
Collecting data to FIWARE

Otto Hylli, Ville Heikkilä and Kari Systä

May 29, 2020

Contents
1 Introduction 2

2 FIWARE technology 2
2.1 Data models . 3
2.2 Components of FIWARE . 4

2.2.1 Orion . 4
2.2.2 IoT agent for Ultralight 2.0 6
2.2.3 STH Comet . 6
2.2.4 QuantumLeap . 6

3 Use of FIWARE in CityIoT 7
3.1 Platform instances . 7
3.2 Data collection cases . 7

3.2.1 Tampere cases . 8
3.2.2 Oulu . 9

4 Experiences 10
4.1 Data models . 10
4.2 Data conversion . 13
4.3 Sending the data . 14
4.4 Data processing and storage . 17

5 Conclusions 20

1 Introduction
The goal of the CityIoT1 project is to define a vendor independent IoT platform
for SmartCity applications. The platform should support multiple data sources
and several applications using the data sources. Consequently, the data from
different sources should be unified for efficient usage by applications. In the
beginning of the project we analyzed technical options and selected FIWARE2

as the technical framework, because it has similar goals towards vendor inde-
pendence and has already gained interest in the SmartCity community.

In this report we summarize our experiences in collecting, unification and
storing the data. The research goals of this work were to investigate applica-
bility of FIWARE for multivendor cases in the context of Smart Cities, and
to provide information for developers and researchers with similar challenges
to our. The scope of this study has been limited to the data collection, pre-
processing, unification and storing of the data. For example, access control and
deployment of a FIWARE platform are out of the scope for this report.

In the CityIoT project we have created several pilots whose data was col-
lected from several sources and stored in the FIWARE-based platform. This
report collects experiences from these pilots and its goal is to give a general
view what is it like to collect data to FIWARE: what are the advantages and
disadvantages.

The research process was the following. In the beginning of the project we
iteratively created the platform and conducted pilot cases with external stake-
holders. The pilot cases were driven by concrete IoT pilots of cities of Tampere
and Oulu. The role of our research team varied in the pilot cases: in some we
implemented the whole data collection process and in some we just advised the
company implementing the FIWARE integration. After implementing the 12
pilot cases we collected the experiences from the implementors. We then cate-
gorized the experiences into four broad categories. These categories cover the
main aspects of collecting data: datamodels, data conversion, sending the data,
and data storage and handling.

The rest of the document has been organized as follows. Section 2 gives an
introduction to the FIWARE technology including the data modeling principles
and the important FIWARE components. Section 3 describes the FIWARE
platform instances used in the project and gives an overview of the pilot cases.
The experiences, i.e., the main results are given in Section 4 where each afore-
mentioned experience category has its own subsection. Finally, Section 5 gives
our conclusions.

2 FIWARE technology
This section provides background information about FIWARE since basic knowl-
edge about FIWARE is required in understanding the experiences reported later.

1https://www.cityiot.fi
2https://www.fiware.org

https://www.cityiot.fi
https://www.fiware.org

This will not be an in-depth overview of FIWARE. We will introduce the FI-
WARE data modeling principles and describe shortly the relevant FIWARE
components used in CityIoT. The description is mainly limited to concepts
which are relevant from the data collecting perspective.

2.1 Data models
The FIWARE data model is specified in the NGSI V2 specification. In FIWARE
data is managed as context entities. Entities can represent various physical or
logical objects such as devices, vehicles, weather observations and buildings.
There is also a newer version of the data model specified in the NGSI-LD spec-
ification which is based on linked data. The new data model was not used in
the pilots since work on the specification and components that implement the
specification started during the CityIoT project and as of this writing none of
the components is fully complete. However there is another CityIoT report that
explores NGSI-LD.

Each NGSI-v2 entity has an id and type which together uniquely identifies
the entity. The entity type then defines the attributes of an entity. An entity
attribute has a name, a value and a type. The type can be a primitive type such
as Text or Number. It can also represent more complex data structures such as
a street address or a location defined with latitude and longitude coordinates.
An attribute can also represent a relationship between entities in which case its
value is the id of the related entity. FIWARE generates two build-in attributes
for each entity: for the entity creation time (dateCreated) and last modification
time (dateModified).

Attributes can also have related metadata which consists of metadata at-
tributes that have a name, a value and a type. A metadata attribute can for
example represent the accuracy of a measurement. A very common metadata
attribute is a timestamp representing the time the attribute value was measured.
There are also two build-in metadata attributes: dateModified and dateCreated,
which work similarly to the corresponding entity level build-in attributes except
they work on the attribute level. A conceptual schema of the NGSI-v2 data
model is shown in figure 1.

Figure 1: Conceptual schema for NGSIv2 data model.

A FIWARE data model for a certain domain is defined by specifying the
required entity types and their attributes which includes attribute names and
types. Attributes can also be marked as mandatory or optional. In FIWARE
the entity data is represented as JSON and the data model is documented

https://fiware.github.io/specifications/ngsiv2/stable/
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM009v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM009v010101p.pdf
https://drive.google.com/file/d/1grLt46fpT1sfq6x0ts0gZZVq3W415dq2/view

by defining a JSON schema for the entity types and writing a human read-
able markdown document describing the entities and their attributes. Existing
JSON schema property definitions can be utilized as part of the specification.
For example the aforementioned street address and location structures are de-
fined elsewhere. The FIWARE community has defined data models for various
domains such as weather, parking and street lighting.

Listing 1 shows an example entity of type ThreePhaseAcMeasurement .3 This
type is used to represent measurements from an electrical system that uses three
phase alternating current. The source of the measurement could be for example
a smart electricity meter. The example does not show the whole entity; instead
it shows examples of different kinds of attributes.

The first lines define the compulsory entity id and type and the rest are en-
tity type specific attributes. The first entity-specific attribute dateEnergyMeter-
ingStarted is of the type DateTime and it represents the time for the beginning
of energy measuring. The second attribute refDevice is a relationship to another
entity of the type Device which represents the device making the measurements.
The next attribute name has a name for the measurement. The second to last
attribute totalActiveEnergyImport has the total amount of energy since the mea-
suring started. It is of the type Number. It also has the time the measurement
was made in the timestamp metadata attribute. The last example attribute
activePower is of the type StructuredValue which indicates that it consists of
multiple values. The values for l1, l2 and l3 contain the measured power for
the three phases. In addition to the measurement time, the metadata pro-
vides additional information about the measurement. The measurementType
and MeasurementInterval metadata attributes tell that the measurement is the
average power measured during one second.

2.2 Components of FIWARE
The FIWARE project has developed multiple components for various purposes
such as big data processing and access control. These components can be used to
form a platform according to the platform provider’s needs. Here we introduce
the components relevant for this work: the Orion context broker, IoT agent for
ultralight 2.0 and two alternatives for entity time series history components:
STH comet and QuantumLeap.

2.2.1 Orion

The essential and core component of FIWARE is the Orion context broker. It
is the basis of any FIWARE powered platform. It manages information about
the current context, i.e., the state of the entities. Orion knows only the current
state of each entity so when an entity is updated with new information the old
information is no longer available from Orion.

3This data model was created in the CityIoT project and was then accepted as an official
FIWARE data model.

https://github.com/smart-data-models/data-models
https://github.com/smart-data-models/data-models
https://github.com/smart-data-models/dataModel.Energy/tree/master/ThreePhaseAcMeasurement
https://www.fiware.org/developers/catalogue/
https://fiware-orion.readthedocs.io/en/master/

Listing 1: Data model example showing an incomplete ThreePhaseAcMeasure-
ment entity.

1 {
2 " id " : "ThreePhaseAcMeasurement : LV3_Ventilation " ,
3 " type " : "ThreePhaseAcMeasurement " ,
4 " dateEnergyMeter ingStarted " : {
5 " type " : "DateTime" ,
6 " value " : "2018−07−07T15 : 0 5 : 5 9 . 4 0 8Z"
7 } ,
8 " r e fDev i c e " : {
9 " type " : " Re la t i onsh ip " ,

10 " value " : [" Device : eQL−EDF3GL−2006201705"]
11 } ,
12 "name" : {
13 " type " : "Text " ,
14 " value " : " v e n t i l a t i o n "
15 } ,
16 " tota lAct iveEnergyImport " : {
17 "metadata " : {
18 "timestamp " : {
19 " type " : "DateTime" ,
20 " value " : "2019−01−24T22 : 0 0 : 0 0 . 1 7 3Z"
21 }
22 } ,
23 " type " : "Number" ,
24 " value " : 150781.96448
25 } ,
26 " activePower " : {
27 "metadata " : {
28 "timestamp " : {
29 " type " : "DateTime" ,
30 " value " : "2019−01−24T22 : 0 0 : 0 0 . 1 7 3Z"
31 } ,
32 "measurementType " : {
33 " value " : " average "
34 } ,
35 "measurementInterval " : {
36 " value " : 1
37 }
38 } ,
39 " type " : " StructuredValue " ,
40 " value " : {
41 "L1 " : 11996.416016 ,
42 "L2 " : 9461.501953 ,
43 "L3 " : 10242.351562
44 }
45 }
46 }

Orion implements the NGSI v2 API specification which defines operations
for creating, modifying, querying and deleting entities. NGSI is a RESTful
API accessed with HTTP protocol. For example to create the entity shown in
listing 1 a HTTP post request should be sent to Orion’s entities API endpoint
(/v2/entities) with the JSON in the listing as the payload.

Though not specified in the NGSI V2 specification Orion allows entities to
be organized by separating them under different FIWARE services. The target
service is specified with an HTTP-header (Fiware-Service). A single API request
can then affect only entities of the given service. For example, a query for entities
can only return entities of the given service. Also, two entities under different
services can even share the same id and type with no problems. Services can be
used together with FIWARE or third party authentication and authorization
services to give an user access only to entities in specific services. Inside a
service hierarchies of the data can be expressed with FIWARE service paths
which also are not part of the NGSI v2 specification. This is a fundamental
difference to typical RESTful APIs where the resource hierarchies are encoded
in the URL-paths. Technically the service path is also given as HTTP headers
(Fiware-ServicePath).

https://fiware.github.io/specifications/ngsiv2/stable/

In addition to queries FIWARE supports publish-subscribe paradigm where
clients can request HTTP notifications on any changes of specified entities. In
the subscription request, the user can specify what kind of change should trigger
the notification and what information is included in the notification. Many
FIWARE components, for example STH Comet and QuantumLeap described
below, integrate to Orion with this subscription mechanism. Orion itself can
also receive subscriptions allowing the linking of different FIWARE platform
instances.

2.2.2 IoT agent for Ultralight 2.0

Many IoT devices use various protocols to communicate and thus cannot be
directly connected to Orion which requires the use of HTTP and the NGSI-v2
API. For this purpose FIWARE has the concept of an IoT agent which works
as a bridge between the IoT device and Orion. The agent translates between
the protocol used by the IoT device and the NGSI-v2 API and data model.

One such agent is the IoT agent for Ultralight 2.0 which translates for the
Ultralight 2.0 protocol developed in the FIWARE community. It is a light
weight text based protocol meant for resource constrained devices. Format for
reporting measurements is a list of measurement name value pairs separated
by the | character. For example temp|20|hum|30 has the value 20 for temp
(temperature) and 30 for hum (humidity). A timestamp can be added to the
message which will be used as the entity attribute metadata timestamp. If it is
not provided the current time is used. Ultralight 2.0 supports multiple protocols
for transporting the messages: HTTP, MQTT and AMQP. For configuration of
the agent including adding devices and mapping their measurements to entity
attributes, the agent implements the common FIWARE IoT agent provision
API.

2.2.3 STH Comet

The STH (short time historic Comet component allows entity history to be
stored and queried. It stores the entity attribute values as raw time series data
and also calculates aggregates from the data. The data is stored into a MongoDb
database. The data can be queried via the STH Comet API. No tools for further
analysis or visualization are available.

STH Comet uses the Orion subscription system to get entity data. In order
to use STH Comet a suitable Orion subscription has to be created. A notable
restriction of STH Comet is the lack of support for the newer FIWARE entity
model defined in the NGSI v2 specification. STH Comet supports only the
earlier version of the specification.

2.2.4 QuantumLeap

QuantumLeap is an alternative for STH Comet. It can also store entity history
as time series data. It allows both the raw data to be queried and can also

https://fiware-iotagent-ul.readthedocs.io/en/latest/index.html
https://telefonicaiotiotagents.docs.apiary.io/#introduction/api-access
https://telefonicaiotiotagents.docs.apiary.io/#introduction/api-access
https://fiware-sth-comet.readthedocs.io/en/latest/
https://quantumleap.readthedocs.io/en/latest/

calculate aggregates from that data. Like STH Comet it also gets the entity
data via Orion subscription notifications.

Unlike STH Comet, QuantumLeap is meant to support different backends for
storing the data. The idea is also to use databases specifically intended for time
series data. However, currently only one database CrateDB is fully supported.
Measurements are saved to entity type specific database tables where each row
has a timestamp and values for attributes. If the attribute does not have a value
for that time its value is null.

Data can be queried via the QuantumLeap API and like STH Comet no tools
for further analysis are available. The documentation of QuantumLeap however
instructs how the open source, browser based Grafana data visualization tool
can be used with the data QuantumLeap has stored. Grafana is not specific to
FIWARE but it can be used with the data by directly accessing the backend
database.

3 Use of FIWARE in CityIoT
This section explains how and for what FIWARE was used in the CityIoT
project. First the FIWARE platform instantiations used in our data collection
cases are described. Then the data collection cases, the experiences reported
later are based on, are described.

3.1 Platform instances
Two FIWARE platforms were deployed during the CityIoT project: one at
Tampere University and one at University of Oulu. The platforms also evolved
during the project. Both platforms used one virtual machine and the FIWARE
components and other related services such as databases were ran inside Docker
containers. Both platforms used simple HTTP header-based API tokens for
authentication and FIWARE services for separating the data of different cases.
The most notable differences between the two platforms are the use of the
ultralight IoT agent in Oulu and use of a different history component. The
Tampere platform used QuantumLeap and Oulu platform used STH comet.
The CityIoT Report on FIWARE Platform document describes our FIWARE
deployment in more detail.

3.2 Data collection cases
During the CityIoT project various smart city-related IoT pilots were launched
by city of Tampere and city of Oulu. In Oulu all of the pilots were integrated
to University of Oulu’s FIWARE platform by the companies implementing the
pilots. In Tampere four pilots were integrated to Tampere University FIWARE
platform by the researchers of the university. Overall 12 pilots were integrated
to FIWARE. The integration included data collection from various domains

https://crate.io/
https://grafana.com/
https://drive.google.com/file/d/1yueGrdArlFmz8ZzchTXWuhbgC9dKUuGN/view

such as street lighting, electricity monitoring and indoor condition monitoring.
These various data collection cases are shortly introduced here.

3.2.1 Tampere cases

Street lights Electricity consumption and ambient illuminance data from the
street light system of Tampere were collected once per day to an Azure SQL
database by the city of Tampere. For accessing the data, an HTTP-based
API implemented with tools offered by Azure was provided to the university
researchers. This API was then used to transfer the data to FIWARE. The
data includes voltage, current and illuminance measurements from 317 groups
of street lights that overall contain about 40 000 street lights. This case and
experiences from it are further described in the Transferring streetlight data to
FIWARE - lessons learned report.

Smart street lights 400 smart street lights were installed to one region in
Tampere. Each of these individual street lights report their electricity mea-
surements, ambient illuminance measurements and the angle of the lamp pole.
These measurements are reported to a FIWARE platform operated by the case
implementer. Through the Orion subscription system the measurements are
passed to the Tampere university FIWARE platform.

Electric bus Real time measurements from four electric bus and one hybrid
bus were collected to a commercial IoT platform4. By using the API of the
platform the measurements were transferred to FIWARE. The measurements
included speed of the bus, battery power, battery charge, energy consumption
and door status. Overall, 18 measurements were available though not all buses
had measurements for all of them. Some of the measurements were updated
every second and some every few seconds. This case and experiences from it
are further described in the Converting and transferring data from another IoT
platform to FIWARE: case Electric bus report.

Bus passenger analytics Bus passenger analytics data was collected from
one bus by using a 3d character recognition sensor. This data was sent and
analyzed in the service provider’s system which offered a rest API for accessing
the data. This API was used to transfer part of the data to FIWARE. The
data included daily passenger amounts and bus stop statistics about passengers
picked up and dropped off on the stop among others. Data was available from
about three months though there were some gaps due to technical difficulties.
This case and experiences from it are further described in the Storing Bus
Passenger Analytics Data into FIWARE report.

4https://iot-ticket.com

https://drive.google.com/file/d/1cJKOBaMMV5v--ehv_bVIDmbo8vgsURZK/view
https://drive.google.com/file/d/1cJKOBaMMV5v--ehv_bVIDmbo8vgsURZK/view
https://drive.google.com/file/d/1Ct7Rws7NmUY7YbZfEqbWB0515YZHJJqW/view
https://drive.google.com/file/d/1Ct7Rws7NmUY7YbZfEqbWB0515YZHJJqW/view
https://drive.google.com/file/d/1dgxj_BS5c02d8eiTZucsUVHwCK049Nh5/view
https://drive.google.com/file/d/1dgxj_BS5c02d8eiTZucsUVHwCK049Nh5/view
https://iot-ticket.com

3.2.2 Oulu

Lighting maintenance Internet connected electricity metering devices were
installed to one building for detecting burned out lamps. The power consumed
by lighting was monitored and decreases in that could then be used to detect
that some lamps have broken down. Alerts about the number of broken lamps
could then be sent to the building maintenance. The implementer integrated
their system to FIWARE by sending the alerts and electricity measurements
including power, voltage, current and frequency to FIWARE. The measurements
were collected and sent every 10 minutes.

Water consumption Water consumption from a few city of Oulu buildings
was monitored by reading old non-internet connected water meters with machine
vision. This information was also used to detect water leaks. This system was
integrated to FIWARE by sending the water consumption information and the
water leak alerts to FIWARE.

Building visitor counting Sensors for counting the visitors were installed
to one public city building in Oulu. Visitor count information was then also
sent to FIWARE.

Building air pressure Hardware for monitoring the difference in air pressure
between indoors and outdoors was installed to few buildings in Oulu. This
information among other measured air quality information helps in building
maintenance. These measurements were also sent to FIWARE.

Preventing vandalism A camera was installed outside a school for prevent-
ing loitering and vandalism. The camera image was analyzed automatically
to detect the number of people. Based on the number of people and time of
day alerts for unusual activity were sent to school administration and security
personnel. These alerts were also sent to FIWARE.

Outdoor lighting The company implementing the pilot has developed hard-
ware, that can be connected to different building automation systems, which
unifies the available data and system control for use in the company’s web
based platform. This system was used in two buildings to monitor and control
outdoor lighting. Two way communication with the system was implemented to
FIWARE where the lighting could be monitored and controlled via FIWARE.
The IoT agent was used in sending the data in this case.

Indoor conditions Air quality (e.g. carbon dioxide, volatile organic com-
pounds) and noise level measurements were collected from one school building
in order to make them visible and easily understandable for the users of the
building. Subjective feedback about the conditions was also collected from the

users. The condition measurements were also sent to FIWARE via the IoT
agent.

Indoor conditions 2 Another company collected air quality and noise level
measurements from a different school building. These measurements were also
sent to FIWARE.

4 Experiences
This section describes the experiences in data collection encountered in the
pilot cases. The experiences have been divided in to four broad categories: data
models, data conversion, sending the data, and data processing and storage.

4.1 Data models
This section describes how the FIWARE entity based data models fit to our
various use cases. It also describes how well we were able to utilize the existing
data models: sometimes we could use a model as is, sometimes we had to adapt
the models by adding attributes and sometimes we had to create new entity
types.

Table 1 gives an overview of data model usage in the pilot cases. For each
case it lists the entity types used, indicates if we had to add custom attributes
to one or more of the existing entities or if we had to create new entity types
ourselves. The new entity types are in bold and marked with the * character in
the entity types list.

The table shows that the existing FIWARE data models were quite useful.
Only in the Building visitor counting case no existing data model was used.
Three other cases also required new entity types though they also utilized exist-
ing types. On the other hand only in 3 cases the existing data models did not
need any modifications. In 6 cases some additional attributes were required. It
has to be also noted, that in some cases the data produced by a pilot could not
be considered fully valid according to the data model since there was not always
data available for mandatory attributes of the entity.

Based on these experiences it can be said that existing FIWARE data models
can be useful but they often do not fulfill all needs. Also the possibility exists
that a FIWARE user has to design a new data model. Fortunately, the data
model documentation offers some guidelines5. Also even though an existing
data model could be adapted for the source data in some cases it might still
be better to create a new data model. This might have been better in the bus
passenger analytics case where we used the existing UrbanMobility data model.
Making a new data model based on the source data might have been easier than
understanding the existing model, which was not meant for this exact purpose,
and attempting to modify it for the source data. The model was meant for

5https://github.com/smart-data-models/data-models/blob/master/guidelines.md

https://github.com/smart-data-models/data-models/blob/master/guidelines.md

static public transport schedules. For example there was one entity type used
to represent a trip on a bus line scheduled at a particular time but we used this
entity to represent all trips to one direction on the line.

In this passenger analytics case another issue was the nature of the data
which made it challenging to adapt for FIWARE. The data was partly higher
level statistics that could be filtered in various ways. As an example lets take
statistics related to a travel i.e. traveling a bus line to one direction. From
the passenger analytics system we transferred the travel total statistics e.g.
total number of passengers. In addition we stored the travel daily statistics
e.g. number of passengers for each day. However by using the filtering options
offered by the system for the total statistics, it is possible to get more fine grained
information. For example, we could get the total number of passengers for last
year’s April weekends between 12 and 16. Replicating the same functionality
with FIWARE data models and APIs would be complicated.

Table 1: The used FIWARE data models and required additions.

Case Entity types Added
attributes

Added
entity
types

Street lights Device
WeatherObserved
StreetlightGroup
StreetlightControlCabinet

X

Smart street
lights

StreetLight
StreetlightControlCabinet
SwitchingGroup *
AmbientLightSensor *

X X

Electric bus Vehicle X
Bus passenger
analytics

GtfsRoute
GtfsTrip
GtfsShape
GtfsStop
GtfsStopTime

X

lighting
maintenance 3PhaseAcMeasurement6 * X

Water
consumption

Device
Alert
AirQualityObserved

building
visitor counting

visitorCounter *
fillLevelCounter * X

building
air pressure

AirQualityObserved
PointOfInterest X

6A not yet official earlier version of our ThreePhaseAcMeasurement

Table 1: The used FIWARE data models and required additions.

Case Entity types Added
attributes

Added
entity
types

preventing
vandalism

Alert

Outdoor
lighting

StreetlightGroup
StreetlightControlCabinet X

Indoor
conditions

AirQualityObserved
NoiseLevelObserved
Room *

X

indoor
conditions 2

AirQualityObserved
NoiseLevelObserved

When creating new data models or expanding existing ones it is important
to both understand the source data and the FIWARE data modeling princi-
ples well. This comes especially apparent when there is no single person who
understands both. In most of our cases the CityIoT researchers had the FI-
WARE knowledge and the case implementer had knowledge about the data.
This requires then good communication and also understanding that this com-
munication is important. For example in the bus passenger analytics case the
company was not involved with the CityIoT project and communication was
sometimes slow. Understanding the data happens also on different levels: some
questions can be related to higher level concepts such as how the various entities
relate to each other and some questions can be detailed questions about a data
point: what does it mean and what values it can have. For example in the
indoor conditions 2 case it was unclear how the used sensor measured the noise
level. Was the value it gave the noise level at the measurement time or was it
an average from a longer period. This kind of information is important when
the data is used.

Creating the FIWARE model can also offer opportunities for making the
data more understandable. In the electric bus case the source data had numeric
values for the status of the bus doors, and user of the data was assumed to
know the encoding. For the data model we gave these attributes understandable
textual values.

Using the FIWARE service paths as part of the data model caused lot of
discussion during the project. They allow the formation of a hierarchy for the
data and thus fit nicely to certain cases. For example in the Indoor condi-
tions case there were multiple air quality sensors around the school building
in different floors and rooms. Thus it was quite natural to model the floor /
room hierarchy with service paths. For example /f/2/202 for room 202 in the
2nd floor or /f/1/116 for room 116 in the 1st floor. However, there are serious
technical limitations that discourages the use of service paths. They cannot be
queried from Orion which means that they have to be separately documented
in somewhere so that, for example, the user of the data can utilize them in their

API queries. For example, the Oulu FIWARE platform uses the CKAN data
registry to document the available data. To avoid the tedious manual data entry
of documenting the data to CKAN, scripts were developed in the project which
read the service path information directly from Orion’s MongoDB database and
via the CKAN API registers this information to the data registry. A human
user can then just add some clarifying description for the automatically added
data. Another issue with service paths is that orion also allows an entity with
the same id and type to be created under different paths which can cause con-
fusion later. Another limitation is related to STH Comet. Its way of storing the
service path information causes strict limitations to the length of the path. The
alternative for the service path hierarchy is to just use entity relationships or
other attributes. This issue is further discussed in the CityIoT Building Data
Model - Storing location information document.

When actually using the data models with FIWARE components it has to
be noted that the components do not have any special support for data models.
For example, Orion does not do any higher level validation for the data. It only
cares that the data is valid NGSI v2 entities. Thus validating the data against
a data model is the responsibility of the user.

4.2 Data conversion
This section explores issues related to converting the data from its original source
into FIWARE entities required when using Orion directly and not through an
agent. It explores what kind of conversions had to be made and how the con-
struction of the entities and their attributes was done.

In all of the Tampere cases the data conversion had a similar basis. Data
was fetched via a web API and the data was received in the JSON format.
So, in all of these cases the data conversion involved building suitable entity
representations from the fetched JSON.

In most cases the conversion was just mapping values from the source JSON
to the FIWARE entity attributes. However, in some cases the value was also
converted such as the door status values in the electric bus case described in
the previous section. In the street light case we went even further and used
and external service as a part of the data conversion. The source data did
not contain understandable location coordinates. It only had street addresses
which were then converted into location coordinates with the help of an external
service.

Time information can sometimes cause conversion issues if the time zone
used is not clearly specified in the format used by the data source. FIWARE
uses the ISO 8601 time format and further recommends that UTC is used as
the timezone. Thus for example Monday 9th of March 2020 at 10:42:30 Finnish
normal time (UTC +2) should be represented as 2020-03-09T08:42:30Z. For ex-
ample in the street lights case most of the timestamps did not contain time zone
information. In the electric bus case unix timestamps were used so the con-
version to the ISO format was easy with build-in methods of the programming
language used in the conversion tool.

https://ckan.org/
https://drive.google.com/file/d/1TETr02RbaF3tCEDtHPCtM8EvKx9rGvsi/view
https://drive.google.com/file/d/1TETr02RbaF3tCEDtHPCtM8EvKx9rGvsi/view

Some times values from multiple source attributes had to be combined under
one attribute for example three phase voltage and current in the street light case
or latitude and longitude in the electric bus case. In this kind of case it has to
be kept in mind that subattributes of a StructuredValue attribute do not have
their own metadata. Instead they all share the same metadata most notably
the same timestamp. So, when combining separate measurements under one
StructuredValue they all have to share the same timestamp.

Often a complete entity could not be constructed from the data returned
by a single API request. Instead multiple requests had to be made to different
API endpoints or the single API endpoint with different parameters. In the
street lights case a single Device entity representing a door status sensor asso-
ciated with a group of street lights required data from two API endpoints: one
providing the electricity measurements and the location of the group and an-
other providing the actual door status. In the electric bus case history for each
measurement had to be fetched separately from the same endpoint by giving
different measurement ids as a parameter.

For example if we want updates for one bus’s location attribute for a 10
second period starting on 2nd March 2020 at 17:05:50 UTC. We have to make
two HTTP requests to the data source: one to fetch latitudes for the time
period and one to get longitude values for the period. Listing 2 line 1 - 48
shows the relevant parts of the request URIs and the response JSON. Note
that the only difference in the paths on lines 1 and 25 are the measurement ids
between datanode and processdata. The query parameters begin and end define
the time period as unix timestamps in microseconds. Both responses contain 3
measurements each consisting of the coordinate value (v) and timestamp (ts)
which is also a unix timestamp in microseconds. From this data we can get
three latitude longitude value pairs where latitude and longitude share the same
timestamp. However the data source does not guarantee that the timestamps
match so that has to be checked during the data conversion. From the latitude
longitude pairs we can then create the three location attribute updates with
timestamp metadata shown starting on line 49.

As these experiences show, although the FIWARE data models are quite sim-
ple as is in principle the data conversion, it still requires some work. One com-
pany implementing the pilots thought the FIWARE data structures to be heavy
from the perspective of integrating their system to FIWARE. This company and
another company also felt that adapting their data to FIWARE required more
effort than similar cases. The use of the ultralight IoT agent might have helped
in these cases since the data format is more simple. However the agent still has
to be configured for the conversion to NGSI-v2. The agent conversion has also
some limitations. It cannot change the values to be more understandable or
combine different values under a single StructuredValue attribute.

4.3 Sending the data
This section describes experiences related to sending the converted data to FI-
WARE. It discusses the various ways of adding and modifying the entity data

Listing 2: Data conversion example with two responses from a data source and
three entity attribute updates created from them.

1 path : /datanodes /2074/ processdata ? begin =1583168750000000&end=1583168760000000
2 response : {
3 " type " : " processData " ,
4 " l im i t " : 10000 ,
5 " order " : " ascending " ,
6 " begin " : 1583168750000000 ,
7 "end " : 1583168760000000 ,
8 " items " : [{
9 " type " : "num" ,

10 " t s " : 1583168750222297 ,
11 "v " : 61.502068
12 } ,
13 {
14 " type " : "num" ,
15 " t s " : 1583168755193949 ,
16 "v " : 61.502148
17 } ,
18 {
19 " type " : "num" ,
20 " t s " : 1583168756233061 ,
21 "v " : 61.502148
22 }
23]
24 }
25 path : /datanodes /2080/ processdata ? begin =1583168750000000&end=1583168760000000
26 response : {
27 " type " : " processData " ,
28 " l im i t " : 10000 ,
29 " order " : " ascending " ,
30 " begin " : 1583168750222297 ,
31 "end " : 1583168760222297 ,
32 " items " : [{
33 " type " : "num" ,
34 " t s " : 1583168750222297 ,
35 "v " : 23.779667
36 } ,
37 {
38 " type " : "num" ,
39 " t s " : 1583168755193949 ,
40 "v " : 23.779671
41 } ,
42 {
43 " type " : "num" ,
44 " t s " : 1583168756233061 ,
45 "v " : 23.779671
46 }
47]
48 }
49 Attr ibute updates :
50 " l o c a t i on " : {
51 " type " : "geo : j son " ,
52 " value " : {
53 " type " : "Point " ,
54 " coo rd ina t e s " : [23 .779667 , 61.502068]
55 } ,
56 "metadata " : {
57 "timestamp " : {
58 " type " : "DateTime" ,
59 " value " : "2020−03−02T17 :05 : 50 . 222297"
60 }
61 }
62 }
63 " l o c a t i on " : {
64 " type " : "geo : j son " ,
65 " value " : {
66 " type " : "Point " ,
67 " coo rd ina t e s " : [23 .779671 , 61.502148]
68 } ,
69 "metadata " : {
70 "timestamp " : {
71 " type " : "DateTime" ,
72 " value " : "2020−03−02T17 :05 : 55 . 193949"
73 }
74 }
75 }
76 " l o c a t i on " : {
77 " type " : "geo : j son " ,
78 " value " : {
79 " type " : "Point " ,
80 " coo rd ina t e s " : [23 .779671 , 61.502148]
81 } ,
82 "metadata " : {
83 "timestamp " : {
84 " type " : "DateTime" ,
85 " value " : "2020−03−02T17 : 05 : 56 . 233061Z"
86 }
87 }
88 }

via the FIWARE APIs.
In FIWARE the data is not automatically copied from Orion to history

component unless there is a suitable subscription. Thus, if some entity attributes
should be stored in history component, a new subscription should be added.
Entities can be created by sending their JSON representation to Orion. This first
data contains at least an entity id and the type and usually some static attributes
whose value will not change such as a name or location for something that does
not move. After that dynamic attributes, whose value changes over time, can be
updated as required. Orion offers multiple ways for updating the entity. There
are API endpoints for updating a single entity attribute or for updating multiple
attributes at once by sending an entity representation containing the attributes
with new values. Orion also has a batch update endpoint that is used to create
or update multiple entities with one request. It takes a list of entity updates as
the request payload.

In many cases we found the batch update method very useful. When there
is lots of updates it makes the update process more efficient. Though if Orion
subscriptions are used to update the history component, some care is required
when constructing the update list. If a single entity update has multiple at-
tributes they should have the same timestamp in order to be stored correctly
to the QuantumLeap component.The reason for this is explained in the next
section. If there are multiple updates for the same attribute of a single en-
tity in one update request, some of them might not be sent successfully to the
history component. Another issue related to sending multiple updates of the
same entity is to make sure that the newest update is sent last to Orion. Orion
considers the information send most recently to be the most up to date version
of the entity regardless the actual attribute timestamps.

The Orion subscription system has also other issues when it is used with
a history component. Even if the entity updates are sent in separate requests
to Orion all of them might not arrive to the history component. There are
performance issues with the subscription system when too much data arrives
too fast. This happened for example in the electric bus and street lights cases.
To avoid this the sending of the data has to be slowed down, i.e., there must
be a short gap between requests. This kind of data sending is challenging since
you want to be as efficient as possible but you don’t want to lose any data and
there is no easy way to find the correct speed for sending the data. It has to
be also noted that even though Orion can consider a subscription notification
successfully sent, it does not guarantee that the data has been successfully
stored to the history component. This can happen if an error occurs in the
history component after it has acknowledged the notification request. Care has
to be also taken when creating the subscriptions. Its possible to create the
same subscription twice or to create different subscriptions whose notification
conditions and notification contents overlap. The result then can be duplicate
values in the history component.

Another possibility of avoiding the subscription issues is to simply not use
them and to send the data directly to the history component. This was the case
in the electric bus case where there were also other issues with the subscription

system. In that case QuantumLeap was the history component used. The
entity updates were directly sent to QuantumLeap’s notify API endpoint where
normally the Orion subscription notifications arrived. Though there was an issue
where QuantumLeap did not accept notifications containing multiple updates
even though the NGSI v2 specifies that a notification can contain multiple items.
We were able to change the code to work with multiple updates. We also made
a pull request about this change which was accepted.

A different way of adding data to Orion is to link it to another Orion via
subscriptions. Orion has an API endpoint for processing subscription notifi-
cations. This allows data transfer between different FIWARE based platforms.
This feature was used in the smart street lights case where the pilot implementer
had connected the street lights to their own FIWARE platform from where data
was then forwarded to the Tampere university FIWARE platform.

4.4 Data processing and storage
This section explores how the way FIWARE stores and handles the data affected
the cases. It both affected how the data was sent and how it could be used.

The other reason for not using the subscription system in the electric bus
case, as discussed in the previous section, were its issues in updating attributes
that are updated independently from each other. Some measurements are up-
dated about every second and some every few seconds. Creating a suitable
subscription or subscriptions for this kind of data turned out to be impossible
due to the way QuantumLeap processes and stores the data. A simple subscrip-
tion, where all attributes are sent if any attribute changes, causes the original
update times of attributes to be lost. This is because although the notification
can have attributes with different timestamps, QuantumLeap chooses only the
most recent time stamp of them and stores all attributes under that. This is
also the reason for only including attributes that share the same timestamp into
a single entity update described in the previous section. The consequences of
this way of handling the data is illustrated in table 2, which shows the correct
data, and table 3, which shows the data when using the simple subscription.
However even if QuantumLeap would handle timestamps correctly we would
then get duplicate values for attributes under the same timestamp. It has to be
also noted that after the electric bus case collector was implemented, an option
was added to Orion which sends only those values that have changed. This
option probably would have solved this issue. This new option was introduced
with Orion version 2.3.0 while we were using Orion version 2.2.0 at the time of
implementation.

The other option of using subscriptions in the electric bus case was to create
attribute specific subscriptions where if the attribute is changed its value is
notified. But here also the way QuantumLeap processes and stores the data
causes an issue as illustrated in table 4. Each attribute notification is processed
and stored separately and the resulting data looks odd. It contains multiple
database entries for the same timestamp, where each entry has a value for just
only one attribute and shows that other attributes do not have any values.

https://github.com/smartsdk/ngsi-timeseries-api/pull/191

Table 2: Data when send directly to Quantumleap.
Timestamp airTemperature chargeState doorStatus power
2019-05-27T09:00:01.000 10.90625 null null -34.8
2019-05-27T09:00:02.000 null null null -54.2
2019-05-27T09:00:03.000 10.90625 null null -83.4
2019-05-27T09:00:04.000 null null null -103.9
2019-05-27T09:00:05.000 null 77.0 closed -152.0

Table 3: Data in Quantumleap when using a simple subscription.
Timestamp airTemperature chargeState doorStatus power
2019-05-27T09:00:01.000 10.90625 77.0 closed -34.8
2019-05-27T09:00:02.000 10.90625 77.0 closed -54.2
2019-05-27T09:00:03.000 10.90625 77.0 closed -83.4
2019-05-27T09:00:04.000 10.90625 77.0 closed -103.9
2019-05-27T09:00:05.000 10.90625 77.0 closed -150.0

Because of this we also rounded the timestamps in to second precision from
the original microsecond precision. Otherwise every measurement had a unique
timestamp and thus its own entry in QuantumLeap as shown in table 5.

Table 4: Data in Quantumleap when using attribute subscriptions.
Timestamp airTemperature chargeState doorStatus power
2019-05-27T09:00:01.000 10.90625 null null null
2019-05-27T09:00:01.000 null null null -34.8
2019-05-27T09:00:02.000 null null null -54.2
2019-05-27T09:00:03.000 null null null -83.4
2019-05-27T09:00:03.000 10.90625 null null null
2019-05-27T09:00:04.000 null null null -103.9
2019-05-27T09:00:05.000 null 77.0 null null
2019-05-27T09:00:05.000 null null closed null
2019-05-27T09:00:05.000 null null null -152.0

Table 5: Data in Quantumleap when timestamps are not rounded.
Timestamp airTemperature chargeState doorStatus energyConsumed
2019-05-27T08:59:59.562 null 77.0 null null
2019-05-27T09:00:00.393 null null closed null
2019-05-27T09:00:01.009 null null null 9.6
2019-05-27T09:00:01.421 10.90625 null null null
2019-05-27T09:00:03.422 10.90625 null null null
2019-05-27T09:00:04.661 null 77.0 null null
2019-05-27T09:00:05.478 null null closed null

There was also another issue related to processing of timestamps in Quan-
tumLeap. As discussed in 4.1 the FIWARE data modeling documentation in-
structs that the meta data attribute indicating attribute measurement time
should be named timestamp. However in our first QuantumLeap use case street
lights, we noticed that QuantumLeap does not process the timestamp in the
timestamp attribute. Instead it expected a meta data attribute named Time-
Instant which is used by some FIWARE IoT agent components. We had to
make a code modification to QuantumLeap to get it working with our data.
We also made a pull request for this change which was accepted. This default
QuantumLeap behaviour may indicate that there is not enough coordination in
the FIWARE community for ensuring that all parts work seamlessly together.

How the FIWARE components handle attribute metadata affects how data
is sent and used. Metadata is stored only to Orion and not to the history
components. Thus, even though the user of the data would be interested only on
the data history, they still have to check the metadata from Orion if they require
it. This also does not take into account the possibility that the metadata might
have changed at some point. However when sending updates for an attribute to
Orion its metadata has to be always sent even if it has not changed. Otherwise
the existing metadata is lost.

As already discussed in 4.1 Orion does not perform any data model valida-
tion. However the lack of validation goes further giving the data sender a lot of
responsibility on correct NGSI v2 usage. Orion does not check that a value of
an attribute matches the given type so attribute of type Number could have a
character string as its value. This requires also more from the data user since
they have to also check the data before using it. Orion does not require that the
structure of a StructuredValue stays the same. This of course can give the data
sender more flexibility but again can complicate the data user’s work. There is
also a limitation in Orion’s processing of timestamps. It can handle time only
on second precision. It does not even just round time to seconds instead it just
truncates the timestamp to seconds.

When using STH Comet as the history component we observed some perfor-
mance issues. They are due to STH Comet calculating some aggregate values
such as averages from the measurements always when new data arrives. These
aggregates are then stored for future use. This behaviour can be turned off
but this configuration works on the level of the STH Comet instance so for
example it cannot be set on a FIWARE service level. So, if there are varying
requirements between different data sources for aggregate data multiple STH
comet instances are required with different configurations. This differs from
QuantumLeap which calculates aggregates only when they are requested. Of
course then some performance issues may arise if there are too many requests
for aggregated data.

If Grafana is used in visualizing data stored in QuantumLeap there may
arise an issue in how to store static data. This was the case in the street lights
and bus passenger analytics cases. Generally speaking it makes sense to store
static data such as bus stop locations to only Orion. Dynamic attributes such
as number of daily passengers for a bus stop is then stored to both Orion and

https://github.com/smartsdk/ngsi-timeseries-api/pull/176

QuantumLeap. However accessing data from Orion with Grafana is not trivial.
Since we wanted to use the static data in visualizations, we ended up also storing
it to QuantumLeap although strictly speaking it is unnecessary duplication of
data.

5 Conclusions
This document reports experiences in collecting data to FIWARE from 12 smart
city pilots implemented in the CityIoT project. The pilots covered various smart
city domains such as street lights, public transport, prevention of vandalism
and indoor condition monitoring of buildings. Data was collected to one of
two FIWARE platform instances that both used the Orion context broker and
either the STH Comet or QuantumLeap measurement history components. We
divided the reported experiences in to four broad categories: data models, data
conversion, data sending, and data processing and storage.

In these cases we found the existing FIWARE data models quite useful. We
were able to utilize them in most of the cases. However, in many cases we had to
make some additions. Based on these experiences it can be said that a FIWARE
user, who adds new data to FIWARE platform, may need to make some modi-
fications to existing models or even to create a new data model. One important
lesson from the pilot cases was the importance of understanding the source data
when designing the data model. This often requires good communication be-
tween various stakeholders. Another important thing to note when using the
FIWARE data models is to keep in mind that the FIWARE components do not
actually care about conformance to data models so the responsibility of correct
usage and validation falls to the users.

Based on our experiences, the conversion of the data from its original source
to the FIWARE format is, in principle, quite straightforward. However, the
conversion can still require surprising amount of work when the structure of the
source data differs from the NGSI-v2 model. The FIWARE entity data might
have to be combined from different source API endpoints. Issues may arise
when data has to be combined into more complex attribute values and at the
same time the timestamps of the values need to be synchronized.

We found the sending of the data to the Orion component to be simple since
Orion offers many ways of sending data from the update of a single attribute
to a batch update of multiple entities. However, some issues can arise when the
data should also be sent to the history component. This is the case especially
when the amount of data is big and it is updated often. The recommended way
of using the Orion subscription system suffers from performance and other issues
described in subsection 4.3. Thus, in some cases it can be easier to just ignore
the subscription system and send the data directly to the history component.

Our experiences show that the way the FIWARE components process and
store data can affect the data collection in various ways. For example, the
way QuantumLeap processes timestamps may also lead to sending the data
directly without using the Orion subscription system. Other notable issues

were handling of metadata, lack of strict data validation and the performance
issues of the STH comet component.

This report shows that real-life use of FIWARE in different cases can reveal
issues that might not be apparent by just reading the FIWARE documentation
or experimenting with the FIWARE tutorials. Although this document mainly
concentrates on FIWARE issues and difficulties, our purpose is not to discour-
age the use of FIWARE especially since this document covers only one aspect
of FIWARE and does not for example cover the positive aspects, especially the
ability to handle many types of complex data. Rather, we hope that this docu-
ment can give people considering using FIWARE extra information for making
their decision and planning of the work. We also hope that this document may
help people already using FIWARE to avoid or deal with the issues we have
encountered.

	Introduction
	FIWARE technology
	Data models
	Components of FIWARE
	Orion
	IoT agent for Ultralight 2.0
	STH Comet
	QuantumLeap

	Use of FIWARE in CityIoT
	Platform instances
	Data collection cases
	Tampere cases
	Oulu

	Experiences
	Data models
	Data conversion
	Sending the data
	Data processing and storage

	Conclusions

