
  

 

Abstract—The automotive and transport sector is undergoing 

a paradigm shift from manual to highly automated driving. This 

transition is driven by a proliferation of advanced driver 

assistance systems (ADAS) that seek to provide vehicle 

occupants with a safe, efficient, and comfortable driving 

experience. However, increasing the level of automation makes 

exhaustive physical testing of ADAS technologies impractical. 

Therefore, the automotive industry is increasingly turning to 

virtual simulation platforms to speed up time-to-market. This 

paper introduces the second version of our open-source See-

Through Sight (CiThruS) simulation framework that provides a 

novel photorealistic virtual environment for vision-based ADAS 

development. Our 3D urban scene supports realistic traffic 

infrastructure and driving conditions with a plurality of time-of-

day, weather, and lighting effects. Different traffic scenarios can 

be generated with practically any number of autonomous 

vehicles and pedestrians that can be made to comply with 

dedicated traffic regulations. All implemented features have 

been carefully optimized and the performance of our lightweight 

simulator exceeds 4K (3840 × 2160) rendering speed of 60 frames 

per second when run on NVIDIA GTX 1060 graphics card or 

equivalent consumer-grade hardware. Photorealistic graphics 

rendering and real-time simulation speed make our proposal 

suitable for a broad range of applications, including interactive 

driving simulators, visual traffic data collection, virtual 

prototyping, and traffic flow management. 
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I.  INTRODUCTION 

The rapid emergence of advanced driver-assistance 
systems (ADAS) has revolutionized the whole automotive and 
transport sector and the evolution continues gradually towards 
fully autonomous driving [1]. Modern vehicles are 
increasingly equipped with a broad range of passive and active 
ADAS technologies that protect and prevent vehicle occupants 
from accidents by sensing the environment and detecting other 
road users with a camera, RADAR, LiDAR, and other 
advanced-sensing technologies [2]. The current trend is 
towards more holistic situational awareness that is further 
leveraged by means of on-board sensor fusion techniques and 
vehicle-to-everything (V2X) communication with other traffic 
participants [3]. Inside the cabin, advanced human-machine 
interface (HMI) technologies [4] are actively being developed 

to adapt to the new ways of interaction between the driver and 
vehicle. 

Inevitably, the design complexity of ADAS increases 
together with the level of automation due to the explosive 
growth of automotive software, electrical/electronic (E/E) 
components, and sensor modalities [5]. Changing the role of 
the driver from manual execution to supervision also leads to 
the proliferation of test cases, which makes expensive and 
time-consuming physical testing with real vehicles 
impracticable. In addition, meeting the requirements of 
various safety standards and regulations puts additional 
pressure on functional verification and validation. Many traffic 
scenarios, such as accidents, can also be extremely difficult 
and even dangerous to demonstrate and reproduce in real-
world testbeds.  

To this end, developing safe, fail-operational, and cost-
effective ADAS technologies call for simulation environments 
where different functionalities can be virtually tested, iterated, 
and verified under different parameter settings and traffic 
scenarios before being introduced into the actual systems. Key 
industry players have also released commercial simulation 
tools on the market, such as Google’s Waymo [6], NVIDIA 
Drive Constellation [7], and LG Autonomous Driving 
Simulator [8], but they are not freely available to users, 
developers, regulators, or other stakeholders, and thus they 
will not be considered in this paper. 

Over the past three decades, several noteworthy open-
source virtual simulation platforms [9]-[16] have also been 
announced, including SIRCA [10], TORCS [11], CARLA 
[12], and AirSim [13] that are probably the most well-known 
solutions in the field. However, they all fall short of combining 
real-time speed, photorealism, realistic layout of the 
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Figure 1. Snapshot of the CiThruS2 simulation environment. 



  

environment, all traffic participants, and other environmental 
effects into a single solution.  

This paper gives an overview of our open-source approach 
called See-Through Sight (CiThruS) simulation framework. 
The first version of our environment [17] was published in 
2019. It was derived from Windridge City Asset [18], but its 
road infrastructure and geometry (lane widths, curves, etc.) 
were found inappropriate for realistic driving simulation. 
These restrictions motivated us to build a completely new 
urban digital twin with realistic traffic infrastructure and 
thereby reduce the gap between virtual and real-world testing. 

The new environment, a.k.a. CiThruS2 is modeled after 
Hervanta, a suburb of the city of Tampere, Finland. Fig. 1 
depicts a snapshot of our virtual 3D urban scene. It is created 
using the realistic physically based rendering (PBR) [19] and 
it can be populated with practically any number of autonomous 
vehicles and pedestrians. The environment also supports a 
multitude of driving conditions with versatile and easily 
adjustable time-of-day lighting and weather effects. Time 
changes dynamically during the simulation, allowing the user 
to experience the entire 24-hour period in a single sitting. 
Weather conditions such as rain, snow, or fog can be toggled 
manually to experience specific situations. This broad 
spectrum of features makes our simulation software a 
multipurpose virtual testbench for a myriad of traffic 
scenarios.  

The proposed simulation environment is distributed under 
the MIT open-source license on GitHub at 

github.com/ultravideo/CiThruS2 

It is built in Unreal Engine 4 using the C++ language. The 
system is carefully optimized for real-time simulation on high-
end consumer-grade hardware. The chosen design approach 
makes our environment feasible for 1) interactive driver-in-
the-loop (DIL) simulators [20] where immediate responses and 
emotional states of the cabin occupants are of the essence; 2) 
visual data collection (ground truth) for training neural 
networks and related vehicular vision techniques [21]; 3) 
testing and validation of vision-based ADAS algorithms in 
real-time software-in-the-loop (SIL) and hardware-in-the-loop 
(HIL) simulations [9]; or 4) visualization of transportation 
planning and traffic flow control schemes [22] in a realistic 
urban road network. 

The rest of the paper is organized as follows. Section 2 
characterizes the existing open-source driving simulation 
platforms. Section 3 provides an overview of the proposed 
CiThruS2 simulation framework and the implemented traffic 
management system. The natural and built environment is 

described in Section 4 with weather and lighting effects in 
Section 5. Section 6 evaluates the simulation performance and 
summarizes the implemented optimizations. The main 
applications of our proposal are discussed in Section 7. Finally, 
Section 8 concludes the paper. 

II.    RELATED WORK 

Table 1 summarizes the main features of the most well-

known open-source platforms for traffic and driving 

simulation. A fully-fledged virtual testbed calls for realistic 

traffic infrastructure and driving conditions that are reflective 

of the real world. Therefore, the environments are particularly 

characterized in terms of photorealistic graphics, realistic 

layout, other traffic participants, and environmental effects. 

The perceived realism of the environments is also crucial for 

visual data collection and traffic flow visualization.  

On the other hand, high rendering speed is paramount for 

realistic DIL, SIL, and HIL simulations, especially in high-

speed traffic scenarios, where an ADAS system should take 

over control or assist the driver on the fly. Simulating such 

scenarios is not possible unless the system is capable of 

outputting video feed at high frame rates or perform the 

simulation at slower-than-reality frame rates. Rendering 

multiple cameras in real-time is another reason for a 

lightweight simulation environment. For example, in typical 

situations, a car might have dozens of cameras and rendering 

them all while keeping the environment usable is difficult to 

achieve in real-time.  

CARLA [12] and AirSim [13] platforms are the closest 

approaches to our proposal in terms of their feature offering. 

CARLA has been designed for development, training, and 

validation of autonomous driving systems and related self-

driving algorithms. However, it is built on compute-intensive 

machine-learning algorithms with a lot of detailed features, so 

it is computationally heavy and thereby falls behind real-time 

performance. AirSim is primarily meant for aerial vehicle 

testing and evaluation, and as such falls short on the overall 

visual fidelity of close-to-ground details. It also excludes 

other traffic participants, as is the case with TORCS [11] and 

the environments introduced by V. R. Aparow et al. [15] and 

A. AbdelHamed et al. [16]. On the other hand, SIRCA [10] 

and CoInCar-Sim [14] include other traffic participants, but 

they are lacking in their overall graphical fidelity.  

TABLE I: FEATURES OF THE EXISTING AND PROPOSED OPEN-SOURCE SIMULATION FRAMEWORKS 

 

Platform License Year Photorealistic Realistic Layout Lightweight Weather Time-of-Day Traffic Manually Driveable

SIRCA [10] NA 1996 No Yes Yes No No Yes No

TORCS [11] GPL 2014 No Yes Yes No No No Yes

CARLA [12] MIT/CC-BY 2017 Yes * Yes * No Yes Yes Yes Yes

AirSim [13] MIT 2017 Yes * Yes * No Yes Yes No Yes

CoInCar-Sim [14] NA 2018 No Yes No No No Yes No

V. R. Aparow et al. [15] NA 2019 No No * NA No No No No

A. AbdelHamed  et al. [16] NA 2019 No No * NA No No No ** Yes

CiThruS1 [17] MIT 2019 No No Yes Yes Yes Yes Yes

Ours (CiThruS2) MIT Current Yes Yes Yes Yes Yes Yes Yes
NA, no t  mentioned

* scene dependent

** only pedes trians  and  limited  vehicles



  

III. CITHRUS2 SIMULATION FRAMEWORK 

Fig. 2 depicts a conceptual block diagram of the CiThruS2 

simulation framework. It consists of two logical entities called 

the user interaction and simulation environment. The latter is 

further divided into the four main components: Traffic 

Scenario Manager (TSM), Traffic System, Driving 

Conditions, and Traffic Imaging System. The simulation 

environment can serve as a virtual testbench for various 

driving and traffic simulation scenarios, such as interactive 

driver monitoring, virtual vehicle testing, visual traffic data 

collection, and traffic flow management and visualization. 

A. Vehicle under Test 

The system accepts user input from a steering wheel, 

pedals, gear shifter, or more advanced HMI. The input is used 

to steer and control the vehicle under test, a.k.a. the ego 

vehicle.  

The framework supports holistic virtual monitoring of the 

driver and other cabin occupants by providing the means of 

capturing the scene from various camera positions, such as 

first-person driver’s -view, bird’s-eye view, third-person’s 

view, or another relevant camera angle. Being able to see and 

depict the driver’s field-of-view is also essential in driving 

monitoring. 

The TSM is responsible for capturing video and sensor 

footage during the simulation. Different 2D, stereo, and 360-

degree virtual cameras can be separately mounted on the 

desired positions of the vehicle bodies or practically 

anywhere in the environment. The environment can also be 

used to simulate various other sensors technologies applied in 

modern vehicles and traffic systems, such as LiDARs, inertial 

measurement units (IMU), and GNSS, to name a few. 

B. Other Vehicles 

The environment also provides a set of Non-Player-

Characters (NPCs) for populating the scenes with vehicles 

and pedestrians. Currently, it supports a diverse selection of 

vehicle NPCs, such as sedans, trucks, and vans. These 3D 

models were crafted by us, using existing commercial 

vehicles as reference. In addition, some free ready-made 

assets with appropriate licenses were used. 

 The vehicles utilize a lightweight location-node based 

waypoint system for pathfinding. It allows us to clearly 

determine the allowed roads for vehicles and keep the 

simulation computationally lightweight. The debugging view 

of the node network is shown in Fig. 3.  

To account for a human driving among autonomous 

vehicles, the vehicles react dynamically to the traffic and the 

environment around them. The operation principle of the 

vehicles can be seen in Fig. 4. By default, they operate in 

autonomous collision-avoidance mode and follow a randomly 

generated path. A collision is detected either 1) through the 

node-based far-vision approach, where the vehicle queries the 

nodes in front of it for possible collision-imminent vehicles; 

or 2) the volume-trace near-vision approach, where the 

vehicle checks whether there is a car on its path. The volume-

traced based collision detection is also used to prepare for 

turns, intersections, and other complicated traffic situations.  

The other operation mode for vehicles is the traffic scenario 

override mode, where the TSM overrides the behavior of all 

relevant vehicles and guides them according to the scenario-

related rules. In this mode, all non-relevant vehicles are routed 

away for lower complexity. The vehicles also do not check 

for collisions with each other, as their movements are 

overridden by the TSM, which guarantees a no-collision flow 

 
Figure 4. The operating principle of the vehicles. 

 

 

 

 
Figure 2. Block diagram of the CiThruS2 simulation framework. 

 

 

 
Figure 3. Vehicle pathfinding node network. 

 

 



  

of traffic. The other vehicles still react normally to the vehicle 

under test.  

C. Pedestrians 

Pedestrians are spawned randomly, and they walk around a 

chosen path. The pedestrians react to traffic lights and can 

cross the road accordingly. Additionally, the system can 

trigger random events in which the pedestrians run onto the 

road or decide to cross on the red light. All human characters 

have been made using the open-source MakeHuman [23] 

middleware. 

D. Traffic Scenarios 

The simulation environment maintains validity and 

stochastic flow of traffic by dynamically creating different 

traffic scenarios such as parking, overtaking, traffic accidents, 

and traffic jams.  Unpredictable traffic conditions are key to 

monitor the human driver. TSM produces, dispatches, and 

manages the traffic scenarios and controls the vehicles, 

pedestrians, and driving conditions. The driving condition 

component takes care of weather conditions, lighting, and the 

time-of-day effects. 

E. Traffic Flow 

A common use case for traffic imaging systems is 

monitoring the flow of traffic in order to test and validate 

traffic flow control systems, or to create typical law-

enforcement speed monitoring situations (Fig. 5).  

The TSM can be used to direct the traffic flow to a specific 

area in the environment. The routes and paths of the vehicles 

and pedestrians are managed by the traffic system that seeks 

to maintain a smooth flow of traffic and verify that road users 

comply with traffic rules.  

IV. GEOSPATIAL DATA 

The CiThruS2 virtual environment covers an area of 

roughly 9 km2 (3 km × 3 km) of Hervanta, Finland. The 

development time of this Hervanta scene was significantly 

reduced by utilizing data from external sources, such as 

photos, topological maps, and satellite imagery. This 

approach also ensures the model's accuracy and consistency 

with its real-life counterpart. 

At a high level, the graphical side of the environment was 

made from four layers: terrain, roads, buildings, and foliage. 

Using separate layers simplifies the development and allows 

easier environment characterization for vehicular vision 

algorithms. 

A. Terrain 

The terrain layer is derived from a heightmap [24], which 

was acquired with terrain.party [25] from OpenStreetMap 

[26] and National Land Survey of Finland's Topographic 

Database [27]. Although the acquired data was mostly 

accurate and provided a good starting point for terrain 

creation, some manual adjustment was made to achieve better 

correspondence between real and virtual worlds. 

B. Roads 

The placement and size of the roads, sidewalks, and 

parking lots were extracted using OpenStreetMap [26]. The 

road layout and placement were accurate and no further 

topological adjustment was needed. The model exported from 

OpenStreetMap also included locations and basic shapes of 

most of the buildings, which were replaced with more 

accurate and custom models. 

C. Buildings 

The buildings were created manually using reference 

images, from both ground-level and aerial footage. The 

manual approach was chosen over, e.g., aerial 

photogrammetry or laser-scanning [28], as it allowed for more 

consistent and precise control over the style and shape of the 

buildings. Having accurate buildings and textures is of utmost 

importance to computer vision algorithms [21].  

The development time was significantly sped up by reusing 

most used “building blocks” or elements in buildings with 

similar features. This was especially important for constructs 

commonly not visible from the ground level. 

 
Figure 5. An example case of traffic flow in the environment. (a) A bird's-eye view. (b) An elevated third-person view. 



  

D. Foliage 

The city of Hervanta is surrounded by an ample amount of 

foliage and forestry, so well-optimized grass, trees, and other 

vegetation assets were crucial in creating a convincing 

simulation environment. In many computer graphics 

applications, foliage can take the largest part of the frame 

budget. Rendering transparency requires that the depth buffer 

is sorted once for every overlapping pixel with a non-unit 

alpha value in the fragment shader, which results in 

transparency overdraw. As a result, the performance is 

severely impacted in dense forest areas. Classic Level-of-

Detail (LOD) approaches can limit the frame-time impact of 

foliage, but ultimately merely reducing the triangle count of 

individual trees is not sufficient.  

Another approach for optimizing distant trees are billboard 

sprites [29], which render the tree image into a simple quad-

plane with 4 vertices and 2 triangles. Although this is effective 

in optimizing the scene, the effect it creates is easily 

distinguishable and does not maintain the believability of the 

simulation environment. Billboards also increased the amount 

of layered transparent objects, especially in forest 

environments. It made the transparency overdraw issue worse 

and did not help with the performance by a significant margin. 

The solution for maintaining a large volume of trees with 

high visual fidelity is called impostors [29]. Instead of 

creating this functionality from scratch, a ready-made 

implementation for Unreal Engine 4 [30] was used. This 

allows the simulation to contain over 200 000 trees inside the 

view-frustum without affecting the performance significantly.  

V.    WEATHER AND LIGHTING EFFECTS  

Various weather conditions such as rain, snow, or fog are 

required to simulate real driving conditions. All these weather 

effects are also accompanied by lighting, which is arguably 

one of the most important aspects contributing to a 

photorealistic visual style. Therefore, it is critical to simulate 

light as realistically as possible. Lighting conditions also have 

a significant impact on not only the driver, but camera 

systems as well.  

It was crucial to include as many possible lighting variations 

as the driver might experience on the road. Conditions like 

harsh evening lighting, overcast sky, or night are tackled 

differently by a driver, and they thereby come with their 

unique set of difficulties. To produce realistic lighting, we 

employed the following effects: a realistic day and night 

cycle, ambient lighting, strategically placed artificial lights, 

and a set of screen-space effects. 

A. Volumetric Fog 

Unreal Engine 4 [31] comes with a built-in system for 

simulating volumetric fog. In our simulation, it is turned off 

by default during the day as it has a minimal impact on the 

visuals alone. However, it creates the effect seen in Fig. 6 (a) 

when coupled with additional effects such as light shaft 

occlusion [32] and light shaft bloom [32].  

However, volumetric fog is enabled during the night and 

rain situations. During the night, it provides a light scattering 

effect that becomes visible under streetlights and in front of 

headlights, as visualized in Fig. 6 (b). During rainfall, the fog 

becomes denser and falls closer to the surface in order to 

Figure 6. First-person views of different driving conditions. (a) Morning. (b) Night. (c) Daytime rain. (d) Afternoon. 



  

imitate rain droplets scattering above the ground and add 

depth to the atmosphere as illustrated in Fig. 6 (c). The 

afternoon sky of the same area is shown in Fig. 6 (d) for 

comparison. 

B. Rain 

The rain droplet effect was implemented using a post-

processing material [33], which imitates rain streaks or 

splashes depending on the direction of the camera. Raindrop 

ripples and streaks also appear on selected objects, such as car 

and building windows, roads, and most of the traffic control 

objects.  

C. Snow 

A realistic snow effect was implemented similarly to the rain; 

a particle system was responsible for the falling snowflakes. 

Additionally, in winter conditions the trees in the simulation 

lose their leaves and snow starts to pile up on flat surfaces, 

such as the ground, roads, and the tops of the buildings. Snow 

depth was imitated using a vertex displacement shader. 

D. Day and Night Cycle 

The day and night cycle simulates the natural progress of 

time in the simulation. The system positions the sun in the 

sky, specifies the hour of the day and is responsible for 

chronologically accurate lighting. The color and quality of the 

light vary throughout the day, which is also addressed.  

E. Ambient Lighting 

The environment lighting is a simulated sunlight during the 

day, a simulated moonlight during the night, and a skylight 

achieved with image-based lighting techniques [34]. The 

colors of these lights are set dynamically by the day and night 

system. 

F. Artificial Lights 

The simulation uses the deferred shading pipeline [35]. It 

was chosen over the other common shading pipeline, the 

forward renderer [36], because a single light imposes a 

virtually non-existent impact on performance. This allows the 

simulation to have a practically infinite number of lights that 

contribute to the scene illumination at the same time. The 

realism of the effect is amplified during the night, when all 

streetlights are illuminated and the vehicles in the traffic 

system have their head- and backlights turned on.  

G. Screen-Space Effects 

The simulation makes use of screen-space effects, such as 

screen-space global illumination [37] and screen-space 

reflections [38]. Although these techniques can produce 

limited effects, the lighting or reflections are only influenced 

by currently visible objects on the screen. In addition, the 

effect is accurate in relation to its computational complexity.  

VI. PERFORMANCE ANALYSIS AND OPTIMIZATIONS 

According to our experiments, the proposed system can 

achieve a stable rendering speed of over 60 frames per second 

(fps) up to 4K (3840 × 2160) resolution when run on an 

NVIDIA GTX 1060 or an equivalent consumer-grade 

graphics processing unit (GPU).  

It even reaches real-time performance on lower-tier 

hardware through a multitude of optimizations, of which the 

most relevant techniques are listed in Table 3. The overall 

simulation speed can further be fine-tuned, e.g., by decreasing 

the number of shadow cascades, disabling volumetric fog 

during the day, and using more radical distance-culling of 

excess grass. 

Our CiThruS2 environment was also benchmarked on a 

more powerful AMD Radeon 6900 XT GPU that increased 

the 4K rendering speed beyond 120 fps. Table 2 reports the 

4K performance results of our environment alongside the 

widely used CARLA [13] and AirSim [14] frameworks on a 

desktop computer equipped with an AMD Ryzen 5900X 

CPU, AMD Radeon 6900 XT GPU, and 64 GB of RAM. 

Standalone builds of the environments were used, and the 

selected scenes were Town10HD for CARLA and AirSimNH 

for AirSim. For consistent results, the virtual camera was 

flown 3 m above the ground and average frame rates and 

times were measured over a period of 120 s. The obtained 

rendering speed of our CiThruS2 environment was 2.1× and 

2.9× as high as those of CARLA and AirSim platforms, 

respectively.   

VII.   APPLICATIONS 

Photorealistic graphics together with real-time 

performance and a broad range of adjustable features make 

our CiThruS2 framework a potential solution for many 

automotive applications out of which the following four usage 

scenarios are considered the most feasible:  

1) An interactive virtual environment in the DIL simulators 

that detect driver’s and other cabin occupants’ immediate 

emotional states, functional ability, performance, and 

maneuvers in different traffic scenarios. Real-time 

simulators with stochastic traffic models can create 

conditions not foreseen by the driver. 

2) Ground truth data collection to train neural networks for 

classification, object detection, and image segmentation 

TABLE II: PERFORMANCE COMPARISON ON AMD RADEON 6900 XT GPU  

 

 

Platform Scene Rendering speed Frame time

CARLA [12] Town10HD 48 fps 20.8 ms

AirSim [13] AirSimNH 65 fps 15.0 ms

Ours (CiThruS2) Hervanta 140 fps 7.1 ms

TABLE III: MAIN OPTIMIZATION TECHNIQUES 

 

Feature Optimization techniques

All geometry

Minimum number of triangles, LODs, culling small objects at great 

distance, cull distance volumes [42], and reducing the view

frustrum rendering far-plane distance.

Buildings
Buildings share the same material with a single set of 1024×1024

texture atlases [41] and the triangle count is kept low.

Foliage Using impostors over raw 3D meshes or sprite billboards

Materials Minimum number of master materials and material instancing

Artificial lights
Shadow contribution only when in 32 m range from a user

camera.

Traffic system Traffic computations reduced on areas not seen by any camera.



  

in vehicular vision applications. Objects of interest may 

include vehicles, pedestrians or other vulnerable road 

users, traffic signs, road lanes, register plates, traffic 

congestions, traffic lights changing from red to green, 

etc. The dataset can be diversified with different weather, 

time-of-day, and lighting conditions. 

3) Real-time SIL and HIL simulation of the designed vision 

sensors, algorithms, and embedded systems in the virtual 

environment before integrating them in the vehicle and 

thereby ramp up the development and improve reliability. 

4) Visualization of transportation planning and traffic flow 

control schemes in a realistic road network. New 

schemes can effortlessly be evaluated and validated by 

changing traffic regulations and altering the number of 

road users.  

VIII.    CONCLUSION 

This paper introduced our open-source CiThruS2 

simulation framework for vision-based ADAS development 

in a realistic high-fidelity virtual environment. The created 3D 

scene is modeled after a real-world traffic infrastructure, 

where driving and traffic can be simulated with practically 

any number of autonomous vehicles and pedestrians under 

various time-of-day, weather, and lighting conditions. Hence, 

it can serve as a virtual testbench and test drive platform for a 

broad range of traffic scenarios. 

Our simulator is built on Unreal Engine 4 and carefully 

optimized for rendering speed. To the best of our knowledge, 

it is the only open-source simulation framework that can 

perform photorealistic real-time (60 fps) 4K rendering of a 3D 

city scene on a consumer-grade GPU such as NVIDIA GTX 

1060. This unique set of features particularly speeds up the 

design and validation stages where real-time performance and 

photorealism are in the focal point. The openness also makes 

it accessible to the entire automotive value chain and thereby 

fosters large-scale development and deployment of disruptive 

ADAS technologies towards autonomous driving. 

In the future, a more sophisticated traffic management 

system will be introduced. The environment will be populated 

with new road users (cyclists, trams, etc.), and the ego vehicle 

will be equipped with dynamics and sensor models. The level 

of immersion will be increased by Virtual Reality 

compatibility. These forthcoming features will evidently 

broaden the application space of the framework. The inherent 

computation overhead will be tackled by deploying more 

efficient implementation techniques such as NVIDIA deep 

learning super sampling (DLSS) or by introducing novel 

rendering techniques, such as checkerboard rendering with 

adaptive pixel temporal consistency filtering to reduce the 

number of pixels to be drawn. 
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