background for the proposed SCM model and 
CNMF algorithm it is used with. The section consists of the 
source mixing model in Section II-A, definition o f t he signal 
representation and the spatial covariance matrices in Section 
II-B and interpretation of the convolutive mixing model in the 
spatial covariance domain in Section II-C.

A. Source Mixing Model

The mixing model for a multichannel recording can be
represented as the convolution of each sound source ys(n)
in the mixture with its corresponding spatial room impulse
response hms(n) as

xm(n) =
S∑
s=1

∑
τ

hms(τ)ys(n− τ), (1)

where mixture xm(n) consist of s = 1...S sources captured
by m = 1...M microphones, n being the time sample index.

In the short-time Fourier transform (STFT) domain, the mix-
ing model in Eq. (1) can be approximated by an instantaneous
mixing at each time-frequency (f, t) point as

x̃ft ≈
S∑
s=1

h̃fsỹfts, (2)

where x̃ft = [x̃ft1, ..., x̃ftM ]T ∈ CM is the STFT of the
multichannel mixture xm(n) at frequency bin f and time
frame t. ỹfts is the complex-valued STFT of the monaural
source s ∈ [1...S]. The mixing filter is defined in frequency
domain as h̃fs = [h̃fs1, ..., h̃fsM ]T ∈ CM . Despite the
effective length of the spatial/room impulse response hms(n)
can be several hundreds milliseconds, in practice, a shorter
STFT analysis window of tens of milliseconds is enough to
capture the direct sound and the main reverberant part [21].

B. Signal Representation

In this work we use the spatial covariance matrix (SCM)
signal representation used in [20], [21]. Rather than absolute
phase values, a SCM represents the phase difference between
every pair of microphones in the multichannel mixture.

For each frequency bin f and time frame t, the magnitude
square-rooted matrix x̃ft of the captured signal at each sensor
x̃ft = [x̃ft1, ..., x̃ftM ]T is given by

x̂ft = [|x̃ft1|1/2sgn(x̃ft1), ..., |x̃ftM |1/2sgn(x̃ftM )]T , (3)

where sgn(z) = z/|z| is the signum function for complex
numbers. Then, the SCM Xft for a single time-frequency
point (f, t) is defined from the array captured signal x̃ft (see
Eq. (2)) as the outer product

Xft = x̂ftx̂
H
ft =

 |x̃ft1| · · · x̃ft1x̃
∗
ftM

...
. . .

...
x̃ftM x̃

∗
ft1 · · · |x̃ftM |

 , (4)

where H stands for Hermitian transpose. For each time-
frequency point (f, t), the diagonal of Xft represents
the non-negative real-valued magnitude of the observa-
tion at each microphone [|x̃ft1|, ..., |x̃ftM |]T . On the con-
trary, the off-diagonal values of [Xft]pm with p 6=
m represent the magnitude correlation and phase differ-
ence |x̃ftpx̃ftm|1/2sgn(x̃ftpx̃∗ftm) between microphone pair
(p,m).

C. Spatial Covariance Source Mixing Model

The source mixing model in Eq. (2) can be approximated
in terms of the SCM representation as

Xft ≈ X̂ft =
S∑
s=1

Hfsyfts, (5)

where Hfs ∈ CM×M is the SCM representation of the spatial
frequency response h̃fs and yfts = |ỹfts| is the magnitude
spectrum for each source s ∈ [1, ..., S]. As explained in [21],
we can approximate the SCM model in Eq. (5) to be purely
additive since the sources are approximately uncorrelated and
sparse (i.e. only a single source is active at each time frequency
(f, t) point). Note that, despite the sparsity assumption is
often used in the existing research it does not always hold
in practice, particularly in reverberant environments.

III. PROPOSED LEVEL/TIME SPATIAL COVARIANCE
MATRIX MODEL FOR BSS

In this work, we propose an extension of the SCM-based
CNMF signal model proposed in [22]. In particular, we
propose to decompose the DOA kernels into a combination
of phase and level covariance matrices to account for both
time and level difference between array channels.

Moreover, we propose a novel strategy to perform source
separation. As in [20], [22], we propose to relate NMF com-
ponents to sources to avoid using a post-processing clustering
stage but, opposite to [22], no prior information about the
source directions is required here. Instead, we impose two
constraints to the spatial weights of the sources to avoid
overlapping source directions and to enforce a single direction
per source.

The block diagram of the proposed method is displayed in
Figure 1. First the SCM representation in Eq. (4) is computed
from the STFT of the multichannel mixture. Second, the model
parameters are estimated using a SCM kernel-based CNMF
algorithm in two steps: 1) Initialization of the localization and
source spectrogram parameters using two novel single/non-
overlapping direction constraints, 2) Estimation of the magni-
tude spectrogram and the panning mixing parameters. Finally,
a generalized Wiener filtering strategy is used to obtain the
source reconstruction.

A. Proposed Multichannel Signal Model

The SCM mixing filter Hfs in Eq. (5) accounts for
amplitude and phase differences between channels, however
it does not have any explicit relation to spatial locations.
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(STFT + SCM)

Fig. 1. Block diagram of the proposed SCM-based BSS system

Beamforming-inspired SCM methods in [21] and [22] model
the SCM mixing filter Hfs as a linear combination of the
DOA kernels Wfo multiplied by the spatial weights matrix
zko ∈ R≥0 which relates NMF components k with spatial
directions o. However, due to the amount of free parameters,
these methods are prone to localization errors when no prior
information is given.

In this work, we propose a SCM-based model that enables
to estimate the spatial location/position and the spectrogram of
the sources jointly during the factorization, without the need of
prior information nor any post-processing stage. The proposed
signal model for SCM observation is presented in Eq. (6) as

Xft ≈ X̂ft =
S∑
s=1

O∑
o=1

Wfo︷ ︸︸ ︷
(Pfo ◦Ao) zso︸ ︷︷ ︸

Hfs

K∑
k=1

bfksgkts︸ ︷︷ ︸
yfts

, (6)

where ◦ stands for the element-wise multiplication (i.e.
Hadamard product). The model in Eq. (6) is illustrated in
Figure 2.

To reduce the number of free parameters and enforce the
coherence of the relative amplitude (i.e. level differences)
between channels across frequency, we propose to decompose
the DOA kernels Wfo into two covariance matrices, the
phase differences covariance matrix (PDCM) Pfo and the
level differences covariance matrix (LDCM) Ao. Previous
approaches using beamforming-inspired SCM mixing models
in [21] and [22] keep the phase of Wfo fixed and update only
its magnitudes (i.e. the computed phase update is discarded).
Alternatively, in our approach, the relative amplitudes between
microphones are estimated using the LDCM while the PDCM
is kept fixed during the factorization.

First, the frequency dependent PDCM represents the phase
difference between microphones. In fact, Pfo ∈ CM×M is
computed a priori for every spatial position as

[Pfo]pm = exp(jθp,m(f, o)), (7)

where θp,m(f, o) = 2πfiτpm(ro) represents the phase differ-
ence computed from the TDOA between sensors p and m for
the frequency in Hz at bin f and the spatial position o. Note
that a fixed number of look directions o = 1, ..., O are used
to cover the ranges of −90o ≤ θ ≤ 90o and 0o ≤ φ ≤ 360o

in elevation and azimuth, respectively. Each spatial position
ro can be translated to a TDOA (in seconds) for a pair of
microphones (p,m) using the following expression:

Fig. 2. Proposed signal SCM model parameters. Complex values are displayed
in red, positive real values in gray and zero values in white.

τpm(ro) =
‖ro − p‖2 − ‖ro −m‖2

c
, (8)

where ‖·‖2 denotes the L2-norm, ro, m and p are the source
spatial location/position corresponding to direction o, and the
microphone m and p locations using the Cartesian coordinate
system, respectively, and c is the speed of sound.

Second, assuming anechoic conditions and that the level
of the captured signal varies as a function of the direction
of arrival and microphone directivity pattern, the frequency
independent LDCM Ao ∈ RM×M represents the relative level
factor (i.e. panning) between sensors. Actually, the LDCM is
initialized as [Ao]nm = 1/M , where M is the number of
channels in the array but, opposite to the PDCM, the LDCM
is a free parameter to be estimated during the factorization.

Therefore, for each frequency and direction pair (f, o), the
DOA kernel Wfo ∈ CM×M is obtained as the element-wise
multiplication of the unit-amplitude complex-valued PDCM
Pfo and the zero-phase real-valued LDCM Ao as depicted in
Eq. (9) (see top of next page).

Finally, for each source s the magnitude (or power) time-
frequency spectrogram yfts is obtained as a linear combination
of NMF basis functions bfks and their corresponding time-
varying gains gkts (see Figure 2). In other SCM-based methods
in the literature [20], [21] the NMF components are asso-
ciated to sources using a post-processing clustering of their
spatial weights. To avoid this clustering, in [22] the authors
proposed a soft-decision parameter to relate NMF components
to sources but without a prior information the method is prone
to converge to a local minima. Here, the spatial weights matrix
zso ∈ R≥0 is explicitly defined to relate sources s with
spatial directions o without the need of any clustering nor
intermediate (i.e. soft-decision) parameter (see Figure 2).

The proposed SCM model in Eq. (6) is less prone to
localization errors than the beamforming-inspired SCM model
in [21] and [22] for three reasons: 1) The number of free
parameters is lower which contributes to the robustness of
the method, 2) The LDCM enforces the coherence of the
relative amplitudes between microphones across frequency, 3)
A NMF component is associated to a single source which
favors the independence and orthogonality of the learned NMF
components.

B. Source Localization using Penalty Terms

Without further constraints, the estimation of the spatial
position for each source using the proposed model in Eq.
(6) is prone to ambiguity, i.e. the spatial weights may not be
sparse. To overcome this problem, in [22] the authors proposed
a hard prior initialization of the spatial weights zso using
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Wfo =


1 ejθ12(f,o) · · · ejθ1m(f,o)

ejθ21(f,o) 1 · · · ejθ2M (f,o)

...
...

. . .
...

ejθM1(f,o) ejθM2(f,o) · · · 1


︸ ︷︷ ︸

Pfo

◦


a1(o)

√
a1(o)a2(o) · · ·

√
a1(o)aM (o)√

a2(o)a1(o) a2(o) · · ·
√

a2(o)aM (o)
...

...
. . .

...√
aM (o)a1(o)

√
aM (o)a2(o) · · · aM (o)


︸ ︷︷ ︸

Ao

(9)

the information from the steered response power (SRP) [34]
algorithm for source localization.

However, in this work we aim to estimate the spatial
position for each source without any prior information nor
post-processing stage. To this end, we propose to constrain
the proposed model in Eq. (6) to satisfy two conditions:
1) assuming moderate reverberation, a source arrives from a
single direction (i.e. the spatial weights should be sparse), 2) a
single spatial position cannot be assigned to multiple sources.

To enforce the spatial weights to be sparse and to avoid
overlapping spatial positions between sources, two group
sparsity/cross-correlation-based regularization terms ϕ1(Z)
and ϕ2(Z) are presented. Z stands for the matrix notation
of the spatial weights zso.

First, ϕ1(Z) introduces a penalty for cross-correlation
nonzero values between sources (ZZT ) ∈ RS×S in the
spatial weight matrix. In other words, ϕ1(Z) prevents multiple
sources at the same direction and is defined as

ϕ1(Z) =
∥∥C ◦ (ZZT )∥∥

1
, (10)

where ‖·‖1 denotes the L1-norm and C ∈ RS×S is a weighting
matrix that selects which cross-terms to penalize and by how
much. In this work, the weights are set such that the non-
cross terms (elements on the diagonal) are not penalized, i.e.
Cii = 0, and the off-diagonal terms Cij where i 6= j are set
to one. Note that a similar approach was used in [35], [36] to
control the activation of musical notes in a music transcription
task.

Second, under the assumption that a source arrives from a
single direction, we enforce the spatial weights to be sparse
by means of a single direction penalty ϕ2(Z) that penalize
off-diagonal values in (ZTZ) ∈ RO×O and thus, restricts the
spatial weights to have only one predominant direction per
source. The single direction penalty term is defined as

ϕ2(Z) =
∥∥D ◦ (ZTZ)∥∥

1
, (11)

where D ∈ RO×O is a Toeplitz matrix that, in this work, has
been experimentally defined as Dxy = min(1, log(1 + 1

5 |x −
y|)) so that, maximal penalty is applied to the weights corre-
sponding to directions above ten degrees from the estimated
source location.

IV. COMPLEX-VALUED NON-NEGATIVE MATRIX
FACTORIZATION

In this work, we used CNMF to estimate the parameters
of the proposed SCM model in Eq. (6). In previous works
on multichannel NMF, expectation-maximization (EM) algo-
rithms have been derived for both Euclidean (EUC) [19], [21],

[22] and Itakura Saito (IS) [20] cost functions. Note that IS is
better suited for audio modeling in comparison to EUC [32].
Alternatively, in this work, we present a similar approach to
[20] to obtain the multiplicative updates via auxiliary functions
for the case of the Euclidean (EUC) distance and the Itakura
Saito (IS) divergence. In fact, as demonstrated in [20], these
updates provide faster convergence than the EM algorithms.

A. Formulation for Euclidean Distance

As in [20], we aim to minimize the squared Frobenius norm
between the observed Xft and the estimated X̂ft SCM signal
representations as follows:

DEUC(Xft, X̂ft) =
∥∥∥Xft − X̂ft

∥∥∥2
F
, (12)

In fact, the Euclidean distance in Eq. (12) together with
the proposed DOA-based SCM model in Figure 2 can be
expressed as:

f(A,Z,B,G) = −
∑
f,t,s,o

zsobfksgkts tr(Xft

(
Pfo ◦Ao

)H
)

−
∑
f,t,s,o

zsobfksgkts tr(
(
Pfo ◦Ao

)
XH
ft) +

∑
f,t

tr
(
X̂ftX̂

H
ft

)
, (13)

where constant terms are omitted. tr(X) =
∑M
m=1 xmm is

the trace of a square matrix X. To minimize the function in
Eq. (13) we follow the optimization scheme of majorization in
[20] using an auxiliary function f+ as explained in Appendix
A. Then, as in [20], the derivation of the algorithm updates is
achieved via partial derivation of function f+ w.r.t each model
parameter and setting these derivatives to zero.

The update rules for the time-frequency spectrogram param-
eters in Eq. (6) are

bfks ← bfks

∑
o,t zsogktstr(XftHfs)∑
o,t zsogktstr(X̂ftHfs)

(14)

gkts ← gkts

∑
o,f zsobfkstr(XftHfs)∑
o,f zsobfkstr(X̂ftHfs)

(15)

Then, as explained in Section III-A, the SCM mixing filter
can be modeled as a weighted combination of DOA kernels,
Hfs =

∑O
o=1 Wfozso. The MU for the spatial weights

relating direction to sources can be derived as

zso ← zso

∑
k,f,t bfksgktstr(XftWfo)∑
k,f,t bfksgktstr(X̂ftWfo)

, (16)

where Wfo = Pfo ◦Ao. Opposite to the unconstrained SCM
model in [20] and the DOA-based SCM models in [21] and
[22], we propose to keep the phase matrix (here denoted as
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PDCM or Pfo) as a fixed parameter whereas the MU for the 
level covariance matrix Ao is expressed as

Ao ← Ao

∑
s,f,t,k zsobfksgkts(Xft ◦P∗fo)∑
s,f,t,k zsobfksgkts(X̂ft ◦P∗fo)

. (17)

As in [20], after every iteration of the CNMF algorithm,
some post-processing is required to make Ao Hermitian and
positive semidefinite. In particular, we enforce the LDCM to
be conjugate symmetric by using

Ao ←
1

2
(Ao +AH

o ). (18)

Then the eigenvalue decomposition is performed by Ao =
UDUH and the negative eigenvalues are set to zero, denoted
as D̂. Finally, matrix Ao is enforced to be positive semidefinite
by applying the following update:

Ao ← UD̂UH. (19)

Although no theoretical guarantee has been found, Eq. (17)
together with the post-processing stage has demonstrated em-
pirically to be always decreasing when the squared Euclidean
distance is used.

B. Formulation for Itakura Saito Divergence

As explained in [20], the Itakura Saito divergence of the
observed and estimated multichannel signal using the SCM
representation can be expressed as

DIS(Xft, X̂ft) = tr(XftX̂
−1
ft )− log det(Xft, X̂

−1
ft )−M.

(20)
Analogously to the Euclidean distance and omitting the

constant terms, the cost function for IS divergence can be
expressed as

f(A,Z,B,G) =
[
tr(XftX̂

−1
ft )− log det(X̂ft)

]
. (21)

Again, the optimization scheme of majorization proposed
in [20] can be used (see Appendix B for details). Then, as
in the case of the Euclidean distance, the update rules of
bfks, gkts, zso can be estimated for the IS divergence in Eq.
(20) as

bfks ← bfks

√√√√∑
t,o zsogktstr(X̂

−1
ft XftX̂

−1
ft Wfo)∑

t,o zsogktstr(X̂
−1
ft Wfo)

(22)

gkts ← gkts

√√√√∑
f,o zsobfkstr(X̂

−1
ft XftX̂

−1
ft Wfo)∑

f,o zsobfkstr(X̂
−1
ft Wfo)

(23)

zso ← zso

√√√√∑
f,t,k bfksgktstr(X̂

−1
ft XftX̂

−1
ft Wfo)∑

f,t,k bfksgktstr(X̂
−1
ft Wfo)

. (24)

As in [20], update rules for the level matrix Ao are obtained
by solving an algebraic Riccati equation

AoCAo = D, (25)

where C and D are defined as

C =
∑
s,k

zsobfks
∑
f,t

gktsX̂
−1
ft ◦P

∗
fo (26)

D =
∑
f

(
W′

fo

(∑
s,k

zsobfks
∑
t

gktsX̂
−1
ft XftX̂

−1
ft

)
W′

fo

)
◦P∗fo,

(27)

and W′
fo is the target matrix before the update. The solution

to the Riccati equation is explained in Appendix C, where
the obtained Ao after update is positive semidefinite (i.e. Eq.
(19) is not required). Finally, to compensate for computer
arithmetical error, Eq. (18) is used to ensure Ao to be
Hermitian.

C. Parameter Scaling

Scaling the parameters is necessary to ensure that the SCM
mixing filter only models the phase and the relative amplitude
differences between channels. First of all, the scale of LDCM
is constrained to ensure ||Ao||F = 1 by applying

Ao ←
Ao

tr(Ao)
, (28)

after every iteration of the CNMF algorithm for both IS and
EUC cases. Then, in order to ensure numerical stability, the
following scaling factors are applied to ensure that

∑
o z

2
so = 1

and
∑
l g

2
kts = 1.

b̂k =

(
L∑
l=1

g2kts

) 1
2

, gkts ←
gkts

b̂k
, bfks ← bfksb̂k (29)

âs =

(
O∑
o=1

z2so

) 1
2

, zso ←
zso
âs
, bfks ← bfks

∑
s

âs, (30)

after the updates of zso and gkts, respectively, for both IS and
EUC cases.

D. Incorporation the cross-correlation penalty terms

The penalty terms defined in Section III-B used to avoid
overlapping directions between sources and restrict the weights
to have a single predominant direction are incorporated to the
cost function to be minimized:

D∗(Xft, X̂ft) = D∗(Xft, X̂ft) + α1ϕ1(zso) + α2ϕ2(zso),
(31)

where α1 and α2 are the parameters that control the im-
portance of the regularized terms. In particular, the partial
derivatives for the penalty terms ϕ1 and ϕ2 w.r.t. the spatial
weights zso are calculated as

∂ϕ1

∂zso
=

2α1

S(S − 1)
ϕ1(zso),

∂ϕ2

∂zso
= − 2α2

O(O − 1)
ϕ2(zso).

(32)
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TABLE I
SUMMARY OF THE OBSERVATIONS AND FIXED/FREE PARAMETERS FOR

THE CNMF STAGES

observation fixed parameters free parameters
Param. init & localiz. ∠Xft Pfo,Ao zso, bfks, gkts
Param. estimation Xft Pfo, zso Ao, bfks, gkts

Then, the update rule for parameter zso for EUC distance
is defined as

zso ← zso

∑
k,f,t

bfksgktstr(XftWfo) +
2α2

O(O−1)
ϕ2(zso)∑

k,f,t

bfksgktstr(X̂ftWfo) +
2α1

S(S−1)
ϕ1(zso)

, (33)

and for IS divergence as

zso ← zso

√√√√∑
f,t,k bfksgktstr(X̂

−1
ft XftX̂

−1
ft Wfo) +

2α2
O(O−1)

ϕ2(zso)∑
f,t,k bfksgktstr(X̂

−1
ft Wfo) +

2α1
S(S−1)

ϕ1(zso)
.

(34)

E. Algorithm Implementation

Due to the dimensionality of the model in Eq. (9) the
algorithm to estimate the model parameters is divided into
two stages. First, the parameters are initialized randomly
and the spatial weights estimated accounting only to the
phase differences between the channels. The observations are
magnitude-invariant SCMs, consisting only of phase differ-
ences estimatedas

∠Xft =
Xft

|Xft|
, (35)

where Xft is the signal SCM defined in Eq. (4). Note that
a similar principle of estimating the locations of sources by
using only phase information has been widely used in the
literature (e.g. the SRP-PHAT algorithm [34]).

Second, after estimating the spatial weights zso, we propose
to estimate the level difference between channels (i.e. the
LDCM Ao) together with the other free parameters (i.e. bfks
and gkts). Therefore, original signal SCM model in Eq. (4) is
used as observation model.

The setup for both source localization and parameter estima-
tion stages is presented in Table I. Finally, the whole proposed
CNMF algorithm is detailed in Algorithm 1.

V. SOURCE RECONSTRUCTION

Once the model parameters have been optimized, we per-
form the source separation using generalized Wiener filtering.
The estimated CNMF magnitude spectrogram for each sound
source s can be defined from our proposed model in Eq. (6)
as

ymsft =
∑
o

tr(Ao)mzso
∑
k

bfksgkts. (36)

Then the generalized Wiener mask is computed as

ỹmsft = x̃ft
ymsft∑

s′o tr(Ao)mzs′o
∑
k bfksgkts

. (37)

Finally, the time-domain signals are obtained by inverse FFT
and frames are combined by weighted overlap-add.

Algorithm 1 Pseudo code of the proposed CNMF algorithm
1 Initialize zso, bfks and gkts with random values uniformly

distributed between zero and one.
2 Initialize Pfo using Eq. (7) and [Ao]nm = 1/M .
3 # PARAMETERS INITIALIZATION LOOP
4 Compute the input signal phase SCM using Eq. (35).
5 Compute the signal model using Eq. (6).
6 while not convergence and iter ≤ no. of iters do
7 Update bfks according to Eq. (14) (EUC) or (22) (IS)
8 Recompute the signal model using Eq. (6).
9 Update gkts according to Eq. (15) (EUC) or (23) (IS)

10 Scale gkts to l2-norm and compensate by rescaling bfks
as specified in Eq. (29).

11 Recompute the signal model using Eq. (6).
12 Update zso according to Eq. (33) (EUC) or (34) (IS).
13 Scale zso to l2-norm and compensate by rescaling bfks

as specified in Eq. (30).
14 Recompute the signal model using Eq. (6).
15 end while
16 # PARAMETERS ESTIMATION LOOP
17 Compute the signal SCM observation using Eq. (4).
18 while not convergence and iter ≤ no. of iters do
19 Update bfks according to Eq. (14) (EUC) or (22) (IS).
20 Recompute the signal model using Eq. (6).
21 Update gkts according to Eq. (15) (EUC) or (23) (IS).
22 Scale gkts to l2-norm and compensate by rescaling bfks

as specified in Eq. (29).
23 Recompute the signal model using Eq. (6).
24 Update Ao using Eq. (17) (EUC) or (26) (IS).
25 Apply post-processing to enforce Ao to be hermitian

using Eq. (18) (EUC and IS) and semipositive definite
using Eq. (19) (only EUC).

26 Scale Ao according to Eq. (28).
27 Recompute the signal model using Eq. (6).
28 end while

VI. EVALUATION
A. Datasets

1) Two-channels recordings from SiSEC’08: The first
dataset used in this work is a subset of the Signal Separation
Evaluation Campaign (SiSEC 2008) [33] development dataset
(dev1). In particular, subsets of synthetic convolutive mixtures
and live recordings were used here. The dataset is composed
of 40 mixture signals including:
• 32 speech signal mixtures (male and female).
• Four non-percussive music signal mixtures.
• Four music signal mixtures including drums.
The recordings were made using omnidirectional micro-

phones. The room dimensions were 4.45 x 3.55 x 2.5 m. The
reverberation time (T60) was set to either 130 ms or 250 ms
and the distance between the two microphones to either 5 cm
or 1 m, resulting in four different configurations overall. The
source directions of arrival varied between −60 degrees and
+60 degrees with a minimal spacing of 15 degrees and the
distances between the sources.

2) Four-channels recording conditions: A second dataset
using two four-channel microphone arrays, with a small and



8

TABLE II
SOURCES SPATIAL POSITION PER MIXTURE IN THE GENERATED TWO AND 

THREE SOURCES FOUR-CHANNELS DATASET

2 sources 3 sources
mixture no. 1 2 1 2 3

1 45o 90o 0o 45o 90o

2 135o 180o 45o 90o 135o

3 0o 90o 0o 45o −45o
4 45o 135o 0o 90o 180o

5 0o 135o 0o 135o 180o

6 45o 180o 45o 135o −45o

�
�
�
�
�
�
�
�

����

���
��

�
�
�
�
�
�
�
�

Microphone

array

r =147 cm

a = 54 cm

a ~ 5 cm

-135°

180°/

-180°

90°

135° 45°

0°

-45°

Fig. 3. Room, loudspeaker positions and microphone array placement.

large inter-microphone distance, were generated from impulse
responses (IR) collected using the arrays in a regular meeting
room.

The array with small microphone distances, introduced
in [22], consists of four Sennheiser MKE-2 omnidirectional
condenser microphones enclosed in a metal casing with ap-
proximate inter-microphone distance of 5 cm. A second larger
array centered around the small array was used simultaneously
to capture IRs. The larger array also consists four Sennheiser
MKE-2 omnidirectional condenser microphones on the corners
of square with side a = 54 cm. Hereafter the arrays are referred
to as small and large array, respectively.

The recoding of IRs2 was done in a room with dimensions of
7.95 m x 4.90 m x 3.25 m and having a average reverberation
time of T60 = 350 ms. The measurement signal used was a
MLS sequence of order 18, and Genelec G two loudspeaker
was used to reproduce the measurement signal. The overview
of the recording configuration and room layout is illustrated
in Figure 3.

The anechoic material from (SiSEC’08) development
dataset (dev1) was convolved with the obtained IRs resulting
in six different mixtures for each set of sound signals. The
different source spatial positions per mixture are detailed at
Table II. In total, we generated 36 mixtures of two and 36
mixtures of three simultaneous sources for both arrays.

B. Evaluation Metrics

An objective evaluation of the performance of the separation
method was done by comparing each separated signal to the
spatial images of the original sources and using objective
measures by BSS Eval toolbox [37], [38]. In fact, the use of
objective measures based on energy ratios between the signal
components, i.e., source to distortion ratio (SDR), the source
to interference ratio (SIR), the source to artifacts ratio (SAR)

2The IRs and the code used for the four channels dataset together with some
listening demos can be found at: http://www.cs.tut.fi/sgn/arg/IntensityCNMF/

and the source image spatial distortion ratio (ISR), has been
the standard approach in the specialized scientific community
to test the quality of extracted signals.

Moreover, the overall perceptual score (OPS), the target-
related perceptual score (TPS), the interference-related per-
ceptual score (IPS) and the artifacts-related perceptual score
(APS) objective measures from the PEASS toolbox [39] were
used with the aim of predicting the perceived quality of
estimated source signals.

C. Algorithms for comparison

1) DBS+Wiener: A spatial signal processing field of beam-
forming [23] can be used for source separation. In
particular, we have implemented a Delay and Sum
Beamforming (DSB) design which consists of time
aligning and summing the microphone signals. Knowing
the array setup and the target DoA, i.e. beamformer
look direction, DSB will enhance the sources originating
from this direction. To perform a fair comparison with
NMF-based source separation methods, a postprocessing
Wiener filtering stage is applied to the output of DSB
[24].

2) Multichannel NMF [25]: This method models the multi-
channel audio spectrogram using NMF with the Itakura
Saito divergence. The method has two variants, instan-
taneous and convolutive mixing that are compared here.
To estimate the mixing and source parameters, we have
used the implementation provided by the authors using
the expectation-maximization (EM) algorithm.

3) Spatial NTF [16]: This method is suitable only for
the two channels scenario. In particular, the method
implements a NTF approach using a spatially weighted
parameter together with the ground-truth spatial cues
(a.k.a source location prior information) to perform the
separation. The method only accounts for amplitude
difference between channels and thus, phase information
is discarded.

4) SCM CNMF [19]: The multichannel SCM model with-
out any directional constraints in Section II-C.

5) Baseline: The beamforming-inspired SCM model in [22]
using the implementation provided by the authors, is
used as the baseline for our experiments.

6) Proposed EUC: Our proposed SCM model using CNMF
in Section III using the Euclidean distance for parameter
estimation in Section IV.A.

7) Proposed IS: Our proposed SCM model using CNMF
in Section III using the Itakura Saito divergence for
parameter estimation in Section IV.B.

In the case of baseline and the proposed methods, three
configurations are used depending on the initialization of the
spatial weights parameter zso: a) SRP-PHAT spatial cues
(SRP), b) Ground-truth spatial cues (GT) and c) Random
initialization. Note that when using spatial cues (SRP or GT)
zso is set to zero for all the directions above ±10 degrees the
spatial cue as in [22].

Additionally, to analyze the reliability of the evaluation
measures in Section VI.B we have evaluated the separation
performance using two extreme cases:
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Fig. 4. Convergence behavior shown in log-log plots: EUC (top) and IS
(bottom), NTF (left) and CNMF (right).

1) No separation: Using the mixture signal divided by the
number of sources as input for the evaluation. This
evaluation provides a starting point for the separation
algorithms.

2) Random mask: The separated sources are obtained using
the Wiener softmask strategy in (37) where the masks
are generated using random values uniformly distributed
between [0, 1] but scaled to sum to unity.

D. Experimental Setup

In this paper, the time-frequency representation is obtained
using 2048-point short-time Fourier transform (STFT) and half
overlap between adjacent frames. Regarding the signal model,
the parameters were set to similar values as used in related
works [22], [16], and are as follows. The number of the basis
functions K = 30 · S, being S the number of sources in
the mixture, and the maximum number of iterations for the
decomposition is set to 300 for the localization loop and 500
for the parameters estimation loop.

The amount of look directions used with the SiSEC dataset
was O = 180 which scanns the zero elevation plane. In case
of four channel datasets, the full space around the arrays was
considered in 7 elevations (−67.5◦ to 67.5◦ with spacing of
22.5◦) and at each elevation 90 equally spaced azimuths was
scanned (spacing of 4◦). The total amount of directions used in
SCM modeling was 630. The parameters of the baseline can be
found from [22]. For calculation of the localization constraints
(10) and (11), the direction dependent weights at different
elevations were summed to obtain a representation consisting
of only azimuthal angles. The cross-correlation penalty could
be extended to account for sources with different elevations
as well, but for simplicity was left out from the paper.

E. Convergence Behavior

In Figure 4, the convergence behavior for 1000 iterations of
the proposed SCM model using CNMF in Section III is com-
pared with the NTF [16], [15] using both Euclidean distance

TABLE III
COMPUTATIONAL TIME (IN SECONDS) FOR THE PROPOSED METHOD AND

THE SOTA NMF-BASED METHODS IN SECTION VI-C

Methods / File 130ms1m 130ms5cm 250ms1m 250ms5cm
MultiNMF inst 427,86 492,01 503,70 466,42
MultiNMF conv 657,23 783,58 826,29 576,59
Spatial NTF 12,44 11,82 12,63 11,76
SCM CNMF 814,59 792,34 821,81 809,44
Baseline 5039,27 4980,83 5054,65 4915,97
Proposed EUC 1808,37 1789,13 2048,49 1903,53
Proposed IS 2940,22 2742,33 2886,81 2799,78

and Itakura Saito divergence. The algorithms have been run
for the SiSEC mixture “dev1 female3 liverec 130ms 1m”,
the signal duration is 30 seconds, the number of sources in
the mixture S=3 and the number of components K is set
90. The computational time for each algorithm is displayed
at the top right legend for each subfigure. We observe that
the convergence behavior of the NTF algorithms is similar
to that of the proposed SCM CNMF algorithms although the
constant terms for the higher dimensionality SCM representa-
tion provoked a larger offset in the loss function for CNMF
(specially for the proposed IS method), in comparison with the
NTF algorithms. Regarding the computational time, CNMF
is significantly slower than NMF algorithms and for both
cases, IS divergence generally takes more time than EUC-
NMF/CNMF.

The computational time for all the NMF-based algorithms
in section VI-C is presented in Table III. The algorithms
were coded with Matlab and run on an Intel Xeon E5-
2697 (2.60GHz) processor. For comparison, we have used the
SiSEC “dev1 female3 liverec” with 30 seconds in length per
file and four mixing conditions, 130 / 250 ms reverberation
time and 1m/5cm microphone spacing (see Section VI.A). The
setup is described in Section VI.D. As mentioned and due to
its simplicity, NMF/NTF are faster than CNMF algorithms.
In fact, the Spatial NTF in [16] using the MU algorithm
is significantly faster than the other compared methods. The
multichannel IS-NMF in [25] (MultiNMF inst) using the EM
algorithm ranks second in terms of computational time.

For the CNMF algorithms, SCM methods using DoA ker-
nels (Baseline and Proposed algorithm) are slower than the
lower dimensionality SCM CNMF models in [19] and [25]
(MultiNMF conv). Despite the number of iterations is higher
(300 iters for localization and 500 for parameter estimation),
the proposed method is faster than Baseline. In fact, the
dimensionality of free parameters to be estimated during
the localization is lower than in the parameter estimation
procedure (see Table I). Moreover, once the localization is per-
formed, the dimensions for the spatial weights and the PDCM
and LDCM is reduced to a sparse set of looking directions by
only retaining truly non-zero indices (see Figure 2).

F. Results with two-channels SiSEC development dataset

For the first evaluation, we have used the two-channels
SiSEC’08 dev1 dataset described in section VI.A.1. The results
are illustrated in Figures 5 and 6.

Since BSS is evaluated here, parameters for all the
compared methods are randomly initialized except for the
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Fig. 6. Perceptual results using the PEASS metrics [39] for SiSEC development dataset, large array in the upper row and small array in lower row. Method
abbreviated as (rand) uses blindly estimated DOA initialization whereas (GT) and (SRP) uses ground-truth and SRP-PHAT annotated DOA of sources,
respectively. Vertical lines on top of each bar indicate 95% confidence intervals.

DSB+Wiener [24] and the NTF with spatial cues algorithm in
[16] which are explicitly defined to be informed. Additionally,
for the baseline and the proposed method, initialization of the
spatial weight parameters using ground-truth and SRP-PHAT
is presented together with the true BSS case (i.e. random
initialization).

1) Results with 1 m distance microphones: We start by
analyzing the values obtained with the extreme cases (i.e. no
separation and random mask) in comparison with the other
methods. Despite providing a poor subjective separation qual-
ity (examples provided online 3), the obtained SDR values (see
Figure 5) are very similar when compared to the conventional
approaches, excluding the baseline and superior in terms of
artifacts-related metrics (SAR, APS). Note that SAR values

3http://www.cs.tut.fi/sgn/arg/IntensityCNMF/

for all the methods are above 15 dB indicating good quality
and the few higher SAR scores are obtained with very low SIR
and no effective separation. Similar behavior can be observed
for the PEASS metrics (see OPS and IPS values in Figure
6). For the sake of brevity, we propose to focus jointly on
both interference-related (SIR, IPS) and overall metrics (SDR,
OPS), as the main metrics in order to compare the different
methods performance.

Despite its simplicity, the DSB+Wiener method provides
better SDR than the compared methods except the baseline
and the proposed approaches. However, this method suffers
from the leakage of other sources into the extracted source
resulting in a poor interference-related metrics (SIR, IPS) and
the lowest OPS with respect to the proposed and baseline
methods. Moreover, this method requires information about
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the DoAs for each source.
The multichannel NMF in [25] obtained the worst per-

formance in terms of SDR across the compared methods 
(SDR= −0.69 dB, SIR= −0.23 dB). The NTF approach in 
[16] using information a priori (i.e. spatial cues) during the 
factorization allows to improve the separation performance 
w.r.t. the instantaneous model in [25] (here denoted as Mult. 
NMF inst) by 1 dB in SDR and 0.5 dB in SIR and obtains 
competitive results in terms of PEASS metrics. However, 
the mentioned methods do not take full advantage of the 
multichannel setup as they only use amplitude information to 
estimate the model parameters.

The SCM based models, i.e. SCM CNMF [19] and Mult. 
NMF conv [25] allow the estimation of the model parameters 
accounting for both amplitude and phase differences. However, 
without further constraints and especially when dealing with 
spectrally similar sources, these methods suffer to discrimi-
nate the sources in the mixture. The method in [25] clearly 
outperforms [19] in terms of interference-related metrics (SIR, 
IPS). Overall, similar performance is obtained in terms of SDR 
although the OPS higher for the method in [25]. Note that the 
CNMF-based method in [19] provides similar results than the 
extreme no separation case (see Figures 5 and 6).

The beamforming-based CNMF model [22] (here denoted 
as baseline) outperforms the models in [25], [19] as it relates 
phase differences with directions of arrivals and thus, allows 
discriminating the sources as a function of their spatial loca-
tion. In fact, when spatial cues (i.e. ground-truth (GT) or SRP-
PHAT (SRP) estimated source locations) are given a priori, 
this method obtains the most reliable results (SDR= 3.35 dB, 
SIR= 3.60 dB using GT and SDR= 3.33 dB, SIR= 3.98 dB 
with SRP). However, when no prior information is given (i.e. 
random spatial weights initialization), the method underper-
formed around 1 dB and 2 dB in terms of SDR and SIR, 
respectively. This underperformance can be observed also in 
the PEASS metrics. In fact, without further constraints, the 
model allows sources to have overlapping DOAs or to spread 
across multiple directions.

Regarding the proposed method, the obtained results are 
slightly below the baseline approach when spatial cues are 
given (SDR= 3.14 dB, SIR= 3.43 dB) using GT and (SDR= 
3.19 dB, SIR= 3.27 dB) with SRP prior for the Euclidean 
distance. When using Itakura Saito as the objective function, 
the obtained results are (SDR= 2.71 dB, SIR= 2.68 dB) 
and (SDR= 2.96 dB, SIR= 2.91 dB) using GT and SRP 
prior, respectively. Looking at the PEASS metrics however, the 
situation is rather different, with the proposed method gaining 
the highest OPS and the IS optimization criterion slightly 
outperforming the EUC results.

Nonetheless, as pointed out in the earlier sections, the 
proposed algorithm does not require initialization of the spa-
tial weights based on the DOA estimated prior the NMF 
model parameter estimation. This property is due to the 
twofold (localization-separation) strategy and the single/non-
overlapping direction penalties of the spatial weights causing 
the algorithm to converge to spatially coherent yet discrim-
inated solutions. In fact, for the completely blind case (i.e. 
randomly initialized spatial weights) the proposed method
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Fig. 7. Separation results using the BBS EVAL and the PEASS metrics
for SiSEC development dataset of the proposed method using random ini-
tialization unconstrained (light bars) and using sparse localization constraints
from Section III-B(dark bars). Vertical lines on top of each bar indicate 95%
confidence intervals.

provides similar results to the informed case both BSSeval
and PEASS metrics.

Note that the proposed method only uses phase information
to estimate the spatial weights while the baseline method
estimates all the parameters jointly using both amplitude and
phase information. Although using amplitude information to
estimate the directions of arrival of sources has been demon-
strated to be beneficial for the case of large array microphone
setups (i.e. baseline and the proposed method achieve similar
performance with prior information), without prior information
this method is prone to converge to unwanted local minima
and thus, separation results are clearly degraded.

The effect of the localization constraints on the SiSEC
dataset can be seen in Figure 7. In fact, under moderate
reverberation conditions, the effect of the constraints for the
proposed method using the EUC cost function is not significant
(EUC relies more heavily on the largest coefficient). On the
contrary, the effect of the single/non-overlapping directions
penalties is more noticeable for the scale invariant IS cost
function, improving significantly the separation results in
terms of BSS and PEASS metrics (excluding the artifact-
related ones).

2) Results with 5 cm distance microphones: For the case
of 5 cm distance between microphones, it is interesting to see
how the results of the real-valued NMF-based methods fall in
comparison with the 1 m case as they rely only on the level
difference between channels. In fact, when the microphones
are close to each other, the level (or intensity) differences
is practically negligible, and thus, time differences become
the main spatial cue. In contrast, CNMF methods also take
into account the phase differences and thus, provide superior
separation results. Nonetheless, the lack of significant level
difference between channels provokes an underperformance of
the multichannel convolutive method in [25] by 1 dB in SDR
and 2 dB in SIR w.r.t the 1m distance microphones. Otherwise,
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the SCM CNMF method in [19] behaves similarly to the 1 m 
distance setup (SDR= 1.52 dB, SIR= −2, 89 dB). In fact, 
the obtained results are in line with the extreme no separation 
case (in other words, no effective separation is performed). 
Similar performance is obtained by the DSB+Wiener method 
which underperforms mainly in terms of SIR in comparison 
with the 1 m setup. In general, PEASS metrics do not show 
significative d ifferences t o t he c ompared m ethods (excluding 
the baseline and the proposed method) with respect to the 1 m 
distance setup.

The baseline approach in [22] underperformed when level 
differences between channels are negligible. In fact, separation 
results are around 1 dB below the SDR values obtained for the 
1 m setup when spatial cues are given and 0.2 dB below the 
SDR in the non-informed (random) case. It is also interesting 
to see the baseline performance in terms of SIR (below 0.7 dB 
and −1 dB in the informed and random cases, respectively). 
In other words, without further constraints, jointly estimating 
the parameters using both amplitude and phase information 
provokes the method to converge to non-optimal solutions. 
Note that this poor separation performance is not noticeable 
if we only consider SDR, however, this low performance w.r.t 
the 1 m setup is more clear if we analyze the PEASS metrics 
(see Figure 6).

Regarding the proposed method, the strategy of estimating 
the spatial weights using only phase information and group 
sparsity constraints in a first place enforces the sparsity of the 
sources attending to their DOAs and provides a suitable prior 
to estimate the LDCM and the NMF parameters in the second 
stage. Consequently, better results are obtained, especially in 
terms of SIR, IPS and OPS. The scale-invariant IS clearly 
outperforms the EUC version in terms of interference-related 
metrics (3 dB in SIR and 11% in IPS). Using ground-truth 
spatial cues slightly improves the separation results in terms of 
BSSeval metrics w.r.t the non-informed (randomly initialized) 
case for the proposed method with IS by 0.4 dB in SDR 
and 0.6 dB in SIR while, for EUC distance the difference 
is not significant. O n t he c ontrary, u sing S RP-PHAT spatial 
cues slightly underperforms the blind case which demonstrates 
the robustness of our CNMF-based localization (i.e. spatial 
weights estimation) scheme.

G. Results with four-channels dataset

The result of evaluation with the four channel dataset are
illustrated in Figures 8 and 10 for two simultaneous sources
and Figures 9 and 11 for three simultaneous sources. In the
following, we will concentrate on analysis of the benefits of
the proposed model over baseline [22].

1) Results with large array: Similar to SiSEC’08 dataset
with 1 m microphone distance, the beamforming-based CNMF
model [22] and the proposed method perform equally with
the large array (54 cm) when using prior information for
initialization. For the two-sources dataset the SDR is around
7 dB and SIR is around 10 dB for the baseline and pro-
posed method with EUC as cost function. The separation
performance decreases to 4 − 5 dB in SDR and 6 − 7 dB
in SIR with three simultaneous sources. The IS cost function
for the proposed method receives slightly lower separation

performance than EUC in both datasets in terms of overall
(SDR, OPS) and interference-related metrics (SIR, IPS). The
SCM CNMF method [19] achieved very modest performance
in comparison to the proposed method but results in less
artifacts across the compared methods (similar to the two
channels experiment).

The performance of delay and sum beamforming with
postfiltering (DSB+Wiener) benefits from the higher number
of microphones and provides very competitive results in terms
of BSSeval metrics (3.8 − 6.1 dB in SDR and 3.2 − 7 dB
in SIR). Regarding the PEASS metrics, this method clearly
underperforms the baseline and the proposed methods in terms
of OPS, IPS and TPS but slightly outperforms the SCM CNMF
method [19] except in terms of artifact-related metrics (SAR,
APS).

The performance of the baseline with random initialization
is relatively improved in comparison to the SiSEC dataset and
it achieves the same or even improved performance in compar-
ison to initialization with SRP estimated source locations. This
can be argued to be caused by having less spatial ambiguity
due to increased amount of microphones. Moreover, under
higher reverberant conditions (T60 = 350 ms for the four
channels dataset while for two channels is 130 − 250 ms),
restricting the direction weights to a single DOA per source
may cause a poor modelling of the reflections in comparison
with the unconstrained baseline model. Nonetheless, with four
channels and two sources the absolute performance obtained
with the proposed method (SDR 7.7 dB and SIR 11.2 dB) is
highest among all datasets and conditions, which indicates that
the separation performance in terms of BSSeval metrics scales
according to the difficulty of the problem, i.e. the amount
of sources to be separated and the number of microphones
available given that sufficient level differences exist for the
proposed model. Regarding the PEASS metrics, the proposed
method demonstrated to be robust against the number of
sources / conditions providing the best averaged results in
terms of OPS, IPS and TPS.

2) Results with small array: The performance of the pro-
posed method with respect to baseline and SCM CNMF
method [19] with the small array is very similar in comparison
to the SiSEC dataset with 5 cm microphone distance. The
proposed method using the IS optimization criterium achieves
the best results in terms of interference-related metrics (SIR,
IPS). On average the separation performance is around 4.5 dB
and 2.5 dB in SDR and 9 dB and 4.5 dB in SIR for two and
three sources datasets, respectively. Additionally, noticeably
better OPS and IPS scores are obtained with the proposed
method than with DSB+Wiener, baseline or SCM CNMF
method [19].

The performance of the baseline with random initialization
is greatly reduced (by 1.5 dB and 1.0 dB in SDR and 1.2 dB
and 2.3 dB in SIR), whereas the use of prior information and
completely random initialization with the proposed method
has only small effect on separation performance. It can be
observed from the results of all datasets that the proposed
method with IS as cost function is favored with small arrays
in terms of separation performance, whereas with larger arrays
the EUC achieves slightly better results.
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Fig. 8. Results with four channel arrays with two simultaneous sources, large array in the upper row and small array in lower row. Vertical lines on top of
each bar indicate 95% confidence intervals.
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Fig. 9. Results with four channel arrays with three simultaneous sources, large array in the upper row and small array in lower row. Vertical lines on top of
each bar indicate 95% confidence intervals.

OPS

DSB+W
ien

er

SCM CNMF

Bas
elin

e

pro
p. 

EUC

pro
p. 

IS
0

10

20

30

O
PS

OPS

DSB+W
ien

er

SCM CNMF

Bas
elin

e

pro
p. 

EUC

pro
p. 

IS
0

10

20

30

O
PS

IPS

DSB+W
ien

er

SCM CNMF

Bas
elin

e

pro
p. 

EUC

pro
p. 

IS
0

10

20

30

40

IP
S

IPS

DSB+W
ien

er

SCM CNMF

Bas
elin

e

pro
p. 

EUC

pro
p. 

IS
0

10

20

30

40

IP
S

APS

DSB+W
ien

er

SCM CNMF

Bas
elin

e

pro
p. 

EUC

pro
p. 

IS
0

20

40

60

80

AP
S

APS

DSB+W
ien

er

SCM CNMF

Bas
elin

e

pro
p. 

EUC

pro
p. 

IS
0

20

40

60

80

AP
S

TPS

DSB+W
ien

er

SCM CNMF

Bas
elin

e

pro
p. 

EUC

pro
p. 

IS
0

20

40

60

TP
S 5cm (H) SRP

5cm (H) GT
rand

TPS

DSB+W
ien

er

SCM CNMF

Bas
elin

e

pro
p. 

EUC

pro
p. 

IS
0

20

40

60

TP
S 5cm (H) SRP

5cm (H) GT
rand

Fig. 10. Results using the PEASS metrics [39] with four channel arrays with two simultaneous sources, large array in the upper row and small array in lower
row. Vertical lines on top of each bar indicate 95% confidence intervals.
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Fig. 11. Results using the PEASS metrics [39] with four channel arrays with three simultaneous sources, large array in the upper row and small array in
lower row. Vertical lines on top of each bar indicate 95% confidence intervals.

H. Discussion
Separation performance of the proposed method using

level and time difference SCMs was evaluated using two-
channel SiSEC’08 development dataset and four-channels sig-
nals recorded in a regular room with moderate reverberation.

First, the separation performance has been compared with
other NMF/CNMF state-of-the-art methods together with two
extreme scenarios (no separation and random mask) and a
classical beamforming technique using a postfiltering for the
case of the two-channel dataset. The proposed method clearly
improves the separation results w.r.t the compared real-valued
NMF and non-beamforming based CNMF methods except for
the case of artifact-related metrics (SAR, APS) where all the
compared methods obtain high scores. When spatial cues are
given, the results of baseline and the proposed method in
terms of BSSeval metrics are comparable. However, in the
true blind case, the proposed method behaves similarly to the
informed case and thus outperforms the baseline, especially in
terms of SIR for the short distance microphone setup. In fact,
the proposed twofold (localization-separation) strategy and the
group sparsity constraints imposed to the spatial weights make
our algorithm more robust against different microphone setups
than the other compared methods. This outperformance is
statistically significant in terms of PEASS metrics (OPS, IPS
and TPS) for the short distance microphone setup (see 95%
CIs in Figure 6).

Then, we evaluate the performance of the proposed method
w.r.t. the baseline, the SCM-CNMF in [20] and the DSB with
postfiltering using the four-channels dataset. In general, the
obtained separation results for all the compared methods scales
according to the difficulty of the problem, i.e. the amount of
sources to be separated and the number of microphones avail-
able. Nonetheless, the proposed method demonstrated to be
robust against the number of sources and conditions providing
the best averaged results in terms of the PEASS OPS, IPS
and TPS metrics (as for the two channel dataset, differences
are statistically significant for the small array setup). Besides,
using the Euclidean distance as the optimization criterion
improves the results for large spacing arrays whereas the scale-

invariance property of the Itakura Saito slightly improves the
results for the case of short spacing arrays. Because of the
space limitation, further analysis of the results as a function
of the source type has not been included in this paper. In
fact, with large distance arrays, the proposed signals perform
better for speech than music signals whereas for short distance
microphones results are comparable. In general, results are
degraded for music mixtures with percussive signals.

VII. CONCLUSIONS

In this paper we proposed a SCM model of the mixture
complex-valued spectrogram that uses level and time differ-
ences for the task of multichannel sound source separation.
These level and time differences are modeled as the weighted
sum of direction of arrival (DOA) kernels spanned across
every possible source direction. In order to estimate the
model parameters, a CNMF algorithm is proposed using both
Euclidean and Itakura Saito optimization functions. Opposite
to other SCM models in the literature, the source localization
is implicitly defined in the model and two cross-correlation
(i.e. group sparsity) constraints are imposed to the spatial
weights parameter to enforce a single direction per source
and no overlapping between source directions. We have shown
the robustness of the proposed algorithm in comparison with
other state-of-the-art BSS methods using various types of mi-
crophone array setups. In the future, we would investigate the
suitability of the localization scheme for source localization
problems. Additionally we will investigate the effect of the
reverberation time for the proposed model.

APPENDIX A
DERIVATION OF THE ALGORITHM FOR EUC DISTANCE

To minimize function f(A,Z,B,G) in Eq. (13), we follow
the optimization scheme of majorization as in [20]. First, the
following auxiliary function is defined:

f+(A,Z,B,G,R) =
∑

f,t,s,o,k
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∑where Rftsok is 
M×
Hermi

M 
tian positive definite a nd satisfies

s,o,k Rftsok = I , which is M × M identity matrix. 
As demonstrated in [20], the auxiliary function satisfies the
two following conditions:

1) f(A,Z,B,G) ≤ f+(A,Z,B,G,R)
2) f(A,Z,B,G) = minRf

+(A,Z,B,G,R)

That is, minimization of f+ with respect to A, Z, B
and G can be used for an indirect optimization of f . Note
that minimization of f implies the optimization of the model
parameters with respect to Eq. (12). In fact, the equality
f(A,Z,B,G) = f+(A,Z,B,G,R) is achieved by defining
the auxiliary variable Rftsok as

Rftsok = X̂−1ft Wfozsobfksgkts. (39)

Therefore, minimization of function f is performed in two
steps:

1) Minimize f+ with respect to Rftsok using Eq. (39) to
f = f+.

2) Minimize f+ with respect to A, Z, B and G

Then, as in [20], the derivation of the algorithm updates is
achieved via partial derivation of function f+ w.r.t each model
parameter and setting these derivatives to zero. However, for
the sake of brevity, details about the computation of the partial
derivatives are omitted here.

APPENDIX B
DERIVATION OF THE ALGORITHM FOR IS DIVERGENCE

Similar to the case of the EUC distance, the function
f(A,Z,B,G) in Eq. (21) is minimized using the optimization
scheme of majorization from [20]. In particular, the auxiliary
function for the case of IS is defined as

f+(A,Z,B,G,R,U) =
∑
i,l

[
log detUft +

detXft − detUft

detUft

+
∑
s,o,k

tr(XftR
H
ftsokW

−1
foRftsok)

zokbfksgkts

 , (40)

where auxiliary variables Rftsok and Uft are hermitian
positive definite matrices satisfying

∑
s,o,kRftsok = IM×M

and Uft = UH
ft. As for the Euclidean distance, the auxiliary

function f+ fulfill the following conditions:
1) f(A,Z,B,G) ≤ f+(A,Z,G,G,R,U)
2) f(A,Z,B,G) = minR,Uf

+(A,Z,B,G,R,U),
and f = f+ when

Rftsok = X̂−1ft Wfozsobfksgkts, Uft = X̂ft. (41)

Similar to the Euclidean distance, minimization of function
f is performed in two steps:

1) Minimize f+ with respect to Rftsok and Uft using Eq.
(41) to f = f+.

2) Minimize f+ with respect to A,Z,B and G.
Finally, multiplicative update rules are obtained after the

second step, that is, after performing the partial derivatives of
f+ w.r.t each parameter and equalizing to zero.

APPENDIX C
SOLVING AN ALGEBRAIC RICCATI EQUATION

As proposed in [19], the solution of the Riccati equation in
Eq. (26) is detailed here. First, lets define a 2M × 2M matrix
E as

E =

[
0 −C
−D 0

]
. (42)

We compute the 2M eigenvectors from E as e1, ..., e2M.
Then, we sort the eigenvectors according to the associated
eigenvalues in ascending order and remove the vectors cor-
responding to the smallest eigenvalues which in theory (i.e.
omitting computer arithmetical errors) discards the negative
eigenvalues. As a result, we will have M sorted eigenvectors
e′1, ..., e

′
M.

Then, the new Ao is obtained as Ao ← IJ−1, where
the M × M matrices J and I are defined from the sorted
eigenvectors e′ as J = [e′1,1:M , ..., e

′
M,1:M ] and I =

[e′1,M+1:2M , ..., e
′
M,M+1:2M ].
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