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ABSTRACT

Decomposing a sound-field into its individual components and re-
spective parameters can represent a convenient first-step towards
offering the user an intuitive means of controlling spatial audio
effects and sound-field modification tools. The majority of such
tools available today, however, are instead limited to linear com-
binations of signals or employ a basic single-source parametric
model. Therefore, the purpose of this paper is to present a paramet-
ric framework, which seeks to overcome these limitations by first
dividing the sound-field into its multi-source and ambient com-
ponents based on estimated spatial parameters. It is then demon-
strated that by manipulating the spatial parameters prior to repro-
ducing the scene, a number of sound-field modification and spatial
audio effects may be realised; including: directional warping, lis-
tener translation, sound source tracking, spatial editing workflows
and spatial side-chaining. Many of the effects described have also
been implemented as real-time audio plug-ins, in order to demon-
strate how a user may interact with such tools in practice.

1. INTRODUCTION

The ability to manipulate spatial sound scenes, prior to reproduc-
ing them over the target playback setup, has a number of important
applications. These include: head-tracked informed sound scene
rotations during virtual and augmented reality rendering; provid-
ing spatial editing tools to audio engineers engaged in the produc-
tion of immersive content; and offering users creative outlets, by
way of spatial audio effects. A popular framework for synthesis-
ing, capturing, modifying, and reproducing spatial sound scenes
is Ambisonics [1], which is based solely on linear mappings of
the channel signals. The framework operates by decoupling the
recording and playback setups through the use of spherical har-
monic (SH) signals, which serve as an intermediary. The process
of converting a monophonic signal or microphone array signals
into SH signals is commonly referred to as Ambisonic encoding.
Whereas, mapping these SH signals to the target loudspeaker setup
or through binaural filters, is often called Ambisonic decoding.
Spatial manipulations may be realised by applying linear transfor-
mations on the intermediate SH signals. Some of these transfor-
mations are robust and well-defined, such as sound-field mirroring
and rotations [2], whereas other transformations, for example, di-
rectional warping and zooming [3, 4, 5], are generally less defined
or can be limited by the SH order of expansion.
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Alternatives to this purely linear framework include the signal-
dependent approaches described in [6, 7, 8, 9], which operate by
describing the sound scene based on estimated spatial parameters.
These parametric methods can offer improved spatial resolution
over their linear counterparts during rendering, and can present
new and unique avenues for spatial audio effects processing that
would otherwise not be realisable in a linear manner. Many of
these parametric alternatives also operate on SH signals, which
means that they retain much of the convenience of the Ambison-
ics framework and may be used interchangeably within traditional
linear workflows. In [10, 11, 12], a number of spatial effects
were described based on the manipulation of the analysed parame-
ters provided by the first-order Directional Audio Coding (DirAC)
parametric model [6]. First-order DirAC operates by estimating
a single direction-of-arrival (DoA) and a diffuseness parameter
per time-frequency tile, often based on the energetic properties of
the active-intensity vector. A low diffuseness value means that
most of the corresponding time-frequency tile energy is consid-
ered to be that of a plane-wave in the estimated DoA. Whereas, a
high diffuseness value indicates that the tile corresponds to diffuse
noise and/or reverberation. For reproduction, directional compo-
nents are routed directly to the target playback setup via amplitude-
panning or convolving them with the respective binaural filters.
The diffuse components are then distributed to all output chan-
nels and decorrelated. In [10, 11, 12], it was described how these
spatial parameters could be manipulated for the purpose of realis-
ing spatial audio effects; including: zooming, translation around
the receiver, warping, and direct-to-diffuse (DDR) ratio control.
Sound-field zooming was also explored in [13, 14], based on the
manipulation of the diffuseness parameter within the first-order
DirAC model.

Many existing parametric spatial audio effects have therefore
been constrained to first-order SH input, and have operated based
on the limited model of: a single dominant directional cue per
time-frequency, accompanied by their respective spatial coherence
cues (based on direct-to-diffuse ratio or diffuseness). In this work,
the Coding and Multi-Parameterisation of Ambisonics Sound
Scenes (COMPASS) model [8] is explored for the task of revisit-
ing previously proposed spatial audio effects. The model supports
arbitrary input order and can estimate the DoAs of multiple si-
multaneous sources; subsequently employing spatial-filtering to
segregate the sound-field into its source and anisotropic ambient
components. Owing to its greater flexibility, new spatial manipu-
lations and effects are also described using the model, including:
sound source tracking, spatial editing workflows, and flexible
directional warping. To demonstrate how the effects may be re-
alised in practice, many have also been implemented as VST audio
plug-ins and can be downloaded from the companion web-page1.

1http://research.spa.aalto.fi/publications/papers/compass-fx/
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2. AMBISONICS FRAMEWORK

In this work it is assumed that the sound-field comprises the spatial
distribution of plane-waves, a(t, f, γ), at time t and frequency f ,
where γ is a unit vector at azimuth ϕ and elevation θ, respectively.
The N th order spherical harmonic transform (SHT) of this spatial
distribution provides the sound-field coefficients a(t, f) as

a(t, f) = SHT {a(t, f, γ)} =

∫
γ

a(t, f, γ)y(γ)dγ, (1)

where the integration is conducted over the surface of the unit
sphere, and y(γ) denotes a vector of spherical harmonic (SH)
values Ynm(γ) of order n and degree m ∈ [−n, n]. For a band-
limited representation of order N , there are Q = (N + 1)2

transformed signals and SHs in the vectors above. Furthermore,
from henceforth, the established Ambisonics convention of real
orthonormal SHs is employed.

The end-to-end Ambisonics processing framework can be
demonstrated compactly, based on the following series of signal-
independent linear matrix operations

z(t, f) = DT
[
Yss(t, f) +E(f)x(t, f)

]
= DTa(t, f), (2)

where s(t, f) = [s1(t, f), ..., sK(t, f)]T denotes K monophonic
source signals, and x(t, f) = [x1(t, f), ..., xM (t, f)]T denotes
M microphone array signals. These signals are encoded into the
SH domain via matrices Ys = [y(γ1), ...,y(γK)] and E(f) ∈
C(N+1)2×M , respectively. Since their base representations are the
same, multiple SH recordings and/or encoded source signals may
be combined simply via summation. For more information regard-
ing computing E, the reader is referred to [15, 16, 17]. T is then
an optional spatial transformation matrix, which modifies the spa-
tial properties of the sound scene directly in the SH domain. Ex-
amples of SH transformations include: rotations [2], directional
warping of the sound distribution [3, 4], and directional loudness
modifications [4, 5]. Finally, D is a decoding matrix, which de-
fines a linear mapping of the SH signals to the L output chan-
nels, z(t, f) = [z1(t, f), ..., zL(t, f)]

T, of the reproduction sys-
tem. For loudspeaker-based reproduction, the ambisonic decoding
matrix D is of size L × Q, and often derived based solely on the
loudspeaker directions and transform order; available solutions in-
clude [18, 19]. Whereas, for binaural reproduction, the decoding
matrix D(f) is instead frequency-dependent, since it is computed
based on a grid of HRTF measurements, and available solutions
include [20, 21].

3. PARAMETRIC FRAMEWORK

The parametric framework employed for this work is an extended
formulation of the COMPASS method [8]; incorporating changes
to provide greater freedom over the manipulation of its rendering
behaviour. Considering the general case of a mixed sound-field,
with a number of source signals of K < Q and an additional
diffuse component, the ambisonic signals may be expressed as

a(t, f) = as(t, f) + ad(t, f) = Yss(t) + ad(t, f). (3)

Assuming that the source signals are uncorrelated with the diffuse
signal and between themselves, their respective spatial covariance
matrices are given as

Ca(t, f) = E
[
a(t, f)a(t, f)T

]
= Ca,s(t, f)+Ca,d(t, f), (4)

where E [.] denotes the expectation operator.
Note that the time-frequency indices are henceforth omitted

from this section for the brevity of notation. The source covariance
matrix can be expressed as

Ca,s = E
[
asa

T
s

]
= YsCsY

T
s =

K∑
k=1

Pky(γk)y
T(γk), (5)

where Cs = diag[ps] is a diagonal matrix comprising the source
powers ps = [P1, ..., PK ]T, with the total source power Ps =∑

k Pk. Given that ||y(γ1)||2 = Q, the power of the source and
diffuse components are given as

Pa,s = E
[
||as||2

]
= tr [Ca,s] = QPs, (6)

Pa,d = E
[
||ad||2

]
= tr [Ca,d] = QPd, (7)

where Pd is the power of the diffuse signals, and tr [.] denotes the
trace operator.

3.1. Analysis

The parameter analysis conducted by the COMPASS method in-
volves first detecting the number of sources, followed by deter-
mining their respective DoAs. Detection of the number of sources
is commonly carried out based on the subspace principle of sensor
array processing, whereby the eigenvalue decomposition (EVD) of
the spatial correlation matrix is first computed as

Ca = VUVH =

Q∑
q=1

λqvqv
H
q =

K∑
q=1

λqvqv
H
q +

Q∑
q=K+1

λqvqv
H
q ,

(8)
where λ1 > ... > λq > ... > λQ ≥ 0 are the eigenvalues
of the EVD, and vq are their respective eigenvectors. It is then
assumed that the lowest eigenvalues of K < q ≤ Q will all be
equal or similar to the diffuse power Pdiff , whereas the eigenvalues
1 ≤ q ≤ K should correspond to the powers of the sources, with
λq > Pdiff . For a detailed overview of different source detection
algorithms, the reader is referred to [22].

Once the number of sources has been detected, their DoAs
can be estimated based on a number of different methods. Many
of these involve scanning a grid of directions, followed by as-
certaining the maxima or minima within the resulting activity-
maps. However, if the employed detection algorithm operates
in the subspace domain, then subspace DoA estimation meth-
ods, such as MUSIC [23] or ESPRIT [24, 25], are often con-
venient options in practice. For MUSIC, a dense grid of G
directions Γg = [γ1, ..., γG] and the associated SH matrix
Yg = [y(γ1), ...,y(γG)] are employed. Assuming K direc-
tional components in the scene, the noise subspace Vn may be
constructed from the eigenvectors corresponding to the lowest
Q−K eigenvalues. The MUSIC spectrum is then given by

pMUSIC = diag[YT
g VnV

H
n Yg]. (9)

The source DoAs Γ̃s ∈ Γg are then found at the grid directions for
which the K minima of (9) occur.

3.2. Synthesis

Once the number of sources and their respective DoAs have been
estimated, the source beamforming matrix Ws ∈ RK×Q may be
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computed based on the following regularised inversion

Ws = (YT
s Ys + β2IK)−1YT

s , (10)

where β is a regularisation parameter, and IK ∈ RK×K is an
identity matrix. Note that this inversion has the effect of produc-
ing beamformers of unity gain in the estimated directions, while
placing nulls towards the other DoAs. However, in practice, β can
be DoA separation dependent, in order to bypass the null steering
during cases where DoAs fall within the same angle as the main-
lobe of the beamformer; i.e. reverting to Ws = (1/K)YT

s in such
cases, in order to improve beamformer stability.

The estimated source signals and source powers may then be
obtained as

s = Wsa, (11)

ps = diag[WsCaW
T
s ]. (12)

To reproduce the source signals over a L-channel target
playback setup, the appropriate spatialisation gains are required
g(γ) = [g1(γ), ..., gL(γ)]

H, which can be, for example, amplitude-
panning gains for loudspeaker playback, HRTFs for binaural play-
back, or SH weights of optionally higher order than the input order
(i.e. for upscaling). The spatialisation is therefore applied as

zs = Grs = GrWsa, (13)

where Gr = [g(γ1), ...,g(γK)] are the spatialisation gains for
all of the source signals in the reproduction directions Γr, which
do not necessarily need to be the same as the estimated source
directions Γ̃s used for the beamforming.

For the ambient rendering, the source signals are first re-
encoded back into the SH domain and subtracted from the input
scene as

ad = a−Yss = a−YsWsa = Wda, (14)
Wd = IQ −YsWs. (15)

This SH domain residual is then used to obtain the ambient
signals as

zd = (1/V )GvD[YT
v ad] = (1/V )GvD[YT

v Wda], (16)

where Yv ∈ RV ×(N+1)2 are SH weights for a uniform spheri-
cal arrangement of V virtual directions, Gv ∈ CL×V are spa-
tialisation gains to map the virtual directions signals to the target
playback setup, and D[.] denotes a decorrelation operation on the
enclosed signals to enforce diffuse characteristics, if desired.

The final output signals are then obtained by simply summing
the two streams

z = zs + zd. (17)

4. PARAMETRIC SPATIAL AUDIO EFFECTS

Due to the decoupling of the source and ambient rendering, it is
possible to apply different effects to each of the two streams. For
example, conventional linear operations such as mirroring, rota-
tions [2], warping [3, 4], and directional loudness modifications
[4, 5], may be applied to only the ambient part of the sound-field,
ad, as described by (14). However, this work instead focuses on
how to realise sound-field modifications and effects based on pa-
rameter manipulations.

Figure 1: A block diagram for the parametric framework. Note
that TFT refers to a time-frequency transform, such as a short-time
Fourier transform (STFT) or filterbank.

For notation convenience, the employed parametric model and
processing may be abstracted by the following: the analysis A of
the input scene, to obtain the estimated source DoAs, is given as

Γ̃s(t, f) = A[a(t, f)], (18)

whereas the synthesis of the output source Ss and ambient Sd

streams are denoted as

zs(t, f) = Ss[a(t, f), Γ̃s(t, f),Γr(t, f),Gr(t, f)], (19)

zd(t, f) = Sd[a(t, f), Γ̃s(t, f)]. (20)

Note that, by default, the reproduction directions are identical
to the estimated DoAs Γr = Γ̃s, and the reproduction gains Gr

also correspond to the Γ̃s directions. Therefore, the framework
reverts back to the standard COMPASS rendering if no parameter
manipulation is conducted.

4.1. Direct-to-diffuse balance manipulation

Since the direct and ambient streams are decoupled in the pre-
sented framework, a trivial parameter control method is to incor-
porate a biasing term during synthesis. This can have the effect of
offering the user a means of emphasising the "natural" reverbera-
tion present in the scene (as described by the sound-field model),
or de-emphasising it (akin to de-reverberation). The frequency-
dependent biasing term, λ, may be applied simply as

zs(t, f) = λ(f) Ss[a(t, f), Γ̃s(t, f),Γr(t, f),Gr(t, f)], (21)

zd(t, f) =
(
1− λ(f)

)
Sd[a(t, f), Γ̃s(t, f)], (22)

which may be used either clinically, to correct for any model mis-
matches, or creatively; for example, the biasing term can be ma-
nipulated based on a time-varying modulator or any other external
device.
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Figure 2: An example of how the reproduction directions may be
manipulated to account for a translated listener position, based on
first projecting the two sources onto a sphere of known or assumed
radius [11].

4.2. Listener translation and acoustical zooming

Due to the recent resurgence of virtual and augmented reality de-
vices, listener translation methods are becoming increasingly rel-
evant. The framework can accommodate this effect by conduct-
ing the beamforming in the estimated Γ̃s directions as normal, but
manipulating the reproduction directions based on a translated lis-
tener position Γ

(tr)
r . For a single SH receiver, the distance be-

tween the sound sources and the receiver position r0 must either
be known or assumed. After which, all source DoA estimates are
then projected onto an arbitrarily shaped surface that defines the
assumed or known source distances for all directions from the per-
spective of the receiver position. Based on the knowledge of the
source DoAs, their distances, and the translated listener position
with respect to the receiver position, the new reproduction direc-
tions can be computed using trigonometry; see e.g. Fig. 2. Fur-
thermore, denoting the distance between the sound source posi-
tion and the translated listener position as rl, the inverse distance
attenuation law may be used to compensate for the levels of the
source beamformers as r0/rl. The ambient stream can therefore
remain unchanged, with the parameter manipulation only effecting
the source stream as

zs(t, f) = Ss[a(t, f), Γ̃s(t, f),Γ
(tr)
r (t, f),G(tr)

r (t, f)], (23)

where G
(tr)
r are the distance compensated reproduction gains,

which, assuming that the sources are projected onto a sphere, is
given as

G(tr)
r = [

r0
rl,1

g(tr)(γ1), ...,
r0
rl,K

g(tr)(γK)]. (24)

Note that for arbitrary projections, r0 instead becomes source
direction-dependent. Furthermore, since the framework operates
in the time-frequency domain, the distance-based gain compen-
sation terms can be frequency-dependent. This therefore allows
the framework to also accommodate near-field/proximity effects
[26, 27], or other more creative distance-dependent filters.

Note that this effect, in this parametric context, was evaluated
perceptually using the COMPASS framework in [28] with positive
results. It has also previously been explored in [11, 12] using the

first-order DirAC model, which based the synthesis on only the
omni-directional component. Therefore, two key differences are
that the framework presented here includes a source beamforming
stage, which can improve source signal isolation, and the method
can also accommodate multiple simultaneous sources. The acous-
tic zooming techniques described in [13, 14] are then examples of
a less explicitly defined translation, which are based instead on the
manipulation of the DirAC diffuseness parameter. They operate
based on the knowledge that a reduction in the reverberation level,
also has the effect of perceptually bringing sound sources closer
to the listener; i.e. reducing the perceived externalisation of the
sources. Therefore, similarly, the presented framework may also
be used for acoustical zooming in this way, by instead manipulat-
ing the source and ambient stream balance; as described in Sec-
tion 4.1. Note that in [13, 14], the technique was intended for use
in teleconferencing applications, enabling the zooming-in function
on the video to be accompanied by the respective acoustical zoom-
ing. Due to the recent rise in popularity of over-the-web streaming
of Ambisonic sound scenes [29, 30], user controllable acoustical
zooming methods are becoming more widespread.

4.3. Spatial editing

At each time frame, the parametric framework provides up to K
number of DoA estimates. However, in a multi-directional model
such as COMPASS, the number of DoA estimates can vary across
time frames, and the order in which the estimates are presented to
the beamforming and spatialisation stages can also change. For re-
production purposes, this limitation of not being able to associate
DoA estimates with their respective sources across time frames,
matters little. However, for spatial editing applications, decompos-
ing the sound-field into its broad-band sound objects (or "stems"),
along with their corresponding unique identification numbers, can
be particularly useful. This object-based decomposition can either
be based on beamformers that are steered towards manually de-
fined user markers, or automatically through temporal data asso-
ciation methods. Examples of source tracking algorithms on Am-
bisonic signals for multiple simultaneous sources include [31, 32].

The resulting broad-band source objects can then be re-
balanced, re-ordered, and/or re-directed, prior to reconstructing
the sound scene. This also allows traditional single-channel pro-
cessing methods, such as delays, equalisers, phasers, and dy-
namic range compressors, to be applied to specific source objects
within the overall sound scene independently. Additionally, the
broad-band beamformer signals may be subjected to frequency-
dependent spatial post-filters, for example [33, 9], in order to
improve their spatial selectivity and deactivate them during peri-
ods of source inactivity. Similar approaches, using multi-channel
Wiener filters on the Ambisonic signals as an alternative, have also
been explored in [34].

4.4. Directional transformations

As mentioned in Section 4.2, when rendering the source stream,
the source beamformer directions may remain informed by the es-
timated DoAs, but the reproduction directions can instead be based
on the estimated DoAs after they are subjected to a directional
transformation. Additionally, a gain factor may also be applied to
the spatialisation gains, which extends the flexibility of the frame-
work. Based on these options, there are many directional transfor-
mations that are easily imaginable. These include the traditional
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sound scene mirroring and rotations, which are already well de-
fined as linear Ambisonic operations. Other existing Ambisonic
operations, such as warping and directional loudness modifica-
tions, are also possible. However, importantly, in this paramet-
ric context, these effects are only applied to the directional source
stream, with the ambient components remaining unchanged. Fur-
thermore, parametric methods are less bound by the input SH or-
der, and may yield improved spatial resolution over their linear
counterparts. Linear Ambisonic transformations, such as direc-
tional filtering and warping [4], can also result in an output or-
der that is significantly higher than the input order; thus, requiring
many more channels than a parametric equivalent. Some direc-
tional transformations are also unique to parametric methods, in-
cluding: direction randomisation, and source deletion if it is within
a user defined field of view.

As an example, a simple, yet effective, directional transforma-
tion is now described. Here, user defined marker directions, given
as Cartesian coordinates u ∈ R3, first serve as control points; from
which a direction-dependent biasing term is derived, which pulls
nearby DoA estimates towards these control points. The effect can
be considered as directional warping or "focusing". A maximum
operating range is defined as θ0, beyond which no biasing is ap-
plied, and the angle θrot at which a DoA estimate, vs ∈ R3, needs
to be rotated towards the user defined control point is computed as

θvu = cos−1(vT
s u), (25)

θrot = θvu(1−min[θvu/θ0, 1]
α), (26)

where α > 1 determines how drastically the estimates are pulled
towards the control point. The Rodrigues equation may then be
used to apply the rotation along the surface of the unit sphere as

vr = vs cos(θrot)+(k×vs) sin(θrot)+k(kvT
s )[1−cos(θrot)],

(27)
where × denotes the cross-product operation and k = vs × u.
Note that this is performed individually per DoA and recursively
per control point. An example of this particular directional trans-
formation is depicted in Fig. 3.

Finally, by stacking the directionally transformed vr angles
into Γ

(dt)
r , the modified source stream can be obtained as

zs(t, f) = Ss[a(t, f), Γ̃s(t, f),Γ
(dt)
r (t, f),Gr(t, f)]. (28)

Note that when user defined markers are used, this directional
biasing acts as a spatial focusing effect. However, if the con-
trol points are informed by a source tracker, as described in Sec-
tion 4.3, this approach can instead act as a means of stabilising the
source rendering stream during parametric reproduction; which
may be used as an alternative to long temporal averaging func-
tions.

4.5. Spatial morphing and modulations

In traditional music production, it is common to process signals
based on the analysed parameters of other signals. For example,
a dynamic range compressor can be used to attenuate a bass gui-
tar signal based on the gain factors derived from analysing a kick
drum signal. This either allows the signals to combine more cohe-
sively, or the processing can be exaggerated to serve as an audio
effect. The same principles may be used in this spatial audio con-
text, where instead it is the spatial parameters analysed from one
sound scene that may be used to synthesise a second sound scene.

Figure 3: An example of the described direction warping func-
tion. The original DoA estimates are depicted as magenta coloured
crosses, and as blue asterisks after they have been biased towards
the red circle control points (α = 1.35).

This has been referred to as spatial morphing (carrier/modulator
analogy) before in [10]. The analysis is first conducted based on
scene A as

Γ̃(A)
s (t, f) = A[a(A)(t, f)], (29)

with the synthesis applied to a different scene B, but using the
estimated parameters from scene A, as

zs(t, f) = Ss[a
(B)(t, f), Γ̃(A)

s (t, f),Γ(A)
r (t, f),G(A)

r (t, f)],
(30)

zd(t, f) = Sd[a
(B)(t, f), Γ̃(A)

s (t, f)]. (31)

If scene A and B are the same, then the processing reverts
to the standard COMPASS rendering. Other spatial morphing
and modulations are also easily imaginable based on mixing and
matching the reproduction directions and/or reproduction gains
for the two scenes. It is also possible to modulate only the source
stream or the ambient stream.

5. PRACTICAL IMPLEMENTATIONS

This section describes a number of real-time VST audio plug-ins,
which were developed in order to demonstrate the spatial audio ef-
fects and sound-field modifications that are discussed in Section 4.
All of the plug-ins employ the modified COMPASS framework
detailed in Section 3, and were developed using JUCE2 and the
Spatial_Audio_Framework3.

5.1. BinauralVR

As with the existing COMPASS Binaural decoder plug-in de-
scribed in [35], the BinauralVR decoder plug-in offers the ability
to alter the balance between the source and ambient streams, as
covered in Section 4.1, using frequency-dependent sliders. Ad-
ditionally, the BinauralVR decoder supports listener translation

2https://github.com/juce-framework/JUCE
3https://github.com/leomccormack/Spatial_Audio_Framework
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Figure 4: The user interface for the binauralVR plug-in, which
supports listener translation around a single receiver and multiple
simultaneous listeners.

Figure 5: The user interface for the acoustic tracking and beam-
forming plug-in. The DoA estimates fed to the tracker are depicted
in red, and the two target trajectories in magenta and cyan.

around a single receiver, as described in Section 4.2. The user
must first select the assumed distance of the sources. For simplic-
ity, it is assumed that all sources are projected onto the surface of a
sphere. The plug-in may then be informed of the listener position
and orientation, either via its user interface, or by sending the
Cartesian coordinates and rotation angles outputted by an external
tracking device; such as a virtual or augmented reality headset.

A single instance of the plug-in also allows multiple listen-
ers to experience the same scene, but based on their own position
and head orientation. Since the analysis and synthesis stages are
decoupled, the analysis need only be conducted once. Therefore,
the framework represents an efficient means of delivering dynamic
renderings for multiple simultaneous listeners, which has not been
explored before in this parametric reproduction context. Extend-
ing the plug-in for multi-receiver operation, where no assumption
of the source distance is required, is a topic of future work.

5.2. Tracker

The Tracker plug-in serves as a demonstration of how multi-source
tracking may be used within the parametric spatial audio context.
The tracking algorithm employed internally by the plug-in, which
can adapt to sound sources that vary in number and position over

Figure 6: The user interface for the first SpatEdit plug-in instance
(top), and the second instance (bottom). Between the two in-
stances, the user has access to either the source beamformer or
residual signals, which they may manipulate as they choose prior
to the reconstruction of the SH scene.

time, is described in detail in [32]. Since the target velocities are
also considered by the tracker model, it can still distinguish be-
tween sources whose trajectories cross-over one another. It visu-
alises the azimuth and elevation angles of the DoA estimates and
the tracked target trajectories over a 24 second history on its user
interface; as shown in Fig. 5.

The plug-in can also steer a beamformer towards each tar-
get direction and output their signals (one target signal per output
channel), which is akin to decomposing the scene into its individ-
ual broad-band "stems". The corresponding target directions are
also accessible via the plug-in’s automation data, which allows the
stems to also be optionally spatialised in their respective original
(or transformed) directions by other plug-ins. The spatial post-
filter described in [33] is also included, in order to improve the
beamformer’s performance in noisy/reveberant environments.

5.3. SpatEdit

The SpatEdit plug-in is intended to be used with two instances.
The first instance of the plug-in allows the user to place markers on
an equirectangular representation of the sphere. Alternatively, the
markers can automatically follow the directions of sound sources,
through use of the tracker, which is fed by the analysed DoA es-
timates. The DoA estimates are then replaced by these marker
directions, and the source and ambient beamforming is conducted
as normal. The source beamformer signals are then outputted by
the first instance of the plug-in, where the user can then apply any
conventional single-channel audio effect, re-balance their levels, or
re-order the beamformer signals. These manipulated beamformer
signals are then passed to the second instance of the plug-in, which
also receives the residual signals from the first plug-in instance in-
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Figure 7: The user interface for the Gravitator plug-in, when α =
1 (top; i.e. not being applied) and when α = 6 (bottom).

ternally, and the COMPASS synthesis is conducted to obtain the
output SH signals. Alternatively, the residual stream signals may
be outputted by the first plug-in instance instead, which therefore
allows conventional linear Ambisonics transformations to be ap-
plied to only the ambient parts of the scene. Note that to aid
marker placement, the sound-field is also visualised, based on the
steered response power (SRP) approach [36], and projected behind
the markers on the same equirectangular spherical window.

5.4. Gravitator

The Gravitator plug-in implements the directional transformation
example described in Section 4.4, which results in the directional
focusing of source components within the scene towards user
marker directions. The user defines these marker directions us-
ing an equirectangular representation of the sphere, along with
the maximum operating range (θ0) and "gravity" (α). The SRP
method is employed to visualise the sound-field using the same
equirectangular representation, for either pre- or post-effect pro-
cessing. The plug-in output is also SH signals, but of an optionally
higher order than that of the input order; therefore, if the grav-
ity parameter is set to 1, then the processing reverts back to the
standard COMPASS Upmixer plug-in [35].

5.5. SideChain

The SideChain plug-in serves as an example of direct-to-diffuse
balance manipulations, as described in Section 4.1, and spatial
modulation, as described in Section 4.5. The plug-in accepts one
Ambisonic sound scene using input channels 1-16, and another
Ambisonic sound scene using input channels 17-32. The synthesis
of one scene is then conducted based on the analysed parameters
of the other scene. The output of the plug-in is then SH signals of
optionally higher order than that of the input signals.

Figure 8: The user interface for the SideChain plug-in, when using
the spatial parameters from scene B to process scene A.

6. CONCLUSIONS

This paper has presented a general framework for creating para-
metric spatial audio effects. The framework is based on the Coding
and Multi-Parameterisation of Ambisonic Sound Scenes (COM-
PASS) method, which employs analysed spatial parameters to di-
vide the input Ambisonic sound scene into its multiple source and
ambient components. It is demonstrated, through formulations and
VST audio plug-in implementations, that the framework can rep-
resent a convenient and intuitive means of developing spatial audio
effects based on simple manipulations of the spatial parameters.
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