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Abstract. The learning of sensorimotor contingencies is essential for the
development of early cognition. Here, we investigate how such process
takes place on a neural level. We propose a theoretical concept for learn-
ing sensorimotor contingencies based on motor babbling with a robotic
arm and dynamic neural fields. The robot learns to perform sequences of
motor commands in order to perceive visual activation from a baby mo-
bile toy. First, the robot explores the different sensorimotor outcomes,
then autonomously decides to utilize (or not) the experience already
gathered. Moreover, we introduce a neural mechanism inspired by recent
neuroscience research that supports the switch between exploration and
exploitation. The complete model relies on dynamic field theory, which
consists of a set of interconnected dynamical systems. In time, the robot
demonstrates a behavior toward the exploitation of previously learned
sensorimotor contingencies and thus selecting actions that induce high
visual activation.

Keywords: Sensorimotor Contingencies, Dynamic Field Theory, Neural
Networks, Developmental Robotics

1 Introduction

The acquisition of early sensorimotor behavior is widely studied in robotics to
understand human cognition. In this work, we take insights from neuroscience
and developmental psychology to propose a model of the early sensorimotor
development driven by neural dynamics [1].

To do so, this paper relies on the field of developmental robotics [2]. In-
deed, the principles of developmental processes are a key to better understand-
ing human intelligence. Modelling cognition respecting these principles would
theoretically allow a robot to learn and evolve by following the same stages as
an infant. In addition, research in developmental psychology and neuroscience
are demonstrated to be fundamental for the cognitive abilities of robots. The
theory of Sensorimotor Contingency [3] states that sensing is a form of action.
The experience of perception (vision, touch, hearing, etc.) is a result of a close
interaction with the environment rather than the activation of an internal model
of the world through sensing. For example, developmental psychologists such as
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Piaget [4] were the first to formulate the ”primary circular-reaction hypothe-
sis” where children generate ”reflexes” and these reflexes change (even slightly)
when they produce an effect on the children’s environment. Several models pro-
pose a reproduction of this developmental stage through motor babbling. For
example, Demiris and Dearden [5] propose to associate motor commands with
the sensori outcomes and demonstrate the possibility to use that experience for
imitation. Closer to our approach, Mahoor et al. propose a neurally plausible
model of reaching in an embodied way through motor babbling [6]. To do so,
they use a set of three interconnected neural maps to learn the dynamical re-
lationship between the robot’s body and its environment. In order to develop
a motor babbling behavior, the robot must be able to autonomously generate
motor commands and observe the outcomes in a closed loop. More recent work
investigates intermodal sensory contingencies to see if self-perception could lead
to causality interpretation [7]. By using a novel hierarchical bayesian system, the
researchers were able to combine proprioceptive, tactile and visual cues together
in order to infer self-detection and object discovery. In addition to these results,
this study states the importance of interacting with the environment as an active
process. Indeed, the robot refines its own model of the world and thus can infer
more knowledge by continuously interacting with it. In this work, we propose
to address the learning of sensorimotor contingencies by extending the previ-
ous work [8] and endow the architecture with a mechanism that autonomously
switch between exploration and exploitation.

In the literature, the exploration/exploitation architecture has been a chal-
lenge for years, spreading beyond the fields of robotics and computer science
to become a multidisciplinary issue [9]. The exploration/exploitation trade-off is
widely investigated with reinforcement learning. A classical way to deal with this
issue is the greedy approach, where a probability determines when to explore or
exploit [10]. Work related to learning from demonstration proposes to use a con-
fidence metric for learning a new policy [11]. In that case, when the confidence
level reaches a certain threshold, the agent asks for a new demonstration. Other
research proposed an architecture for learning sensorimotor contingencies based
on the past rewards observed by the robot [12]. The action selection algorithm
can be seen as an exploration/exploitation trade-off that chooses to explore
a new action if this one was never taken before. Then, the algorithm assigns
a probability to an action depending on the reward observed. This work rests
close to our approach by how they are representing and selecting actions. Despite
demonstrating significant results, these attempts rarely take inspiration from the
human brain, even less on a neural level. This contribution proposes a method
to tackle the exploration/exploitation trade-off based on neural dynamics and is
inspired by recent progress in neuroscience. Indeed, Cohen and colleagues [13]
suggested that two neuromodulators (acetylcholine and norepinephrine) can be
a signal for a source of certainty or uncertainty and thus a factor influencing the
trade-off. In recent works, the role of the basal ganglia indicates a modulation
of the exploration/exploitation trade-off through dopaminergic control [14]. In-
terestingly, they advance that the level of dopamine influences the choice of an
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action. Specifically, that under certain conditions the increase of the dopamine
level decreases the exploration of new actions.

Dynamic neural fields are used in this paper to explore the environment and
predict changes by exploiting newly learned associations. Dynamic Field Theory
(DFT) is a new approach to understand cognitive and neural dynamics [15].
DFT is suitable to deliver homeostasis [16] to the architecture, providing an
intrinsic self-regulation of the system. For the learning of sensorimotor contin-
gencies, the approach allows various ways of learning. The most basic learning
mechanism in DFT is the formation of memory traces of positive activation of
a Dynamic Neural Field [17]. The use of memory trace fields will support the
learning of sensorimotor associations. Usually, the learning of sequences within
DFT is achieved by a set of ordinal and intention nodes [18]. This requires to
know a priori the type of content to learn (intention nodes) and the finite num-
ber of actions (ordinal nodes). Due to the nature of sensorimotor contingencies,
it is not possible to predict how many actions and which one of them would lead
to the highest neural activation. However, it is still possible to implement rein-
forcement learning within DFT [19] but only by discretizing the actions space
into nodes. This contribution proposes to extend the literature of DFT by intro-
ducing an exploration/exploitation architecture without knowing the number of
actions to learn beforehand.

In this paper, we propose a model to learn sensorimotor contingencies based
on a neural mechanism that allow the autonomous switch between the explo-
ration/exploitation stage. We set up a robotic experiment where a humanoid
robotic arm [20] is attached to a baby mobile toy with a rubber band. The
robot then learns how to move its arm in order to get a visual feedback. Before
performing an action, the robot autonomously decides to explore or exploit the
sensorimotor experience based on the neural mechanism inspired by recent re-
search in neuroscience. The proposed architecture is self-regulated and is driven
by Dynamic Neural Fields in a closed loop, meaning the actions influence future
perceptions.

2 Dynamic Field Theory

Dynamic Field Theory is a theoretical framework that provides a mathematical
way to model the evolution in time of neural population activity [15]. It demon-
strated its ability to model complex cognitive processes [21]. The core elements of
DFT are Dynamic Neural Fields (DNF) that represent activation distributions of
neural populations. A peak of activation emerges as a result of a supra-threshold
activation and lateral interactions within a field. A DNF can represent different
features and a peak of activation at a specific location corresponds to the current
observation. For instance, a DNF can represent a visual color space (from Red to
Blue in a continuous space) and a peak at the ”blue location” would mean that
a blue object is perceived. Neural Fields are particularly suitable to represent
continuous space.
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Fig. 1: A dynamic neural field activation spanned accross the feature x.

Dynamic Neural Fields evolve continuously in time under the influence of
external inputs and lateral interactions within the Dynamic Field as described
by the integro-differential equation :

τ u̇(x, t) = −u(x, t) + h+ S(x, t) +

∫
σ(u(x′, t))ω(x− x′)dx′, (1)

where h is the resting level (h < 0 ) and S(x,t) is the external input. u(x,t) is the
activation field over a feature dimension x at time t and τ is a time constant. An
output signal σ(u(x,t)) is determined from the activation via a sigmoid function
with threshold at zero. This output is then convoluted with an interaction kernel
ω that consists of local excitation and surrounding inhibition [22]. The role of the
Gaussian kernel is crucial since different shapes influence the neural dynamics
of a field. For example, local excitatory (bell shape) coupling stabilizes peaks
against decay while lateral inhibitory coupling (Mexican-hat shape) prevents the
activation from spreading out along the neural field. Depending on the coupling
between local excitation and global inhibition, a neural field can operate on
several modes. In a self-stabilized mode, peaks of activation are stabilized against
input noise. In a self-sustained mode, the field retains supra-threshold peaks even
in the absence of activation. A selective mode is also possible through a lateral
inhibition that allows the emergence of a single peak of activation. By coupling
or projecting together several neural fields of different features and dimensions,
DFT is able to model cognitive processes. While neural fields are the core of the
theory, other elements are also essential to our work.

Dynamic neural nodes are essentially a 0 -dimensional neural field and follow
the same dynamic:

τ u̇(x, t) = −u(x, t) + h+ cuuf(u(t)) +
∑

S(x, t). (2)

The terms are similar to a Neural Field except for cuu which is the weight of a
local nonlinear excitatory interaction. A node can be used as a boost to another
Neural Field. By projecting its activation globally, the resting level of the neural
field will rise allowing to see the rise of activation peaks.
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Finally, the memory trace is another important component of DFT:

v̇(t) =
1

τ+
(−v(t) + f(u(t)))f(u(t)) +

1

τ−
(−v(t)(1 − f(u(t))), (3)

with τ+ < τ−. A memory trace in DFT has two different time scales, a build
up time τ+ that corresponds to the time for an activation to rise in the memory
and a decay time τ− which is the time decay of an activation.

3 Model

In this paper, the model autonomously adopts a motor babbling behavior in or-
der to learn sensorimotor contingencies. The system explores the motor space by
linking together motor commands and observed outcomes. Then, it autonomously
decides when to balance the exploratory and exploitatory behaviors. For more
clarity, we split the explanation of the model between the exploration, the ex-
ploitation process and the switch component. In this paper a single degree of
freedom is considered (the upper arm roll joint) to activate the robot’s arm. Each
two dimensional field is divided by states and actions of that joint along the hor-
izontal and vertical dimension respectively. Representing neural fields that way
allows to represent the current state of the upper arm roll horizontally and the
action to be selected (future state of the joint) vertically. Each dimension is de-
fined between the interval [0;100] and represents a motor angle within a range of
[-1;1]. For instance, if a peak of activation emerges at position [25;75], this means
at state 25 (motor angle of -0.5) the action 75 (angle of 0.5) is selected. The use
of a single degree of freedom is a current limitation of the model, although we
will discuss about the possibility to use the complete arm kinematics in section
5.

3.1 Exploration

In order to explore the environment, the model must first generate motor com-
mands and associate them with the perceived outcomes.

Action Generation Regarding the formation of motor commands, the model
relies on neural dynamics. Since the two dimensional neural fields are represented
by states (horizontally) and actions (vertically), the principle is the following : a
zero dimensional memory trace (slow boost module) slowly increases the resting
level of a neural field (action formation field) until a peak of activation emerges
(Figure 2). This particular memory trace (Equation 4) rises activation when
the node bExplore is active, and resets the activation when an action has been
performed (CoS field).

v̇(t) =
1

τ+
(−v(t) + f(u(t)))f(u(t)) + σ(ncos)

[ 1

τ−
(−v(t)(1 − f(u(t)))

]
. (4)
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Fig. 2: General Architecture. Here, the model follows an exploration phase as
seen by the activation within the different neural fields. The connections point
directly to a field or to a group of fields for more clarity. However, the Condition
of Exploitation (CoE) field does not receive input from the motor states field.
The neural dynamics drive entirely the exploration/exploitation of sensorimotor
contingencies.

The Condition of Satisfaction (CoS) field signals when an action is over, in other
words, it indicates when the motor state corresponds to the action just taken. For
clarity, Figure 2 only shows the connection between the CoS field and the slow
boost without adding the (ncos) node. But in practice, the CoS field projects
activation to (ncos) then activates the dynamics of the two slow boost memory
traces. During the rise of an activation, an inhibition of return takes place in
order to avoid generating the same action twice. This mechanism is well studied,
especially regarding visual attention [23], [24], where immediately after an event
at a peripheral location, there is facilitation for the processing of other stimuli
near that location. Therefore, when a peak reaches the threshold of activation
within the AF field, the stimuli is projected and recorded to a memory trace
before being projected again as an inhibitory input. Following, the activation
within the AF field is transmitted to a motor intention field via a selective
field. The memory section of our model associates a visual stimuli to the action
performed.
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Memory Association The perception of visual stimuli is done through the
camera inside the robot’s head. A motion detector substracts two consecutive
images and applies a threshold to observed the changed pixels. The result is then
scaled from 0 to 1 and serves as input to the reward peak module. This gathers
the actions being executed with the value of the visual stimuli. In practice,
it forms a Gaussian curve centered at the action location within the motor
intention field with an amplitude corresponding to the visual stimuli currently
perceived. If the stimulus is strong enough, a peak of activation appears within
the actions/states field. During the execution of an action, a memory trace keeps
track of perceived stimuli (Equation 5).

v̇(t) = σ(nrec)

[
1

τ+
(−v(t) + f(u(t)))f(u(t)) +

1

τ−
(−v(t)(1 − f(u(t)))

]
. (5)

This last memory trace slightly differs from the Slow Boost since the dynamics
evolve only when the nrec node is active. This allows the storing of perceptions
only during an action, when a peak appears in the motor intention field. With-
out the presence of a nrec node to control the activation, and due to the nature
of the experiment, the memory trace would store stimuli that do not necessar-
ily correspond to the action currently performed. The next part describes the
exploitation of the sensorimotor associations.

3.2 Exploitation

The exploitation behavior select an action according to the current motor state.
Given a motor position, the model encoded the result of actions taken during
exploration. Here, a choice is made by selecting the action with the highest peak
encoded in memory. Then, the exploitation of the sensorimotor contingencies
is straightforward : the model follows the ”path” of high activation along the
memory trace and executes the corresponding actions. To do so, the exploit
field receives input from the memory trace and the current motor state. A slow
boost (Equation 4) rises the resting level in that field until a peak reaches the
supra-threshold activation (Figure 3).

Following, rising the resting level of the exploit field triggers the emergence of
the best action for the current motor state. As presented in the previous section,
the best action is the one producing the biggest/most important changes in the
environment. So, the model executes the best action, updates its position (motor
state), rises the resting level and executes the best action again. By doing so,
a pattern appears and produces the same sequence of actions which generates
the highest visual neural activation for the robot. The last part of the model
introduces the balance mechanism, and how it enables autonomously switching
between exploration and exploitation.

3.3 Balancing Exploration and Exploitation

As presented in the introduction, the exploration/exploitation trade-off is not
trivial to approach. In this work, we propose a neural mechanism inspired by
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Fig. 3: Snapshot of the exploitation stage when rising the resting level of the
exploit field. Top row represents the activation within the exploit field. Bottom
left is a 3D view of the sigmoid activation. Bottom right is the selective field for
the case where multiple activations would appear.

neuroscience to address this issue. It is already known that the basal ganglia
plays a major role in learning [25]. Moreover, recent discoveries [14] suggest
that the basal ganglia influences the decision to explore or exploit one’s own
experiences. More precisely, a moderate and regular level of dopamine leads
to a more exploitative behavior. Two functions of the basal ganglia have been
developed here: its role as a reinforcing signal and its influence on the choice of
a strategy.

More precisely, the reinforcing signal is seen as an excitatory peak of activa-
tion when the robot explores an action with a high visual outcome. To do so,
we use a memory trace (MtVision) that takes as input the vision field (supra-
threshold activation at the current state location only when a visual stimuli
happens) and the nrec node. By doing so, an activation peak rises at the loca-
tion of the current motor state when an action is being performed. The principal
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advantage is to signal at which state the robot perceived a high stimulus. For
example, if the robot goes through the same state many times, but does not
perform any meaningful action from that state, then there is no activation at
that location.

To select a strategy, the model delivers a small excitatory signal each time
an action is explored. The goal here is not to accurately model the findings
from [14] but rather see if a regular input of dopamine could effectively lead
toward an exploitative behavior. A memory trace (MtStates) imitates a regular
and moderate flow of dopamine to keep track of the number of times a state
has been visited. This field receives input from the motor state briefly before
selecting a new action. Independently from any visual change, an activation
peak slowly rises during an action (nrec active) at the current state. If a state
has been visited several times, then the activation at that location will be high.

So, MtVision delivers a punctual activation at a current state location when
a visual stimuli happens and MtStates regularly increases the activation at the
current state location. We then project these two memory traces to the Condition
of Exploitation field (CoE). When a peak emerges within that field, then the
bExploit node is active and triggers the exploitation process.

To resume the switch mechanism :

– When a state has never been visited (activation within MtStates low) and
no reward action was performed (no activation within MtVision), there is
no peak of activation within CoE.

– If a state was visited only a few times (MtStates) but a high reward ac-
tion was performed (MtVision), a peak emerges from CoE and trigger the
exploitation.

– A state visited multiple times with no meaningful action produced will ac-
tivate the CoE node.

The rest of the processing is rather simple : when bExploit is active, it acti-
vates the boost from exploitation. Simultaneously, bExplore receives inhibition
to avoid generating an action. The field actions/states from the memory part is
also inhibited to bypass recording the exploited action. The same process takes
place for the vision field in the confidence section. The exploited action must not
influence MtVision by increasing an activation. Indeed, an experience with new
stimuli is considered highly rewarding and strengthened when it is first encoun-
tered. To be closer to reality, a decay mechanism could be introduced when the
same stimuli is processed, however, this did not bring significant changes to the
results. The next section presents the experimental results of our model with a
humanoid robotic arm.

4 Results

Experiments were conducted with a humanoid robotic arm [20] and a camera.
The robot is a 3D printed arm with 7 degrees of freedom (+2 for the head).
In this settings, only a single degree of freedom is utilized (upper arm roll). A
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rubber band is attached from the palm of the hand to one of the moving toys in
the baby mobile. The camera (intel RealSense D435) mounted inside the custom
designed head [26] is used for visual perception (i.e. motion detection). The toys
hanging on the baby mobile are within the visual field of the camera whereas
the arm is out of sight. The experiments consist of a set of 10 trials lasting 350
seconds each. Each memory trace is cleared before launching a new trial.

Fig. 4: Set up of the GummiArm, with the rubber band linking the robot’s palm
with the babymobile toy.

Regarding the visual neural activation (Figure 5-left), the linear regression
shows a rise after 150 seconds. This is approximately the moment when the
architecture begins to exploit the experience already gathered. At that time, the
robot already visits states with high value, meaning when actions with a high
visual activation are selected. On a neural level, this is the moment when the
Condition of Exploitation field emits a peak to activate the bExploit node and
thus inhibits the bExplore node.

The activation of these nodes in time provides a clear representation of when
the robot is exploring the environment or exploiting the gathered experience
(Figure 5-right). Despite the fact that the activation in time of these nodes is
averaged between 10 trials, there is almost no overlap (no activation from both
nodes at the same instant). The time activation demonstrates a clear tendency
toward an exploitation behavior after 250 seconds. Most importantly, the fre-
quency at which the bExploit node is active corresponds to the increase of visual
neural activation seen before. Indeed, the exploitation phase does lead to a gain
of visual reward and the switch between both behaviors prevents the robot from
being blocked on a specific state. For example, the robot could decide to exploit
a state without having discovered a significant action. In that case the model
would be blocked because there would be no action to exploit in that state. De-
spite that risk, the robot produces a sequence of actions without finishing in a
”dead” state.



A Neurally Inspired Mechanism to Learn Sensorimotor Contingencies 11

Fig. 5: Average results for 10 experiments. Left : the average visual neural activa-
tion over time of 10 experiments is represented by a linear regression. The curve
shows an increase of visual activation when the model begins to exploit the
sensorimotor contingencies. Right : the sum of the activation nodes bExplore
and bExploit (respectively when Exploring and Exploiting) over time for the
10 experiments. A decision for exploration (at the beginning) and a trend for
exploitation (starting around 190 seconds) can be observed.

Fig. 6: Neural activations after one experiment. Top-left are the neural activation
gathering the actions performed and sent as inhibition (memory trace actions).
Top-right are the actions with a high visual outcomes (memory trace). Bottom
part are the activations within the Condition of Exploitation Field (without the
current input from the state of the arm).
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Figure 6 depicts the neural activations of the actions taken as well as the
Condition of Exploitation field. The architecture does not need to explore the
complete actions space to reach a stable sequence of actions because of the switch
mechanism. The last section will conclude this paper, state the current limitation
and discuss future work.

5 Conclusion and Discussion

This paper introduces a model for learning sensorimotor contingencies with a
humanoid robotic arm based on neural dynamics. The architecture takes insights
from human development by performing motor babbling in a closed loop. The
learning occurs when generating motor commands, and associating them with
the changes induced in the environment. An inhibition of return prevents the
model from generating the same action twice. At any moment, the system can
decide whether to explore the environment or to exploit the sensorimotor asso-
ciations. Indeed, the main contribution rests on a neural switch mechanism that
dynamically balances between both behaviors. Results demonstrate an increase
of visual neural activation when the robot begins to exploit its knowledge. In
addition, the time course of both exploratory and exploitative behavior shows
a tendency toward using the sensorimotor knowledge after a certain time. Fi-
nally, the switch mechanism allows the robot to avoid exploring the complete
sensorimotor space.

However, only a single degree of freedom is utilized to demonstrate the ad-
vantages of the switch mechanism. The setup of the experiment is voluntary
simple to keep a track on the rewards in time (visual neural activation). Indeed,
due to the complexity of the model, this setting allows also to study and vali-
date with clarity the behavior of the neural fields and memory traces composing
the switch mechanism. To address this issue, the future work will use the whole
GummiArm in an inverse kinematic mode with a three-dimensional neural field
representing the robot’s end-effector.

Finally, we intend to develop the model toward goal directed actions in a
richer environment. In order to model higher-order goals, we will adapt the
method of researcher regarding the gain modulation of multimodal cues [27] to
dynamic neural fields . A novelty detector based on the three layer model [28]
will be used as a dynamic neural mechanism delivering rewards by peaks of
activation in case of ”novel” events, avoiding to specify an external reward by
design.

Then, the robot will generate and learn to reach goals with the help of this
exploration/exploitation behavior. The switch mechanism introduced here will
exploit the goals with the highest rewards to discover other potential goals. The
complete architecture would represent perceptions as hierarchically organized,
and sequences of goals will lead to more complex perception over time. With the
possibility to represent perceptions as probabilities with peaks of activation, a
particular attention will be given to possibly apply inference processes [29, 30]
on these stimuli.
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6 Appendix

Wiki, set of parameters, source code and architecture files to reproduce the ex-
periment are available at https://github.com/rouzinho/neural-switch-dft/wiki.

References

1. Tekülve, J., Fois, A., Sandamirskaya, Y., Schöner, G.: Autonomous sequence gen-
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