

Abstract—The automotive and transport sector is undergoing

a paradigm shift from manual to highly automated driving. This

transition is driven by a proliferation of advanced driver

assistance systems (ADAS) that seek to provide vehicle

occupants with a safe, efficient, and comfortable driving

experience. However, increasing the level of automation makes

exhaustive physical testing of ADAS technologies impractical.

Therefore, the automotive industry is increasingly turning to

virtual simulation platforms to speed up time-to-market. This

paper introduces the second version of our open-source See-

Through Sight (CiThruS) simulation framework that provides a

novel photorealistic virtual environment for vision-based ADAS

development. Our 3D urban scene supports realistic traffic

infrastructure and driving conditions with a plurality of time-of-

day, weather, and lighting effects. Different traffic scenarios can

be generated with practically any number of autonomous

vehicles and pedestrians that can be made to comply with

dedicated traffic regulations. All implemented features have

been carefully optimized and the performance of our lightweight

simulator exceeds 4K (3840 × 2160) rendering speed of 60 frames

per second when run on NVIDIA GTX 1060 graphics card or

equivalent consumer-grade hardware. Photorealistic graphics

rendering and real-time simulation speed make our proposal

suitable for a broad range of applications, including interactive

driving simulators, visual traffic data collection, virtual

prototyping, and traffic flow management.

Keywords — Advanced driver-assistance systems (ADAS), driving

simulation, traffic imaging, photorealism, open-source software

I. INTRODUCTION

The rapid emergence of advanced driver-assistance
systems (ADAS) has revolutionized the whole automotive and
transport sector and the evolution continues gradually towards
fully autonomous driving [1]. Modern vehicles are
increasingly equipped with a broad range of passive and active
ADAS technologies that protect and prevent vehicle occupants
from accidents by sensing the environment and detecting other
road users with a camera, RADAR, LiDAR, and other
advanced-sensing technologies [2]. The current trend is
towards more holistic situational awareness that is further
leveraged by means of on-board sensor fusion techniques and
vehicle-to-everything (V2X) communication with other traffic
participants [3]. Inside the cabin, advanced human-machine
interface (HMI) technologies [4] are actively being developed

to adapt to the new ways of interaction between the driver and
vehicle.

Inevitably, the design complexity of ADAS increases
together with the level of automation due to the explosive
growth of automotive software, electrical/electronic (E/E)
components, and sensor modalities [5]. Changing the role of
the driver from manual execution to supervision also leads to
the proliferation of test cases, which makes expensive and
time-consuming physical testing with real vehicles
impracticable. In addition, meeting the requirements of
various safety standards and regulations puts additional
pressure on functional verification and validation. Many traffic
scenarios, such as accidents, can also be extremely difficult
and even dangerous to demonstrate and reproduce in real-
world testbeds.

To this end, developing safe, fail-operational, and cost-
effective ADAS technologies call for simulation environments
where different functionalities can be virtually tested, iterated,
and verified under different parameter settings and traffic
scenarios before being introduced into the actual systems. Key
industry players have also released commercial simulation
tools on the market, such as Google’s Waymo [6], NVIDIA
Drive Constellation [7], and LG Autonomous Driving
Simulator [8], but they are not freely available to users,
developers, regulators, or other stakeholders, and thus they
will not be considered in this paper.

Over the past three decades, several noteworthy open-
source virtual simulation platforms [9]-[16] have also been
announced, including SIRCA [10], TORCS [11], CARLA
[12], and AirSim [13] that are probably the most well-known
solutions in the field. However, they all fall short of combining
real-time speed, photorealism, realistic layout of the

CiThruS2: Open-source Photorealistic 3D Framework for Driving

and Traffic Simulation in Real Time

Emilian Galazka, Teo T. Niemirepo, and Jarno Vanne Member, IEEE

This paper is part of the NEWCONTROL project that has received

funding within the ECSEL JU in collaboration with the European Union's

H2020 Framework Programme (H2020/2014-2020) and National

Authorities, under grant agreement 826653.

The authors are with Ultra Video Group, Tampere University, FI-33014

Tampere University, Finland (e-mails: {emilian.galazka, teo.niemirepo,

jarno.vanne} @tuni.fi).

Figure 1. Snapshot of the CiThruS2 simulation environment.

environment, all traffic participants, and other environmental
effects into a single solution.

This paper gives an overview of our open-source approach
called See-Through Sight (CiThruS) simulation framework.
The first version of our environment [17] was published in
2019. It was derived from Windridge City Asset [18], but its
road infrastructure and geometry (lane widths, curves, etc.)
were found inappropriate for realistic driving simulation.
These restrictions motivated us to build a completely new
urban digital twin with realistic traffic infrastructure and
thereby reduce the gap between virtual and real-world testing.

The new environment, a.k.a. CiThruS2 is modeled after
Hervanta, a suburb of the city of Tampere, Finland. Fig. 1
depicts a snapshot of our virtual 3D urban scene. It is created
using the realistic physically based rendering (PBR) [19] and
it can be populated with practically any number of autonomous
vehicles and pedestrians. The environment also supports a
multitude of driving conditions with versatile and easily
adjustable time-of-day lighting and weather effects. Time
changes dynamically during the simulation, allowing the user
to experience the entire 24-hour period in a single sitting.
Weather conditions such as rain, snow, or fog can be toggled
manually to experience specific situations. This broad
spectrum of features makes our simulation software a
multipurpose virtual testbench for a myriad of traffic
scenarios.

The proposed simulation environment is distributed under
the MIT open-source license on GitHub at

github.com/ultravideo/CiThruS2

It is built in Unreal Engine 4 using the C++ language. The
system is carefully optimized for real-time simulation on high-
end consumer-grade hardware. The chosen design approach
makes our environment feasible for 1) interactive driver-in-
the-loop (DIL) simulators [20] where immediate responses and
emotional states of the cabin occupants are of the essence; 2)
visual data collection (ground truth) for training neural
networks and related vehicular vision techniques [21]; 3)
testing and validation of vision-based ADAS algorithms in
real-time software-in-the-loop (SIL) and hardware-in-the-loop
(HIL) simulations [9]; or 4) visualization of transportation
planning and traffic flow control schemes [22] in a realistic
urban road network.

The rest of the paper is organized as follows. Section 2
characterizes the existing open-source driving simulation
platforms. Section 3 provides an overview of the proposed
CiThruS2 simulation framework and the implemented traffic
management system. The natural and built environment is

described in Section 4 with weather and lighting effects in
Section 5. Section 6 evaluates the simulation performance and
summarizes the implemented optimizations. The main
applications of our proposal are discussed in Section 7. Finally,
Section 8 concludes the paper.

II. RELATED WORK

Table 1 summarizes the main features of the most well-

known open-source platforms for traffic and driving

simulation. A fully-fledged virtual testbed calls for realistic

traffic infrastructure and driving conditions that are reflective

of the real world. Therefore, the environments are particularly

characterized in terms of photorealistic graphics, realistic

layout, other traffic participants, and environmental effects.

The perceived realism of the environments is also crucial for

visual data collection and traffic flow visualization.

On the other hand, high rendering speed is paramount for

realistic DIL, SIL, and HIL simulations, especially in high-

speed traffic scenarios, where an ADAS system should take

over control or assist the driver on the fly. Simulating such

scenarios is not possible unless the system is capable of

outputting video feed at high frame rates or perform the

simulation at slower-than-reality frame rates. Rendering

multiple cameras in real-time is another reason for a

lightweight simulation environment. For example, in typical

situations, a car might have dozens of cameras and rendering

them all while keeping the environment usable is difficult to

achieve in real-time.

CARLA [12] and AirSim [13] platforms are the closest

approaches to our proposal in terms of their feature offering.

CARLA has been designed for development, training, and

validation of autonomous driving systems and related self-

driving algorithms. However, it is built on compute-intensive

machine-learning algorithms with a lot of detailed features, so

it is computationally heavy and thereby falls behind real-time

performance. AirSim is primarily meant for aerial vehicle

testing and evaluation, and as such falls short on the overall

visual fidelity of close-to-ground details. It also excludes

other traffic participants, as is the case with TORCS [11] and

the environments introduced by V. R. Aparow et al. [15] and

A. AbdelHamed et al. [16]. On the other hand, SIRCA [10]

and CoInCar-Sim [14] include other traffic participants, but

they are lacking in their overall graphical fidelity.

TABLE I: FEATURES OF THE EXISTING AND PROPOSED OPEN-SOURCE SIMULATION FRAMEWORKS

Platform License Year Photorealistic Realistic Layout Lightweight Weather Time-of-Day Traffic Manually Driveable

SIRCA [10] NA 1996 No Yes Yes No No Yes No

TORCS [11] GPL 2014 No Yes Yes No No No Yes

CARLA [12] MIT/CC-BY 2017 Yes * Yes * No Yes Yes Yes Yes

AirSim [13] MIT 2017 Yes * Yes * No Yes Yes No Yes

CoInCar-Sim [14] NA 2018 No Yes No No No Yes No

V. R. Aparow et al. [15] NA 2019 No No * NA No No No No

A. AbdelHamed et al. [16] NA 2019 No No * NA No No No ** Yes

CiThruS1 [17] MIT 2019 No No Yes Yes Yes Yes Yes

Ours (CiThruS2) MIT Current Yes Yes Yes Yes Yes Yes Yes
NA, no t mentioned

* scene dependent

** only pedes trians and limited vehicles

III. CITHRUS2 SIMULATION FRAMEWORK

Fig. 2 depicts a conceptual block diagram of the CiThruS2

simulation framework. It consists of two logical entities called

the user interaction and simulation environment. The latter is

further divided into the four main components: Traffic

Scenario Manager (TSM), Traffic System, Driving

Conditions, and Traffic Imaging System. The simulation

environment can serve as a virtual testbench for various

driving and traffic simulation scenarios, such as interactive

driver monitoring, virtual vehicle testing, visual traffic data

collection, and traffic flow management and visualization.

A. Vehicle under Test

The system accepts user input from a steering wheel,

pedals, gear shifter, or more advanced HMI. The input is used

to steer and control the vehicle under test, a.k.a. the ego

vehicle.

The framework supports holistic virtual monitoring of the

driver and other cabin occupants by providing the means of

capturing the scene from various camera positions, such as

first-person driver’s -view, bird’s-eye view, third-person’s

view, or another relevant camera angle. Being able to see and

depict the driver’s field-of-view is also essential in driving

monitoring.

The TSM is responsible for capturing video and sensor

footage during the simulation. Different 2D, stereo, and 360-

degree virtual cameras can be separately mounted on the

desired positions of the vehicle bodies or practically

anywhere in the environment. The environment can also be

used to simulate various other sensors technologies applied in

modern vehicles and traffic systems, such as LiDARs, inertial

measurement units (IMU), and GNSS, to name a few.

B. Other Vehicles

The environment also provides a set of Non-Player-

Characters (NPCs) for populating the scenes with vehicles

and pedestrians. Currently, it supports a diverse selection of

vehicle NPCs, such as sedans, trucks, and vans. These 3D

models were crafted by us, using existing commercial

vehicles as reference. In addition, some free ready-made

assets with appropriate licenses were used.

 The vehicles utilize a lightweight location-node based

waypoint system for pathfinding. It allows us to clearly

determine the allowed roads for vehicles and keep the

simulation computationally lightweight. The debugging view

of the node network is shown in Fig. 3.

To account for a human driving among autonomous

vehicles, the vehicles react dynamically to the traffic and the

environment around them. The operation principle of the

vehicles can be seen in Fig. 4. By default, they operate in

autonomous collision-avoidance mode and follow a randomly

generated path. A collision is detected either 1) through the

node-based far-vision approach, where the vehicle queries the

nodes in front of it for possible collision-imminent vehicles;

or 2) the volume-trace near-vision approach, where the

vehicle checks whether there is a car on its path. The volume-

traced based collision detection is also used to prepare for

turns, intersections, and other complicated traffic situations.

The other operation mode for vehicles is the traffic scenario

override mode, where the TSM overrides the behavior of all

relevant vehicles and guides them according to the scenario-

related rules. In this mode, all non-relevant vehicles are routed

away for lower complexity. The vehicles also do not check

for collisions with each other, as their movements are

overridden by the TSM, which guarantees a no-collision flow

Figure 4. The operating principle of the vehicles.

Figure 2. Block diagram of the CiThruS2 simulation framework.

Figure 3. Vehicle pathfinding node network.

of traffic. The other vehicles still react normally to the vehicle

under test.

C. Pedestrians

Pedestrians are spawned randomly, and they walk around a

chosen path. The pedestrians react to traffic lights and can

cross the road accordingly. Additionally, the system can

trigger random events in which the pedestrians run onto the

road or decide to cross on the red light. All human characters

have been made using the open-source MakeHuman [23]

middleware.

D. Traffic Scenarios

The simulation environment maintains validity and

stochastic flow of traffic by dynamically creating different

traffic scenarios such as parking, overtaking, traffic accidents,

and traffic jams. Unpredictable traffic conditions are key to

monitor the human driver. TSM produces, dispatches, and

manages the traffic scenarios and controls the vehicles,

pedestrians, and driving conditions. The driving condition

component takes care of weather conditions, lighting, and the

time-of-day effects.

E. Traffic Flow

A common use case for traffic imaging systems is

monitoring the flow of traffic in order to test and validate

traffic flow control systems, or to create typical law-

enforcement speed monitoring situations (Fig. 5).

The TSM can be used to direct the traffic flow to a specific

area in the environment. The routes and paths of the vehicles

and pedestrians are managed by the traffic system that seeks

to maintain a smooth flow of traffic and verify that road users

comply with traffic rules.

IV. GEOSPATIAL DATA

The CiThruS2 virtual environment covers an area of

roughly 9 km2 (3 km × 3 km) of Hervanta, Finland. The

development time of this Hervanta scene was significantly

reduced by utilizing data from external sources, such as

photos, topological maps, and satellite imagery. This

approach also ensures the model's accuracy and consistency

with its real-life counterpart.

At a high level, the graphical side of the environment was

made from four layers: terrain, roads, buildings, and foliage.

Using separate layers simplifies the development and allows

easier environment characterization for vehicular vision

algorithms.

A. Terrain

The terrain layer is derived from a heightmap [24], which

was acquired with terrain.party [25] from OpenStreetMap

[26] and National Land Survey of Finland's Topographic

Database [27]. Although the acquired data was mostly

accurate and provided a good starting point for terrain

creation, some manual adjustment was made to achieve better

correspondence between real and virtual worlds.

B. Roads

The placement and size of the roads, sidewalks, and

parking lots were extracted using OpenStreetMap [26]. The

road layout and placement were accurate and no further

topological adjustment was needed. The model exported from

OpenStreetMap also included locations and basic shapes of

most of the buildings, which were replaced with more

accurate and custom models.

C. Buildings

The buildings were created manually using reference

images, from both ground-level and aerial footage. The

manual approach was chosen over, e.g., aerial

photogrammetry or laser-scanning [28], as it allowed for more

consistent and precise control over the style and shape of the

buildings. Having accurate buildings and textures is of utmost

importance to computer vision algorithms [21].

The development time was significantly sped up by reusing

most used “building blocks” or elements in buildings with

similar features. This was especially important for constructs

commonly not visible from the ground level.

Figure 5. An example case of traffic flow in the environment. (a) A bird's-eye view. (b) An elevated third-person view.

D. Foliage

The city of Hervanta is surrounded by an ample amount of

foliage and forestry, so well-optimized grass, trees, and other

vegetation assets were crucial in creating a convincing

simulation environment. In many computer graphics

applications, foliage can take the largest part of the frame

budget. Rendering transparency requires that the depth buffer

is sorted once for every overlapping pixel with a non-unit

alpha value in the fragment shader, which results in

transparency overdraw. As a result, the performance is

severely impacted in dense forest areas. Classic Level-of-

Detail (LOD) approaches can limit the frame-time impact of

foliage, but ultimately merely reducing the triangle count of

individual trees is not sufficient.

Another approach for optimizing distant trees are billboard

sprites [29], which render the tree image into a simple quad-

plane with 4 vertices and 2 triangles. Although this is effective

in optimizing the scene, the effect it creates is easily

distinguishable and does not maintain the believability of the

simulation environment. Billboards also increased the amount

of layered transparent objects, especially in forest

environments. It made the transparency overdraw issue worse

and did not help with the performance by a significant margin.

The solution for maintaining a large volume of trees with

high visual fidelity is called impostors [29]. Instead of

creating this functionality from scratch, a ready-made

implementation for Unreal Engine 4 [30] was used. This

allows the simulation to contain over 200 000 trees inside the

view-frustum without affecting the performance significantly.

V. WEATHER AND LIGHTING EFFECTS

Various weather conditions such as rain, snow, or fog are

required to simulate real driving conditions. All these weather

effects are also accompanied by lighting, which is arguably

one of the most important aspects contributing to a

photorealistic visual style. Therefore, it is critical to simulate

light as realistically as possible. Lighting conditions also have

a significant impact on not only the driver, but camera

systems as well.

It was crucial to include as many possible lighting variations

as the driver might experience on the road. Conditions like

harsh evening lighting, overcast sky, or night are tackled

differently by a driver, and they thereby come with their

unique set of difficulties. To produce realistic lighting, we

employed the following effects: a realistic day and night

cycle, ambient lighting, strategically placed artificial lights,

and a set of screen-space effects.

A. Volumetric Fog

Unreal Engine 4 [31] comes with a built-in system for

simulating volumetric fog. In our simulation, it is turned off

by default during the day as it has a minimal impact on the

visuals alone. However, it creates the effect seen in Fig. 6 (a)

when coupled with additional effects such as light shaft

occlusion [32] and light shaft bloom [32].

However, volumetric fog is enabled during the night and

rain situations. During the night, it provides a light scattering

effect that becomes visible under streetlights and in front of

headlights, as visualized in Fig. 6 (b). During rainfall, the fog

becomes denser and falls closer to the surface in order to

Figure 6. First-person views of different driving conditions. (a) Morning. (b) Night. (c) Daytime rain. (d) Afternoon.

imitate rain droplets scattering above the ground and add

depth to the atmosphere as illustrated in Fig. 6 (c). The

afternoon sky of the same area is shown in Fig. 6 (d) for

comparison.

B. Rain

The rain droplet effect was implemented using a post-

processing material [33], which imitates rain streaks or

splashes depending on the direction of the camera. Raindrop

ripples and streaks also appear on selected objects, such as car

and building windows, roads, and most of the traffic control

objects.

C. Snow

A realistic snow effect was implemented similarly to the rain;

a particle system was responsible for the falling snowflakes.

Additionally, in winter conditions the trees in the simulation

lose their leaves and snow starts to pile up on flat surfaces,

such as the ground, roads, and the tops of the buildings. Snow

depth was imitated using a vertex displacement shader.

D. Day and Night Cycle

The day and night cycle simulates the natural progress of

time in the simulation. The system positions the sun in the

sky, specifies the hour of the day and is responsible for

chronologically accurate lighting. The color and quality of the

light vary throughout the day, which is also addressed.

E. Ambient Lighting

The environment lighting is a simulated sunlight during the

day, a simulated moonlight during the night, and a skylight

achieved with image-based lighting techniques [34]. The

colors of these lights are set dynamically by the day and night

system.

F. Artificial Lights

The simulation uses the deferred shading pipeline [35]. It

was chosen over the other common shading pipeline, the

forward renderer [36], because a single light imposes a

virtually non-existent impact on performance. This allows the

simulation to have a practically infinite number of lights that

contribute to the scene illumination at the same time. The

realism of the effect is amplified during the night, when all

streetlights are illuminated and the vehicles in the traffic

system have their head- and backlights turned on.

G. Screen-Space Effects

The simulation makes use of screen-space effects, such as

screen-space global illumination [37] and screen-space

reflections [38]. Although these techniques can produce

limited effects, the lighting or reflections are only influenced

by currently visible objects on the screen. In addition, the

effect is accurate in relation to its computational complexity.

VI. PERFORMANCE ANALYSIS AND OPTIMIZATIONS

According to our experiments, the proposed system can

achieve a stable rendering speed of over 60 frames per second

(fps) up to 4K (3840 × 2160) resolution when run on an

NVIDIA GTX 1060 or an equivalent consumer-grade

graphics processing unit (GPU).

It even reaches real-time performance on lower-tier

hardware through a multitude of optimizations, of which the

most relevant techniques are listed in Table 3. The overall

simulation speed can further be fine-tuned, e.g., by decreasing

the number of shadow cascades, disabling volumetric fog

during the day, and using more radical distance-culling of

excess grass.

Our CiThruS2 environment was also benchmarked on a

more powerful AMD Radeon 6900 XT GPU that increased

the 4K rendering speed beyond 120 fps. Table 2 reports the

4K performance results of our environment alongside the

widely used CARLA [13] and AirSim [14] frameworks on a

desktop computer equipped with an AMD Ryzen 5900X

CPU, AMD Radeon 6900 XT GPU, and 64 GB of RAM.

Standalone builds of the environments were used, and the

selected scenes were Town10HD for CARLA and AirSimNH

for AirSim. For consistent results, the virtual camera was

flown 3 m above the ground and average frame rates and

times were measured over a period of 120 s. The obtained

rendering speed of our CiThruS2 environment was 2.1× and

2.9× as high as those of CARLA and AirSim platforms,

respectively.

VII. APPLICATIONS

Photorealistic graphics together with real-time

performance and a broad range of adjustable features make

our CiThruS2 framework a potential solution for many

automotive applications out of which the following four usage

scenarios are considered the most feasible:

1) An interactive virtual environment in the DIL simulators

that detect driver’s and other cabin occupants’ immediate

emotional states, functional ability, performance, and

maneuvers in different traffic scenarios. Real-time

simulators with stochastic traffic models can create

conditions not foreseen by the driver.

2) Ground truth data collection to train neural networks for

classification, object detection, and image segmentation

TABLE II: PERFORMANCE COMPARISON ON AMD RADEON 6900 XT GPU

Platform Scene Rendering speed Frame time

CARLA [12] Town10HD 48 fps 20.8 ms

AirSim [13] AirSimNH 65 fps 15.0 ms

Ours (CiThruS2) Hervanta 140 fps 7.1 ms

TABLE III: MAIN OPTIMIZATION TECHNIQUES

Feature Optimization techniques

All geometry

Minimum number of triangles, LODs, culling small objects at great

distance, cull distance volumes [42], and reducing the view

frustrum rendering far-plane distance.

Buildings
Buildings share the same material with a single set of 1024×1024

texture atlases [41] and the triangle count is kept low.

Foliage Using impostors over raw 3D meshes or sprite billboards

Materials Minimum number of master materials and material instancing

Artificial lights
Shadow contribution only when in 32 m range from a user

camera.

Traffic system Traffic computations reduced on areas not seen by any camera.

in vehicular vision applications. Objects of interest may

include vehicles, pedestrians or other vulnerable road

users, traffic signs, road lanes, register plates, traffic

congestions, traffic lights changing from red to green,

etc. The dataset can be diversified with different weather,

time-of-day, and lighting conditions.

3) Real-time SIL and HIL simulation of the designed vision

sensors, algorithms, and embedded systems in the virtual

environment before integrating them in the vehicle and

thereby ramp up the development and improve reliability.

4) Visualization of transportation planning and traffic flow

control schemes in a realistic road network. New

schemes can effortlessly be evaluated and validated by

changing traffic regulations and altering the number of

road users.

VIII. CONCLUSION

This paper introduced our open-source CiThruS2

simulation framework for vision-based ADAS development

in a realistic high-fidelity virtual environment. The created 3D

scene is modeled after a real-world traffic infrastructure,

where driving and traffic can be simulated with practically

any number of autonomous vehicles and pedestrians under

various time-of-day, weather, and lighting conditions. Hence,

it can serve as a virtual testbench and test drive platform for a

broad range of traffic scenarios.

Our simulator is built on Unreal Engine 4 and carefully

optimized for rendering speed. To the best of our knowledge,

it is the only open-source simulation framework that can

perform photorealistic real-time (60 fps) 4K rendering of a 3D

city scene on a consumer-grade GPU such as NVIDIA GTX

1060. This unique set of features particularly speeds up the

design and validation stages where real-time performance and

photorealism are in the focal point. The openness also makes

it accessible to the entire automotive value chain and thereby

fosters large-scale development and deployment of disruptive

ADAS technologies towards autonomous driving.

In the future, a more sophisticated traffic management

system will be introduced. The environment will be populated

with new road users (cyclists, trams, etc.), and the ego vehicle

will be equipped with dynamics and sensor models. The level

of immersion will be increased by Virtual Reality

compatibility. These forthcoming features will evidently

broaden the application space of the framework. The inherent

computation overhead will be tackled by deploying more

efficient implementation techniques such as NVIDIA deep

learning super sampling (DLSS) or by introducing novel

rendering techniques, such as checkerboard rendering with

adaptive pixel temporal consistency filtering to reduce the

number of pixels to be drawn.

REFERENCES

[1] SAE International, “Taxonomy and definitions for terms related to
driving automation systems for on-road motor vehicles,” Standard

J3016, June 2018.

[2] V. K. Kukkala, J. Tunnell, S. Pasricha, and T. Bradley, “Advanced
driver-assistance systems: a path toward autonomous vehicles,” IEEE

Consum. Electron. Mag., Sept. 2018, vol. 7, no. 5, pp. 18-25.

[3] H. Zhou, W. Xu, J. Chen, and W. Wang, “Evolutionary V2X
technologies toward the internet of vehicles: challenges and

opportunities,” Proc. of the IEEE, Feb. 2020, vol. 108, no. 2, pp. 308-
323.

[4] A. Koesdwiady, R. Soua, F. Karray, and M. S. Kamel, “Recent trends

in driver safety monitoring systems: state of the art and challenges,”
IEEE Trans. Veh. Technol., June 2017, vol. 66, no. 6, pp. 4550-4563.

[5] O. Burkacky, H. Deichmann, and J. P. Stein, “Automotive software and

electronics 2030: mapping the sector’s future landscape,” McKinsey &
Company Inc., July 2019.

[6] “Waymo,” [Online]. Available: https://www.waymo.com/.

[7] “NVIDIA Drive Constellation,” [Online]. Available:
https://developer.nvidia.com/drive/drive-constellation.

[8] “LG Autonomous Driving Simulator,” [Online]. Available:

https://www.sylsimulator.com/.
[9] F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic

review of perception system and simulators for autonomous vehicles

research,” Sensors, Feb. 2019, vol. 19, no. 3, pp. 648.
[10] S. Bayarri, M. Fernandez, and M. Perez, “Virtual reality for driving

simulation-SIRCA,” Commun. ACM, vol. 39, no. 5, May 1996, pp. 72-

76.
[11] “TORCS: The Open Racing Car Simulator,” [Online]. Available:

http://www.torcs.org.

[12] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: an open urban driving simulator,” in Proc. Annual Conf. on

Robot Learning, Mountain View, California, USA, Nov. 2017.

[13] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: high-fidelity
visual and physical simulation for autonomous vehicles,” in Proc. Field

and Service Robotics conf., Sept. 2017.
[14] M. Naumann, F. Poggenhans, M. Lauer, and C. Stiller, “CoInCar-Sim:

an open-source simulation framework for cooperatively interacting

automobiles,” in Proc. IEEE Intell. Veh. Symp., Changshu, China, Oct.
2018.

[15] V. R. Aparow, A. Choudary, G. Kulandaivelu, T. Webster, J. Dauwels,

and N. d. Boer, “A comprehensive simulation platform for testing
autonomous vehicles in 3D virtual environment,” in Proc. Int. Conf.

Mechatronics Syst. Robots, Singapore, May 2019, pp. 115-119.

[16] A. AbdelHamed, G. Tewolde, and J. Kwon, “Simulation framework for
development and testing of autonomous vehicles,” in Proc. IOT,

Electron. Mechatronics Conf., Vancouver, British Columbia, Canada,

Sept. 2020, pp. 1-6.

[17] T. T. Niemirepo, J. Toivonen, M. Viitanen, and J. Vanne, “Open-source

CiThruS simulation environment for real-time 360-degree traffic

imaging,” in Proc. IEEE Int. Conf. Connected Vehicles and Expo, Graz,
Austria, Nov. 2019.

[18] “Windridge City Asset,” [Online]. Available:

https://assetstore.unity.com/packages/3d/environments/roadways/win
dridge-city-132222.

[19] M. Pharr, W. Jakob, and G. Humphreys, “Physically Based Rendering:

from Theory to Implementation,” 3rd ed., Morgan Kaufmann, Sept.
2016.

[20] L. Bruck, B. Haycock, and A. Emadi, “A review of driving simulation

technology and applications,” IEEE Open J. Veh. Technol., Nov. 2020,
vol. 2, pp. 1-16.

[21] B. Ranft and C. Stiller, “The role of machine vision for intelligent

vehicles,” IEEE Trans. Intell. Veh., Mar. 2016, vol. 1, no. 1, pp. 8-19.
[22] Q. Chao, H. Bi, W. Li, T. Mao, Z. Wang, M.C. Lin, and Z. Deng, “A

survey on visual traffic simulation: models, evaluations, and

applications in autonomous driving,” Comput. Graph. Forum, vol. 39,
no. 1, Feb. 2020, pp. 287-308.

[23] “MakeHuman,” [Online]. Available:

http://www.makehumancommunity.org/.
[24] M. Kirscht and C. Rinke, “3D reconstruction of buildings and

vegetation from synthetic aperture radar (SAR) images,” in Proc. IAPR

Workshop Machine Vision Appl., Nov. 1998, pp. 228-231.
[25] “Terrain.party,” [Online]. Available: https://terrain.party/.

[26] “OpenStreetMap,” [Online]. Available: www.openstreetmap.org.

[27] “National Land Survey of Finland,” [Online]. Available:
https://www.maanmittauslaitos.fi/en.

[28] P. Kudela, M. Palčák, K. Zábovská, and B. Bučko, “Integration of

photogrammetry within laser scanning approach,” in Proc. Int. Conv.
Inf., Commun. Electron. Technol., Opatija, Croatia, Sept. 2020, pp.

1691-1694.

[29] NVIDIA, “GPU Gems 3,” Part IV, Chapter 21, Aug. 2007. [Online].
Available:

https://developer.nvidia.com/gpugems/gpugems3/contributors

[30] R. Brucks, “Impostor Baker Plugin,” [Online]. Available:
https://github.com/ictusbrucks/ImpostorBaker.

[31] “Unreal Engine 4,” [Online]. Available:

https://www.unrealengine.com/en-US/.
[32] U. E. 4. Documentation, “Light Shafts,” [Online]. Available:

https://docs.unrealengine.com/en-

US/BuildingWorlds/LightingAndShadows/LightShafts/index.html.
[33] U. E. 4. Documentation, “Post process materials,” [Online]. Available:

https://docs.unrealengine.com/en-

US/RenderingAndGraphics/PostProcessEffects/PostProcessMaterials/
index.html.

[34] NVIDIA, “GPU Gems,” Part III, Chapter 19, Mar. 2004, [Online].

Available:
https://developer.nvidia.com/gpugems/gpugems3/contributors

[35] U. E. 4. Documentation, “Rendering Overview,” [Online]. Available:

https://docs.unrealengine.com/en-
US/RenderingAndGraphics/Overview/index.html.

[36] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A sorting

classification of parallel rendering,” IEEE Comput. Graph. Appl., July
1994, vol. 14, no. 4, pp. 23-32.

[37] U. E. 4. Documentation, “Screen Space Global Illumination,” [Online].

Available: https://docs.unrealengine.com/en-
US/BuildingWorlds/LightingAndShadows/ScreenSpaceGlobalIllumin

ation/index.html.

[38] U. E. 4. Documentation, “Screen Space Reflections,” [Online].
Available: https://docs.unrealengine.com/en-

US/RenderingAndGraphics/PostProcessEffects/ScreenSpaceReflectio
n/index.html.

[39] H. Singh, S. Midlam-Mohler, and P. Tulpule, “Simulation based virtual

testing for safety of ADAS algorithms - case studies,” SAE Technical
Paper, Apr. 2021.

[40] J. Cohen, M. Olano, and D. Manocha, “Appearance-preserving

simplification,” in Proc. Annual Conf. Computer Graphics and
Interactive Techniques, July 1998.

[41] NVIDIA, “SDK white paper: improve batching using texture atlases,”

July 2004.
[42] U. E. 4. Documentation, “Cull distance volume,” [Online]. Available:

https://docs.unrealengine.com/en-

US/RenderingAndGraphics/VisibilityCulling/CullDistanceVolume/in

dex.html.

