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ABSTRACT

A method is proposed to encode the acoustic scattering of ob-
jects for virtual acoustic applications through a multiple-input and
multiple-output framework. The scattering is encoded as a ma-
trix in the spherical harmonic domain, and can be re-used and
manipulated (rotated, scaled and translated) to synthesize various
sound scenes. The proposed method is applied and validated using
Boundary Element Method simulations which shows accurate re-
sults between references and synthesis. The method is compatible
with existing frameworks such as Ambisonics and image source
methods.

1. INTRODUCTION

Real sound scenes can be quite complex due to the interaction
of sound with its physical environment. Methods to reconstruct
these complex sound scenes for virtual settings are an active field
of research due to an increasing demand on the accuracy of their
synthetic representations. Acoustic design and interactive applica-
tions, such as room acoustic modeling and Virtual Reality, require
better solutions to predict and auralize virtual acoustic scenarios in
order to reduce costs and/or enhance immersive experiences.

Virtual Acoustics research has usually focused on some spe-
cific element of virtual sound environments. A large, and still
growing, corpus of research related to room acoustics modeling
exists. Various room acoustic modeling methods have been de-
veloped and the main approaches are ray-based modeling [1] and
wave-based modeling [2]. In addition to room acoustics model-
ing, another highly developed topic in virtual acoustics is listener
and receiver modeling, which is required for spatial sound listen-
ing and capturing. For example, parametric Head-related Transfer
Functions (HRTFs) have been proposed [3, 4] as well as wave-
based models for receivers [5]. Furthermore, sound sources and
their directivity have been modeled through spherical harmonic
(SH) decomposition [6] and finite-difference or finite-element meth-
ods [7, 8]. In regards to modeling the effects of scattering of entire
finite geometries into virtual environments, not much research ex-
ists. Though analytical models for basic geometries such as the
sphere exist [9], and methods have been proposed to estimate scat-
tering using machine learning [10, 11], still flexible methods for
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Figure 1: Acoustic scattering scenario

acquiring the scattering properties of arbitrary geometries and inte-
grating them into virtual environments have not yet been explored.

In this paper we propose a method for encoding the scatter-
ing properties of entire arbitrary complex geometries through a
multiple-input multiple-output (MIMO) spherical decomposition
[12, 13] approach of the scattering function. We show how this
encoding format is flexible and allows for various manipulations
of the scattered field (rotation, scaling, translation). Furthermore,
we propose how this format can be easily implemented into ex-
isting virtual acoustics frameworks, such as image-source engines
and Ambisonics, for applications such as Virtual Reality or Room
Acoustic Simulations. Finally, we apply and validate the proposed
method using Boundary Element Method (BEM) simulations.

The work extends SH modeling of source [6] or receiver [14]
directivities in geometrical acoustics to the doubly directional scat-
tering transfer function of the scattering object. Similar to [8],
it assumes a pre-computed wave-based simulation of the radiat-
ing field of the object in isolation, before integration into a real-
time rendering pipeline. However, contrary to that work where a
complicated optimization of multi-pole placement is required, here
we decompose the directional scattering directivity into a compact
time-invariant matrix of filters, which allows efficient parameter-
ization and manipulation of the scattering object. The simulation
stage, which needs to be performed only once for a certain scatter-
ing geometry, is implemented using a BEM solver for which free
and available implementations exist suitable for acoustical prob-
lems [15].
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2. GEOMETRIC MODEL

We consider a basic scenario, as seen in Figure 1, of an acoustic
source with its acoustic center at position xs, a scattering object at
position xo, and a receiver at position xr , from which more com-
plicated scenes can be constructed. Position vectors are defined
as

x = [r cos θ sinϕ, r cos θ cosϕ, r sin θ] (1)

with r, ϕ and θ corresponding to the spherical coordinates of radial
distance, azimuth and elevation. A direction vector on the direc-
tion of x is denoted as x̃. Additionally, we assume that the source
may be directional with directivity function hs(f, x̃j) dependent
on frequency f and radiation direction x̃j , while the receiver is
also characterized by a directional response vector hr(f, x̃i) de-
pendent on direction of arrival x̃i, that contain as many directiv-
ities as the capturing channels (e.g. two HRTFs in the case of a
binaural receiver). Finally, the scattering object is also character-
ized by a directional scattering function ho(f, x̃i, x̃j) which de-
pends on both an incident direction-of-arrival x̃i and a scattering
direction x̃j .

Assuming that source, receiver, and scatterer are all far apart to
assume far-field propagation conditions, we can define a simplified
geometric model of the received direct sound as typically found in
interactive virtual acoustics

sr,d(t) =
1

||xsr||
s(t−||xsr||/c)∗hs(t, x̃sr)∗hr(t,−x̃sr), (2)

where sr are the receiver time-domain signals, xsr = xr −xs the
source to receiver vector, c the speed of sound, and ∗ denotes time-
domain convolution between the directional filters and the source
signal s. In a similar vein we can model the received sound due to
the scatterer, as

sr,o(t) =
1

||xso||+ ||xor||
s(t− (||xso||+ ||xor||)/c) ∗

ho(t,−x̃so, x̃or) ∗ hr(t,−x̃or). (3)

The total sound captured by the receiver due to both the source and
scatterer is then, by superposition,

sr(t) = sr,d(t) + sr,o(t). (4)

In this study, we focus on modeling and recovering the scattering
filter ho efficiently to allow dynamic scattering effects integrated
in standard interactive virtual acoustics rendering.

3. SCATTERING MODEL

By inscribing the scattering object inside the volume of a sphere
of radius R, as presented in Figure 2, we can define the scattered
field ps beyond R as an exterior problem [9]. Making no assump-
tions on the shape of the object, the scattered sound field pressure
ps(f, x̃i,xj) at distance r = ||xj || ≥ R from the center of the
sphere and direction x̃j , due to a unit amplitude plane wave im-
pinging from a direction of arrival x̃i, is given by:

ps(f, x̃i,xj) =
∞∑

n=0

n∑
m=−n

Cmn(f, x̃i) h
(2)
n (kr) Y m

n (x̃j) (5)

where k = 2πf/c is the wavenumber for a frequency f , h(2)
n is the

outgoing Hankel function, and Y m
n is a real spherical harmonic of

Figure 2: Exterior Problem

order n and degree m. Cnm denote modal scattering coefficients
that are dependent on frequency and incident direction x̃i.

If the continuous scattered pressure over the surface of the sur-
rounding sphere is known, the scattering coefficients Cmn can be
obtained by the spherical harmonic transform (SHT) of that pres-
sure:

Cnm(kR, x̃i) =
1

h
(2)
n (kR)

∫
x̃∈S2

ps(kR, x̃i, x̃) Y
m
n (x̃) dA(x̃)

(6)
where dA(x̃) is the spherical surface differential element dA(x̃) =
cos θdθdϕ. Note that compared to the preceding formulas the fre-
quency dependency is now integrated into the more representative
wavenumber-distance product kR.

In practice, the infinite series of the scattered pressure in Equa-
tion (5) is truncated to a maximum order N with negligible error
if N ≥ kR [16] [17]. Additionally, the Cmn scattering coeffi-
cients can be recovered through a discrete SHT by a grid XJ =
[x1, ...,xJ ] of regularly distributed scattered pressure samples ps =
[p1, ..., pJ ]

T over the surface of the sphere, where J ≥ (N + 1)2

and N ≥ kR. This process can be expressed in a compact form
as:

c(kR, x̃i) =
4π

J
D−1(kR) Y(X̃J) ps(f, x̃i,XJ) (7)

where D is a (N +1)2 × (N +1)2 diagonal matrix whose entries
are the radial Hankel functions, y(x̃) = [Y 0

0 (x̃), ..., Y
N
N (x̃)]T is

a (N + 1)2 vector of SH values up to order N , and Y(X̃J) =
[y(x̃1), ...,y(x̃J)] is a (N + 1)2 × J matrix of SH values for the
grid directions X̃J . Note that, respectively, the coefficient vector
c contains all the coefficients Cnm up to order N .

Furthermore, if c is known for I regularly distributed incident
plane wave directions, we can construct a matrix C(kR, X̃I) =
[c(x̃1), ..., c(x̃I)] of size (N +1)2 × I that contains all the coef-
ficients for the I directions. Subsequently, a discrete SHT can be
applied along the incident sphere of directions of the C matrix as:

S(kR) =
4π

I
C(kR, X̃I)Y(X̃I)

T . (8)

The resulting (N+1)2×(N+1)2 matrix S expresses the scattering
of the object as a MIMO system [13] between spherical modes of
the incident field and spherical modes of the radiating scattered
field. It gives a continuous spatially band-limited expression of
the scattering at arbitrary directions. In terms of S, the scattered
pressure field at point xj outside of R < ||xj || is expressed by:

ps(f, x̃,xj) = y(x̃j)
T D(kr) S(kR) y(x̃i) (9)

DAFx.2

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

200



Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

Finally, assuming an adequate distance between the scatterer and
receiver such that the Hankel function in Equation (9) converge to
a far-field spherical wave [9], the simple scattering filter of Equa-
tion (3) is given by:

ps(f, x̃i,xj) = y(x̃j)
TS(kR) y(x̃i) (10)

The scattering matrix S of an object can be manipulated in various
ways for multiple virtual acoustics scenarios.

3.1. Scattering Model to Geometric Model

If the scattered pressure ps is the product of unit amplitude plane
waves, the time domain scattering filter ho from Section 2 can be
recovered, for far-field sources, using the inverse Fourier Trans-
form of ps.

4. MANIPULATIONS

The proposed scattering format of Equation (8) allows for flexible
manipulations of the scattered field. The scattering matrix S al-
lows for a series of transformation to rotate, scale and translate an
initial scattering scenario.

4.1. Rotation

Obtaining the filter for a rotated scatterer can be efficiently per-
formed in two ways. The first is by rotating the geometry of the
scatterer, while the second is by performing the rotation in the
spherical harmonic domain (SHD). We define the three Euler an-
gles α, β, γ corresponding to e.g. the yaw-pitch-roll convention,
and the respective 3× 3 rotation matrix Mypr(α, β, γ). The scat-
tering pressure for the rotated object is then given by:

ps(f,Myprx̃i,Myprxj) =

= y(Myprx̃j)
TD(kr)S(kR)y(Myprx̃i) (11)

Alternatively, the rotation can be performed using (N +1)2×
(N + 1)2 SHD rotation matrices Mshd(α, β, γ), which can be
computed very efficiently based on Mypr(α, β, γ) and recursive
relationships [18]. The rotated scattering is then:

ps(f,Myprx̃i,Myprxj) =

= y(Myprx̃j)
TD(kr)S(kR)y(Myprx̃i) =

y(x̃j)
TMT

shdD(kr)S(kR)Mshdy(x̃i). (12)

Even though rotating the incident and scattering vectors would be
normally more efficient, rotation in the SHD can be applied also
in the case that the incident sound field is not a single plane wave,
but a plane wave distribution, e.g. as described in Sec. 5.2.

4.2. Translation

Analytical translation of sound fields can be based on expansions
similar to the exterior problem of Equation (2) and related addi-
tion/translation theorems, e.g. as found in multi-sphere scattering
[19]. However, we avoid the complexity of such solutions and fo-
cus on the simple geometric transformation that fit the interactive
scenario under consideration. For a translation given by vector xt

of the center of the scattering center, the source-to-object xso and
object-to-receiver vectors xor are updated accordingly:

x′
so = xso + xt and x′

or = xor + xt. (13)

The updated position vectors can be used to simulate the attenu-
ation/amplification due to the changes in distance and angle be-
tween source, scatterer, and receiver by updating Equation (3).

4.3. Scaling

The matrix S can be reused to simulate the scaling of the size of
the scattering object under the following assumptions:

1. Though the scattered pressure of a geometry is initially de-
composed for a sphere of radius R and wavenumber k, the
final matrix S is solely dependent on kR and is agnostic of
the initial radius-to-wavenumber transformation ratio.

2. Scaling the radius R of the sphere enclosing the scattering
object will have a proportional effect on the size of the scat-
tering object itself.

3. If the radius of decomposition R is scaled to some R′, the
matrix S still contains all the necessary coefficients to re-
construct the scattered pressure at a point r ≥ R′, as long
k′R′ = kR, where k′ is the scaled wavenumber of the orig-
inal k.

In other words, a matrix S can be used to simulate the scattered
field of a bigger version of the initial geometry at a lower frequency
as long as the initial kR quantity is maintained [16].

5. VIRTUAL ACOUSTIC INTEGRATION

Image-source techniques and Ambisonics can be used with the
proposed method to produce early and late stages of scattering re-
verberation within a room.

5.1. Image-Source Method

For virtual acoustic scenarios which make use of an image-source
method, the translation and rotation manipulations of Equations
(12) and (13) can be used multiple times to simulate the early re-
flections of the scattered field inside a room [1]. Starting with the
simple case of a single wall shown Figure 3, the reflection of the
scattered field against the wall can be simulated as a second "image
scatterer". The position of the second scatterer will be mirroring
(translation and rotation) the position of the initial scatterer with
respect to the wall. The same process can be applied for a room
with several walls as well as for higher-order reflections.

Figure 3: Image source-scatterer scene
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Figure 4: Energy of a matrix S from encoding a 50 cm sided cube
for two frequencies

5.2. Scattering of Ambisonic signals

Another case of interest, for interactive scattering acoustic envi-
ronments, is the case that we have a continuous description of the
incident field at the scattering center, expressed in the SH domain,
and normally captured or modeled in terms of ambisonic signals
a(t), up to order L. Such signals, for example, may be model-
ing the combined contribution of late reverberation at the scatter-
ing position, generated through a spatial reverberator [20]. It is
still possible to compute the scattering at xj due to such incidence
simply by:

ps(f,a,xj) = y(x̃j)
TD(kr)S(kR)a(f). (14)

Since it may be that the order of the incident ambisonic signals is
lower than the scattering order coming from simulation L < N ,
the scattering matrix S may have to be truncated to (N + 1)2 ×
(L+ 1)2.

6. OPTIMIZATIONS

Encoded scattering matrices S acquired through the proposed
method can also be optimized to reduce memory storage as well
as computations during run-time. A scattering matrix containing
multiple frequencies is order-limited. Following the N ≥ kR [16]

Figure 5: Normalized energy integration per order. Dashed lines
indicate a 0.95 threshhold

rule, the number of coefficients in a matrix S required to synthe-
size a scattering field is much lower at low frequencies than at
high frequencies. This is reflected in the energy of the compo-
nents of the matrix which, as seen as Figure 4, is usually highest
towards the first components, S[1, 1], and lower in energy towards
its bottom-right components.

Therefore, rows and columns from the bottom right of the ma-
trix can be discarded to reduce the storage size and/or process-
ing time. An efficient approach to defining coefficients to be dis-
missed is to integrate the normalized energy of the matrix, order
by order, and define a threshold after which the coefficients are
discarded. Figure 5 indicates how a matrix S reaches its maxi-
mum normalized energy at different rates. An example threshold
of 0.95 is denoted with dotted lines after which matrix coefficients
could be discarded. In conjunction with a frequency-dependent
order-limitation, the matrix can be also highly sparse, depending
on smoothness and symmetries in the scattering directivity, with
only a few entries contributing to it. In this case its storage re-
quirements can be further reduced, using sparse matrix processing
techniques.

7. SIMULATION

As an example for the proposed method, the scattered field of a 50
cm sided rigid cube (Figure 6) was simulated using the Boundary-
Element Method (BEM) module of COMSOL Multiphysics [21].
The cube was chosen as an example geometry for it is a quite
standard shape that has hard edges capable of producing complex
scattering patterns. The incident field for the simulations were
far-field plane-waves that were removed from the final scattered
sound field. Figure 7 presents a visualization of the total pressure
field, incident and scattered, for a single planewave and Figure
8 presents a directivity plot of the isolated scattering pressure
from the surface of the geometry. The field was simulated for
64 frequencies from 78 Hz to 5 kHz for 1200 incident directions
following a 48th degree spherical T-design arrangement, suitable
for an up to 24th order SH decomposition. The scattered sound
pressure around the cube was then sampled for the same 1200
directions at 37 cm away from the origin as presented in Figure 9.
For the meshing in the BEM simulation, a free quadrilateral mesh
was used with a spatial resolution of 1

6
of the wavelength of the

simulated frequency [21] as shown in Figure 6. The simulations
were run using Triton, Aalto University’s high-performance
computer cluster. The simulated scattered pressures were then
exported, organized and processed in Matlab. The scattering
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Figure 6: Mesh of simulated cube at 1 kHz

Figure 7: Total pressure over surface of cube, and cross sectional
area along x-axis, for an incident 1 kHz plane wave incoming from
0◦ azimuth and 40◦ elevation

coefficients Cnm for each incident direction were recovered using
Eq. 7 and then organized as a matrix C to recover the scattering
matrix S through Eq. 8.

8. VALIDATION

To test the scattering matrix generated from the previous section,
comparisons were made between scattered pressure synthesized
through the matrix and reference BEM simulations, see Figure 10.
First, comparisons were made with a cube of same dimensions,
for a direction x̃j = (0, 0) which was not in the original 1200
directions. Then, the same cube was rotated in two directions,
(α, β, γ) = (45,−55, 0). Finally, the previously rotated cube
was also scaled up by 50% or R′ = 1.5 × R. For all cases,
the scattered field was sampled at 3 positions which capture the
pressure diversity of the field.

As seen in Figure 10, the pressure for the reference and synthe-

Figure 8: Directivity of scattered sound pressure level over sur-
face of cube, for an incident 1 kHz plane wave incoming from 0◦

azimuth and 40◦ elevation

Figure 9: Sampling points around target geometry
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Figure 10: Comparison of scattered pressure between reference
and synthesis for 3 scattering directions indicated by colors. Top:
50 cm cube Middle: Previous cube with rotation. Bottom: Previ-
ous rotated cube scaled up by 50%.

sized pressure match appropriately. Towards the higher frequen-
cies of the synthesis, mismatches occur with the reference due to
the effects of aliasing. This would be solved by increasing the or-
der of the T-design used to excite and probe the scattering of the
geometry. As expected, the maximum frequency synthesized for
the rotation + scaling example is lower, 3177 Hz instead of 5 kHz,
due to the enlargement of the geometry.

9. FUTURE WORK

Further work is required to validate the accuracy of the proposed
method for other more complex geometries as well as against real
acoustic measurements. Also, the perceptual impact of the error
from truncating the scattering matrix at lower orders should be
studied to define a practical and acceptable rendering resolution.
Finally, optimizations to reduce the size of the scattering matrix
should be explored to achieve real time implementations of sound
scattering in interactive environments.

10. CONCLUSIONS

The scattering of a finite arbitrary object can be encoded in the
spatial frequency domain if sufficient incident fields and sampling
points in spherical coordinates are known. The encoded scattering
can be contained in a matrix, allows for various manipulations of
the geometry in space, and can be reused to create more complex
virtual acoustic scenarios. The encoded scattering matrix can be
optimized to reduce its memory storage as well as processing run-
time. A simulation environment can be used to acquire a scattering
matrix that can be reused, producing accurate results.
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