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Abstract   Nowadays almost everyone has a mobile phone and even the most 

basic smartphones often come embedded with a variety of sensors. These sensors, 

in combination with a large user base, offer huge potential in the realization of 

crowdsourcing applications. The crowdsourcing aspect is of interest especially in 

situations where users’ everyday actions can generate data usable in more com-

plex scenarios. The research goal in this paper is to introduce a combination of 

models for data gathering and analysis of the gathered data, enabling effective da-

ta processing of large data sets. Both models are applied and tested in the devel-

oped prototype system. In addition, the paper presents the test setup and results of 

the study, including a description of the web user interface used to illustrate road 

condition data. The data were collected by a group of users driving on roads in 

western Finland. Finally, it provides a discussion on the challenges faced in the 

implementation of the prototype system and a look at the problems related to the 

analysis of the collected data. In general, the collected data were discovered to be 

more useful in the assessment of the overall condition of roads, and less useful for 

finding specific problematic spots on roads, such as potholes. 

1 Introduction 

It is important to keep road networks in good condition. These days, technology 

and mobile devices in particular enable the automation of environmental observa-

tion [1, 2]. Mobile phones can be deployed for a particular purpose for which they 

were not originally designed. In addition, applications that combine road mainte-

nance and mobile devices have already been developed [3]. In Finland, there has 

been a similar study on how to utilize mobile phones for collecting road condition 

information [4]. In the study, bus companies tested mobile phone soft-ware that 

sends real-time weather condition data to road maintainers in winter time. Never-

theless, traditional road condition monitoring requires manual effort – driving on 
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the roads and checking their condition, observing traffic cameras, and investigat-

ing reports and complaints received from road users. Automation of the monitor-

ing process, for example by utilizing crowdsourcing, could provide a more cost-

efficient solution. 

Data gathering is an important part of research related to the Internet of Things 

(IoT) [5]. In this research, the focus of data gathering has been redirected toward a 

Wireless Sensor Network (WSN) [6] type of solution. Previously, we have studied 

technologies related to applications that automate environmental observations uti-

lizing mobile devices. In a recent research study [7], we introduced two cases: the 

tracking and photographing of bus stops, and the tracking and photo-graphing of 

recycling areas. The first case used mobile phones and the second used a Raspber-

ry Pi embedded system. Our other study [8] facilitated the utilization of infor-

mation gathered from road users. As part of the research work, a mobile applica-

tion was developed for gathering crowdsourced data. 

The gathered data per se are not very usable and therefore some kind of pro-

cessing is necessary. Ma et al. discussed IoT data management in their paper [9] 

and focused on handling data in different layers of WSN. Also, they discussed da-

ta handling challenges, approaches, and opportunities. In this study we use our 

previously introduced Faucet-Sink-Drain model [10]. In this model the data pro-

cessing and data sources are combined in a controlled and systematic way. 

This paper is an extension of Sillberg et al. [11], where the focus was on intro-

ducing the prototype system. In this extension paper, more emphasis is placed on 

the models behind the prototype system. We have developed a mobile application 

for sensing road surface anomalies (called ShockApplication). The purpose of this 

application is to sense the vibration of a mobile phone installed in a car. The ap-

plication was tested by gathering data on real-life scenarios. The data were stored 

in a cloud service. In addition, we present methods that utilize the free map ser-

vices available on the Internet for visualization of the data. 

The research goal in this paper is to combine models of 1) data gathering and 2) 

analysis of the gathered data that enables effective data processing of large data 

sets. Both models were applied and tested in the developed prototype system. Our 

previous studies related to the models are presented in Section 3, where the data 

gathering model and the modifications made for this study are introduced in sub-

section 3.1. Data processing produces useful information for the user. Subsection 

3.2 describes the processing model used in the prototype system. This model is 

designed as a general-purpose tool for systematic control and analysis of big data. 

With the use of these fundamentally simple models it is possible to create practical 

and interoperable applications. 

The rest of this paper is structured as follows. In Section 2, we introduce the re-

lated research on crowdsourcing efforts in the collection of road condition data. 

Section 4 integrates the models presented in Section 3. In Section 5, we present 

the test setup and results. Section 6 includes a discussion and suggestions for fu-

ture research on the topic and finally, the study is summarized in Section 7. 
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2 Background 

Nowadays almost everyone has a mobile phone and even the most basic 

smartphones often come embedded with a variety of sensors [2]. This opens up the 

possibility of crowdsourcing through the use of mobile phones. The term 

crowdsourcing was defined by [12] in 2006. When several users use their devices 

for gathering data for a specific purpose, it can be considered a crowdsourcing ac-

tivity. The idea of utilizing crowdsourcing as a model for problem solving was in-

troduced in [13]. Furthermore, crowdsourcing can be used to support software en-

gineering activities (e.g., software development). This matter has been widely 

dealt with in survey [14]. 

There have been several studies on using a mobile phone to detect road sur-face 

anomalies. One piece of research [15] presented an extensive collection of related 

studies. Further, the research introduced an algorithm for detecting road anomalies 

by using an accelerometer and a Global Positioning System (GPS) integrated into 

a mobile phone. The application was described as easy-to-use and developed for 

crowdsourcing, but the crowdsourcing aspects were not elaborated. The tests were 

performed with six different cars at slow speeds (20 km/h and 40 km/h). The route 

used in the test was set up within a campus area. The research paper did not dis-

cuss the visualization aspect nor the application itself and focused primarily on the 

algorithm that was presented. 

The research presented in [16] and [17] was aimed at finding particular holes in 

a certain road. [16] used a gyroscope instead of an accelerometer and looked for 

spikes in the data. The other information logged was sampling time, speed, and 

GPS locations. The test was conducted on a route that was about four kilometers 

long and the test was repeated five times to ensure consistency and repeatability. 

The crowdsourcing aspect was not mentioned and, according to the paper, the da-

ta were collected “through a common repository.” The research [17] presented an 

Android application for detecting potholes, but did not provide much detail on the 

technical implementation. 

There are several studies where the research was performed in a real-life sce-

nario using taxis [18, 19] or buses [20]. In study [18], the data were gathered by 

seven taxis in the Boston area. The data collection devices were embedded com-

puters running on a Linux-based operating system. In study [19], the data were 

gathered by 100 taxis in the Shenzhen urban region. The devices consisted of a 

microcontroller (MCU), a GPS module, a three-axis accelerometer, and a GSM 

module. The devices were mounted inside the cars and sent the data to servers 

over a wireless connection. The main idea of the research [18] was to collect data 

and then train a detector based on the peak X and Z accelerations and instantane-

ous velocity of the vehicle. The result reported in the paper was that over 90% of 

the potholes reported by the system were real potholes or other road anomalies. 

The crowdsourcing aspect was not mentioned, and the visualization was limited to 

showing a set of detections on a map. In study [20], the data were gathered by 

phones installed in buses. The data were projected on a map, but the amount of da-
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ta collected (100 MB/week) and how this would affect a larger crowd were not 

discussed. 

3 Two-phased Model of Data Processing 

The research goal in this paper is a combination of models for 1) data gathering 

and 2) analysis of the gathered data which enables effective data processing of 

large data sets. Both models were applied and tested in the developed prototype 

system. With the use of these fundamentally simple models, it is possible to create 

highly practical and interoperable applications that can improve the overall quality 

of software. 

The data gathering model and the modifications made for this study are intro-

duced in subsection 3.1. The model is one type of Wireless Sensor Network 

(WSN) solution. In addition, the usage of the model in our previous research is in-

troduced. 

Subsection 3.2 describes the processing model used in the prototype system. 

The processing model is designed as a general-purpose tool for systematic control 

and analysis of big data. However, the model is very flexible and should fit a wide 

range of applications. 

3.1 Data Gathering 

Data gathering is an important part of research on the Internet of Things (IoT). In 

this research, the focus of data gathering has been redirected toward the WSN type 

of solution. Because we use mobile phones as sensor nodes, it could be catego-

rized as a mobile sensor network. The advantages of a mobile sensor network have 

been discussed by Dyo [21]. In addition, Leppänen et al. [22] discuss using mobile 

phones as sensor nodes in data collection and data processing. A survey conducted 

in 2002 compiled the basic features of sensor networks [23]. 

In this study, we used the previously presented data gathering model. This 

model was introduced by Saari et al. [24] and it has three main parts: sensor node, 

master node, and cloud. The sensor node sends data to the master node. The mas-

ter node collects and saves data, but does not process the data significantly. The 

master node sends data to the cloud service which stores the data. The data gather-

ing model includes the following WSN features presented in [23]: 

• Sensor nodes can be used for continuous sensing - When using a mobile phone 

as a sensor node, this is enabled by dedicated software. 

• The mobile phone includes the basic components of a sensor node: sensing 

unit, processing unit, transceiver unit, and power unit. 
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• A sensor network is composed of a large number of sensor nodes - The proto-

type design presented in this study does not limit the number of mobile phones 

used. 

• The network - Mobile phones have the communication network provided by 

telecommunications companies. 

The model has been tested with an off-the-shelf credit card sized computer and 

other instruments [24-26]. The data collector service [25] used a BeagleBone 

Black computer and sensors. The embedded Linux controlled sensor net-work 

[24] used Arduino boards and sensors for the sensor nodes and an Intel Galileo 

Computer for the master node. Communication between sensor nodes and master 

nodes was handled with ZigBee expansion boards. The third study [26] used the 

model to test a low-energy algorithm for sensor data transmission from sensor 

nodes to master node. 

Fig. 1 shows the modified data gathering model. The present study differs from 

previous research in that we used mobile phones for data gathering, which caused 

changes to the data gathering model. Another difference from the previous model 

[24] is that the sensor nodes and master nodes are combined into one entity. This 

was due to the use of mobile phones as sensor devices. The mobile phone includes 

the necessary sensors, data storage, and communication channels for this proto-

type system. In addition, the mobile phones use the Android operating system 

(OS), which has enough capabilities to gather and store data. Also, the communi-

cation protocols are supported by OS. We developed the testing software during 

this research. This software, called the ShockApplication, and its properties are 

described later in Section 5.1. 

Fig. 1. The modified data gathering model. 

The usage of mobile phones enabled the crowdsourcing idea. The developed 

ShockApplication can be installed on all modern Android phones. The user has an 

identification mark which helps to order the data points in the cloud. The data are 

stored in a cloud service. 



6  

3.2 Data Processing: Manageable Data Sources 

For the data processing part, the Faucet-Sink-Drain model introduced in [10] is 

applied to the system architecture. The ultimate goal of the model is to enable re-

alization of a framework that is able to manage data and data sources in a con-

trolled and systematic way [10]. In this study, the model was applied to the proto-

type system, but the implementation of the framework was not carried out. This 

prototype is the first instance of the model in a real-world use case and will help in 

the further evaluation and development of the model. 

The model considers that data processing can be modeled with a water piping ap-

paratus consisting of five components: faucets, streams, sink, sieves, and drains 

[10]. The data flow through the model as many times as is deemed necessary to 

achieve the desired information. At each new cycle, a new set of faucets, sieves, 

and drains are created, which generate new streams to be stored in the sink. [10] 

Fig. 2. Abstract data processing model. [10] 

The components of the Faucet-Sink-Drain model are shown in Fig. 2. The fau-

cet is the source of the data (e.g., original source or processed source). The run-

ning water (i.e., strings of numbers and characters) are instances of data streams, 

and the sink is used for storing of the data. The sieve is a filter component with the 

capability of selecting and processing any chunk of any given data stream. The 

drain is a piping system to transfer data to other locations. The drain may also be 

utilized for removal of excess data. [10] 

The Faucet-Sink-Drain model, by design, does not specify how the data are 

gathered into it. As shown in Fig. 2, the initial data simply appear in the model by 

means of the attached faucet (or faucets). The gap can be filled by utilizing models 

that are stronger in this respect, such as the data collection model described in 

subsection 3.1. 
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4 Integration of the Models in the Prototype System 

The models used lay out the basis for measurement and data analysis. By follow-

ing them, it is then possible to implement the artifacts of the prototype system. 

The implemented prototype system has five identifiable high level tasks: 

1. Acquisition: The data are gathered by a mobile device, which acts as a com-

bined sensor-master node as it is capable enough for both of those tasks. 

2. Storage: The cloud service receives and parses the data (communicated by 

the master node). Parsing of the data is the first task to be done on the system 

before the received data can be fully utilized. After parsing is finished, the ser-

vice can then proceed by storing and/or by further processing the data. 

3. Identification and Filtering: The data will be identified and filtered when the 

service receives an HTTP GET query on its REST (Representational State 

Transfer) interface. The selection is based on the rules that are passed in the re-

quest as parameters. 

4. Processing: The selected data are processed further by the rules given out by 

the program. 

5. Visualization: The data provided by the service are finally visualized in a 

client's user interface, e.g., web browser. 

The data gathering is performed by a mobile phone by utilizing several of its 

available sensors. Secondly, the collected data are communicated to the cloud ser-

vice where storage, selection, and further processing of the data are implemented. 

Once the data have been processed the last time, they are ready to be presented to 

the user, for example, to be visualized in a web browser or provided to another 

service through a machine-to-machine (M2M) interface. 

Fig. 3. System deployment diagram. 
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Fig. 3 shows the deployment diagram of the implemented system. It also de-

picts where the aforementioned tasks are carried out. These tasks can also be iden-

tified from the incorporated models, the Data Gathering model and the Faucet-

Sink-Drain model. The first task, data acquisition, corresponds to the whole data 

gathering model and also to the combination of the (leftmost) faucet and stream 

icons in Fig. 2. The storage task matches the sink icon in Fig. 2. The (right-most) 

sieve in Fig. 2 represents the third task, identification and filtering whereas the 

combination of (rightmost) drain and faucet represent the processing task. The fi-

nal step, visualization, is said to be handled by the sink as it is "used to store and 

display data" [10]. However, the visualization step could begin as early as when a 

data stream has emerged from a faucet and could last until the moment the data 

have finally been drained out from the sink. 

5 Testing 

The high-level description of our testing setup is illustrated in Fig. 4. The purpose 

was to gather data from mobile devices – primarily smartphones – that could be 

used to detect the surface condition of the road being driven on. These data could 

be further refined into more specific data, such as reports of bumps on the road, 

uneven road surfaces, roadworks, and so on. The traffic signs visualize the possi-

ble roadside conditions that users might be interested in. The data are sent to a 

central service and can be later browsed using a user interface running in a web 

browser. 

 
Fig. 4. High-level diagram of the test setup. 

In our case, the users travelled by car. In principle, other road users such as cy-

clists or motorcyclists could be included, but in the scope of this study, only pas-

senger car users were considered. 
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5.1 Setup 

Existing studies often assume that the device is firmly attached in a specific place 

inside the vehicle, and in a specific way, but for crowdsourcing purposes this is 

not a feasible scenario. It should be possible to attach the device in a way that is 

the most convenient for the user, and in an optimal scenario the device could also 

be kept, for example, inside the pockets of the user. In our benchmarks, the device 

holder was not limited although we presumed that the devices were placed in a 

fairly stable location, and did not move about the vehicle in an unpredictable fash-

ion (e.g., sliding along the dashboard). 

In addition to the attachment of the device, several other factors (e.g., suspen-

sion, tires, vehicle load, and weight) may affect the sensor reading. It can be chal-

lenging to implement measurement of these factors in crowdsourcing scenarios. 

Due to these limitations, we decided to focus on sensors available in commonly 

used mobile devices. 

Fig. 5. The Android test client. 

The testing software itself was a simple Android application, usable on any rea-

sonably recent Android phone. Most of the newer smartphones generally contain 

all the necessary sensors required in our use case. The application consists of a 

single main view, shown on the left side of Fig. 5. In our case, the user only needs 
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to input his/her credentials (in the example, “user”) and use the start and stop but-

tons to control when the sensors are active. The user interface also contains a few 

convenience functions: the possibility to attempt manual transmission of all col-

lected data; a count, which shows the total number of measurements (a single 

measurement contains all sensor data collected at a particular point in time, in the 

example pictures taken from an Android emulator the value is shown simply as 

“0”); the option to create all measurements as “public”, which means that any 

logged-in user can see the travelled route and the collected measurements; the op-

tion to save the updated settings, mainly authentication details; and two debug op-

tions that the users do not generally need to use. The software will automatically 

select between the linear accelerometer (which is used, if available) and the basic 

accelerometer. If the device is set on a stable surface the linear accelerometer 

should show zero for all axes and the accelerometer should show gravity, but in 

practice the devices showed slight variances from the expected values. The “show 

systematic error” option can be used to show the currently measured values and to 

select whether the systematic error should be removed from the values before 

sending the results to the service. The “print log” can be used to show a debug log 

of the events (such as errors) detected since application startup. It would have also 

been a minor matter to simply hide the debug options from the user interface, but 

as the primary purpose of the application was to collect data and this version of 

the application would not be made available for public down-load and installation 

(e.g., in an application store), there was no specific need to polish the user inter-

face. Thus, the users were simply instructed to input their credentials and use the 

start and stop buttons, and to ignore the other options. 

The sensor measurements are collected by an Android foreground service, 

which runs as a background process. After the service has been started, the main 

application can be freely closed and the statistics of the collected data (number of 

measurements) can be seen in the Android’s pull-down menu, which is visible on 

the right side of Fig. 5. In the trial, the users kept the sensors on while driving (i.e., 

when “participating” in the trial) and off at other times. In addition to changing the 

user credentials, no further configuration was required by the users.  

The application was used to measure accelerometer data (X, Y, and Z accelera-

tion), direction, speed, location (GPS coordinates), and timestamps.  The collect-

ed information was automatically sent to the service at pre-defined intervals (eve-

ry 30 minutes) by the background process. In addition, gyroscope and rotation da-

ta were stored on-device in an SQLite database for possible future debugging or 

testing purposes (e.g., for detecting braking or acceleration events, or the orienta-

tion of the device in general), but these data were not synchronized with the ser-

vice. 

For practical reasons (e.g., limitations in the available server capacity), the user 

trial was not open to an unlimited number of users. A total of ten users participat-

ed in the trial, of which half were university personnel and the other half volun-

teers from the staff of the City of Pori and from a company participating in our re-

search project. The users either used their own smartphones or borrowed one from 

the university. The user’s choice of car was not limited, but as the users generally 
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drove their own cars, the selection of cars driven turned out to consist of smaller 

personal cars. A couple of users reported driving two different cars, so the number 

of cars was slightly higher than the number of users. The routes driven were a 

mixed set of commuting, work-related trips, and leisure. The majority of the driv-

ing involved consisted of driving from home to work, as reported by the users. 

This can also be seen in the collected data, as the same (identical) routes were 

driven on a daily basis. 

Most of the driving was concentrated around the cities of Pori and Rauma, lo-

cated on the west coast of Finland. Additional driving was done around the city of 

Tampere, which is located further inland, including the highway connecting Pori 

to Tampere. The distances were approximately 110 kilometers between Pori and 

Tampere and 50 kilometers between Pori and Rauma. Pori and Rauma are slightly 

smaller cities (with populations of about 85 000 and 40 000, respectively) whereas 

Tampere is the third largest city in Finland (with a population of about 232 000), 

although in the case of Tampere the routes driven were located mostly outside the 

city center. The routes are also illustrated in Fig. 6 (Section 5.3). The total dura-

tion of the testing period was about three months (from March 2018 to June 2018). 

5.2 Results 

The number of data points can be seen in Table 1, where the count and percentage 

figures of the data are grouped by different Shock Levels. The shock levels are ar-

bitrary levels used for breaking down the data from the accelerometer readings. 

The first row (LN/A) indicates the data points where the test device did not calcu-

late the shock level. The highest level (L4) represents the most intense values re-

ported by the accelerometer. The levels can be recalculated afterwards for each 

device if needed. The shock levels are further discussed in Section 5.3. 

Table 1. Breakdown of shock data points. 

 

Shock Level 

v ≥ 0 m/s v ≥ 1 m/s 

n % n % 

LN/A 334730 69.3 312334 68.3 

L0 98367 20.4 98320 21.5 

L1 45083 9.34 42101 9.20 

L2 3419 0.71 3413 0.75 

L3 904 0.19 904 0.20 

L4 368 0.08 368 0.08 

Total Count 482871 100 457440 100 

Total Count with Level 148141 30.7 145106 31.7 
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The data point count on the left side of Table 1 includes all data regardless of 

the speed, and the right side omits speeds below 1 m/s. We have arbitrarily chosen 

1 m/s to be the lowest speed recorded and taken into account in our test. This pre-

vents the device from collecting data when the vehicle ought to be stationary, and 

helps to reduce the amount of unnecessary data. 

In the further analysis of the data, only the pre-calculated shock level data 

where the speed is at least 1 meter per second are included (nLEVEL = 145106). 

This represents approximately 30 percent of the total data collected. No further da-

ta have been eliminated from this data set. The relative percentage figures for each 

level in nLEVEL are L0 = 67.7, L1 = 29.0, L2 = 2.35, L3 = 0.62, and L4 = 0.25. 

Tables 2 and 3 illustrate how the speed affects the measured shock intensity in 

the collected data. Rows 1 to 5 display the data of each individual level, while the 

last row (L0—4) indicates the summarized information including each level. Table 

2 indicates the average speed (vAVG) and the standard deviation (vSTD) in each 

group. The average speed is quite similar on each level, while the standard devia-

tion is only slightly lower on levels L0 and L1 than on the others. Additionally, the 

average speed and standard deviation of all data points (i.e., data with and without 

shock levels) was 68.0 km/h and 23.4 km/h. The respective values for data points 

without a shock level were 69.2 km/h and 21.6 km/h. The average speed and 

standard deviation information alone seem to support the fact that the reported 

shock levels occur around a speed of 65 km/h. However, when the data are further 

divided into speed-based intervals, the average speeds can be seen to be slightly 

higher, and about two-fifths of the data points are located above the 80 km/h limit. 

Based on the data, it can be observed that algorithms used for detecting vibra-

tions and road condition anomalies should cover at least the common urban area 

speed limits (from 40 km/h to 60 km/h) and preferably up to highway speeds 

(from 80 km/h to 100 km/h). In the area around the city of Pori, lower speeds were 

less represented than higher speeds. Thus, algorithms developed only for slower 

speeds would not be feasible for practical implementations. 

Table 2. Average speed per shock level. 

 

Shock 

Level 

Speed (km/h) 

vAVG vSTD 

L0 63.7 27.2 

L1 70.5 24.4 

L2 64.3 30.2 

L3 59.6 32.4 

L4 55.0 32.3 

L0—4 65.6 26.8 

Table 3 displays the distribution of data points belonging to a given speed in-

terval. There are six right-open intervals starting from 3.6 km/h (i.e., 1 m/s), and 
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ending at 120 km/h. The last row (L0—4) indicates the percentage share of data in 

each speed interval of all data points. The bulk of the data belongs to the lowest 

level. The lowest level (L0) appears to be over-represented in the lowest three 

speed intervals (3.6—60 km/h) whereas a small amount of the percentage share 

seems to have shifted from the lowest level (L0) to the next level (L1) in the last 

two speed intervals (80—120 km/h). 

It seems logical that higher speeds (i.e., greater energy) create more variance in 

the vibration detected by the sensor, but on the other hand, levels L2, L3, and L4 

appear slightly less often at higher speeds. It can only be speculated whether the 

reason is – for example – due to the better overall condition of roads with higher 

speed limits, or the fact that the phone/sensor is simply not able to record every-

thing because it is not necessarily mounted in the car securely. 

Table 3. Distribution of data points per shock level. 

 

Shock 

Level 

Data Point Distribution Based on Speed (%) 

Right-Open Intervals; km/h 

[3.6, 20[ [20, 40[ [40, 60[ [60, 80[ [80, 100[ [100, 120[ 

L0 76.9 70.8 78.2 68.2 60.8 63.0 

L1 17.8 25.5 19.1 29.5 35.9 32.9 

L2 3.50 2.51 1.90 1.74 2.53 2.87 

L3 1.28 0.76 0.53 0.43 0.54 0.91 

L4 0.56 0.40 0.25 0.14 0.20 0.29 

L0—4 7.83 13.6 14.8 22.1 36.7 4.99 

Speeds above 120 km/h account for a negligible amount of data points (totaling 

38 data points), thus the information is not shown in Table 3. Almost three-fifths 

(58.8 percent) of the data points are distributed between 60 and 100 kilometers per 

hour. The phenomena can be explained by two facts. First, the data collection was 

conducted mostly on longer distance journeys on the highways between major cit-

ies, corresponding to higher speed limits and a longer time spent on the road. Sec-

ond, heavy traffic in the tested area is not commonly observed. More detailed in-

formation may be retrievable if the data are observed on the user/device level 

rather than on the global level. In future, it might also be worthwhile re-

calculating the data in four levels instead of five to obtain a clearer distinction be-

tween “good road condition” data and “bad road condition” data. Currently, levels 

L0 and L1 seem to overlap, and contain both data types. 

5.3 Visualization 

Five levels (0-4) were used for describing the detected condition of the road. The 

number of levels has no specific meaning, and another amount of levels could be 
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chosen for more coarse or fine-tuned results. The levels are dynamically calculat-

ed per device, with level L0 being the “normal” of the device and L4 being the 

most extreme. In the current version of our application, the calculations do not 

take speed into consideration, even though speed does have an effect on the inten-

sity of the measured values (e.g., variance). An exception to this is the exclusion 

of very low speed values (e.g., < 1 m/s), which could be caused by the user tempo-

rarily leaving the vehicle to walk about or be erroneous values caused by GPS in-

accuracies when the vehicle is not in fact moving. In any case, even with-out uti-

lizing the velocity data, the measured levels seem to correspond fairly accurately 

to the overall road conditions. Still, improved analysis of speed data could perhaps 

be used to further increase the accuracy of the level calculations. 

In our case, the levels can be calculated either from the long-term data collect-

ed on the device (or from the data stored for testing purposes on the server), or by 

using a smaller data set, such as the data collected within the last 30 minutes. Ul-

timately, we decided to use smaller data sets when calculating the levels and 

showing the visualization on the map. The primary purpose of this was to mini-

mize the effects caused by the user’s change of vehicle as well as the cases where 

the user kept his/her device in a different holder or location on different trips. The 

test users also reported a few times when they had accidentally dropped the de-

vice, or the device had come loose from its holder. The former cases were fairly 

easy to recognize based on the reported, much higher than normal, acceleration 

values, but the latter cases tend to be erroneously detected as road condition prob-

lems. 

In any case, the calculated levels should be fairly comparable regardless of the de-

vices used, even when the individual values reported by the accelerometers are 

not. Unfortunately, rare cases where a user often changes vehicles remain a prob-

lem for detection. This problem would also be present if data were to be collected 

from, for example, public transportation utilizing the user’s mobile devices. 

The level markers and their use are illustrated in Fig. 6, Fig. 7, and Fig. 8. Fig. 

6 shows a map using OpenStreetMaps, whereas Fig. 7 and Fig. 8 use Google 

Maps. The OpenStreetMaps implementation is slightly newer, but the features of 

both implementations are basically the same. One exception is the Street View 

functionality shown in Fig. 8, which is available only when using Google Maps. 

Both implementations also utilize the same underlying Representational State 

Transfer (REST) Application Programming Interfaces (API) provided by the 

cloud service. 

The routes driven by the users are visualized in Fig. 6. The shock levels are il-

lustrated by five colors (green, yellow, orange, red, and black – green being the 

best road condition, black the worst). The areas on the map are: the cities of Pori 

(top left), Rauma (bottom left), and Tampere (right). The various markers are also 

of slightly different sizes with the green “good condition” markers being the 

smallest and the black “bad condition” markers being the largest. This is in order 

to make the “bad condition” markers easier to spot among the data, which largely 

consist of green markers. 
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Fig. 6. Visualization of routes driven. 

The user interface contains basic features for filtering data: viewing data from 

only a single user; excluding undesired shock levels, calculating highlights; select-

ing a specific date or time to observe; selecting the area to view; and the possibil-

ity to limit the number of level markers by only returning an average or median of 

the reported values within a certain area. 

Fig. 7. Visualization of the route between the cities of Pori and Tampere.  

The exclusion of undesired shock levels and highlights are illustrated in Fig. 7. 

The upper part of the figure shows basically the “raw data” selected from an area, 

in this case from a route between the cities of Pori and Tampere. In the lower part, 
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the individual markers are removed and only the calculated highlights (exclama-

tion marks) can be seen. The highlights represent an area where the measurements 

contain a large number of certain types of shock levels. The highlights can be cal-

culated for any level, but naturally, are more useful for spotting places where there 

is a high concentration of “bad condition” markers. It would also be possible to 

show any combination of level markers with the highlights, e.g., red or black 

markers without green, yellow, and orange markers. 

Fig. 8. Visualization in Google Maps Street View. 

Finally, Fig. 8 shows the shock level markers in the Street View application. 

The Street View photos are not always up-to-date so the feature cannot be used as 

such to validate the results, but it can be used to give a quick look at an area. In 

this case, the cause of several orange, red, and black – “bad condition” – markers 

can be seen to be the bumps located on the entrance and exit sections of a bridge 

located on the highway. 

6 Discussion 

The basic programming task of creating a simple application for tracking the us-

er’s location and gathering data from the basic sensors embedded in a mobile de-

vice is, in general, a straightforward process. Nevertheless, a practical implemen-

tation can pose both expected and unexpected challenges. 
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6.1 Technical Difficulties 

We chose to use the Android platform because the authors had previous experi-

ence in Android programming. Unfortunately, the Android devices have hardware 

differences, which can affect the functionality of the application. In our case, there 

were two major issues. First, one of the older devices we used in our benchmarks 

lacked the support of a linear acceleration sensor, despite including a basic accel-

erometer. In practice, this means that all measured acceleration values included a 

gravity component without an easy or automated means of filtering the output. Fil-

tering can be especially difficult on older models that do not contain proper rota-

tion sensors that could be used to detect the orientation of the device. 

Second, as it turned out, devices from different manufacturers and even differ-

ent device models from the same manufacturer had variations in the reported ac-

celerometer values, making direct comparison of values between devices challeng-

ing at best. Larger bumps are visible from the results regardless of the device, but 

smaller road surface features can become lost due to the device inaccuracies. 

In practice, differences in the devices required the calculation of a “normal” for 

each device, against which variations in the data would be compared. Calculating 

a universal normal usable for all devices and users would probably be very diffi-

cult, if not entirely impossible. In any case, in laboratory conditions or in a con-

trolled environment finding this normal is not a huge problem, but where a large 

crowdsourcing user and device base is concerned, finding the normal for each de-

vice can be a challenge. Additionally, the vehicle the user is driving can have a 

major impact on the detected values; after all, car manufacturers generally prefer 

to provide a smooth ride for the driver, and on the other hand, a car with poor sus-

pension or tires can cause data variations that can be difficult to filter out. This al-

so means that, if the user drives multiple vehicles, there should be a way for the 

application to either detect the vehicle used or adapt to the altered conditions. 

In principle, the collected data could be analyzed to determine the device’s 

normal, for example, if known “good condition” roads have been driven on. In 

practice, the data amounts (and the required server and network capacity) can be 

too extreme for this approach to be feasible. A better option would be to analyze 

the data on-device and the devices should only send the variances that exceed the 

calculated threshold values (i.e., detected potholes, roads of poor quality). 

6.2 Interpretation of the Data 

When examining the collected data set, the known places of data variance are vis-

ible, and in expected places. These include, among others, known roadworks, 

speed bumps, and bridge ramps, i.e., spots that the drivers cannot avoid can be 

easily seen in the collected data. Unfortunately, the same cannot be said about 

potholes or other larger, but in general, more infrequent road condition issues 
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which are not always detected. We did not perform extensive studies to discover 

the driving habits of the users participating in our trial, although a quick interview 

revealed (perhaps unsurprisingly) that the drivers had tried to avoid driving into 

potholes. 

In the initial phase of data analysis, validating the findings proved trouble-

some. As the drivers could drive along any road they wished, we did not have a 

clear idea of which of the roads driven were in bad shape or where on the road the 

bumps were located, nor was there available any conclusive database of speed 

bumps or other purpose-built road features that could be accidentally identified as 

road surface problems. Driving to the location of each detected bump for valida-

tion purposes in the case of a larger data set would be quite impractical. To get a 

basic idea of where the “bumpy” roads were located, the preliminary results were 

shared with the department of the City of Pori responsible for road maintenance 

and compared with their data. The data collected by the city are based on com-

plaints received from road users or reported by the city maintenance personnel 

driving on the city roads. Thus, maintaining the data requires a lot of manual labor 

and the data are not always up-to-date. Nevertheless, this did give us some insight 

into the known conditions of the roads around the city. Furthermore, the discus-

sion with the maintenance department gave a clear indication that an automated 

method for the collection of road condition data around the city would be a great 

help for the people responsible for road maintenance. 

Moreover, collecting a sufficiently large data set with a very large user base 

could ultimately help in finding individual road problems as drivers would, for ex-

ample, accidentally drive into potholes, but in our trials identifying specific road 

problems turned out to be quite challenging. On the other hand, the results 

showed, in a more general fashion, which of the driven roads were in the worst 

condition, and furthermore, which parts of a single road were in worse condition 

than the road on average. Both findings can be used for assessing road conditions, 

and with a much larger data set, even individual bumps could perhaps be more re-

liably detected. 

A larger database is also advantageous in the elimination of unwanted data 

caused by individual random events – such as the user moving or tapping the 

phone during driving, sudden braking events or accidents – which could be erro-

neously detected as road condition problems. On the other hand, larger sets in-

crease computing resource requirements and challenges in managing the data. In 

fact, even the amount of data collected in our user trials can be problematic. One 

of the main challenges is the visualization of large data sets. 

For testing and validation purposes, all data generated by the mobile devices 

were stored on our server. Storing the “good condition” data can also help to map 

the roads the users have driven on as opposed to only reporting detected variations 

from the normal. Unfortunately, serializing the data – using JavaScript Object No-

tation (JSON) or Extensible Markup Language (XML) – and showing the meas-

urements on a map in a web browser may be quite resource-intensive. Even when 

measurements are combined and indexed on the server to reduce the amount of 

transferred data, there can still be thousands of markers to be drawn on the map, 
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especially if “good condition” data are included. Showing multiple roads in a large 

area simultaneously on a map can be a good method from a visualization point of 

view, but it can also make the web user interface sluggish or slow to load. For ref-

erence, loading and showing the map visible in Fig. 6 consisting of 100 000 meas-

urement markers takes approximately 3—4 minutes, which is not an entirely im-

practical length of time for constructing the visualization, but can be an annoying 

delay when performing repeated work on the data set. Con-structing visualizations 

with smaller data sets (e.g., less than 10 000 data points), depending on the chosen 

filter settings, takes anything from a couple of seconds to almost half a minute. 

6.3 Future Studies 

One possible future action could be to open up the collected data for further analy-

sis by other researchers. In general, the data are relatively easy to anonymize and 

do not contain any hard-coded user details. A method of generating anonymous 

data is also an advantage if a larger, more public user trial is to be performed in 

the future. Running the trials with a larger userbase would be one possible course 

of future action, although acquiring sufficient server resources for a wide-scale us-

er trial could pose a challenge. 

A less resource-intensive option could be to collect data for a longer period on 

a specific set of roads with the goal of discovering whether a gradual worsening of 

road conditions can be detected or how the results differ between winter and 

summer. Our current trials were run in spring and summer, and it is unknown how 

winter conditions would affect the results. Furthermore, the roads driven on were 

primarily paved and gravel roads were not included in the analysis of the data. 

In addition, the increase in the number of dashboard cameras installed in vehi-

cles, and the decrease in the prices of 360-degree cameras could provide an inter-

esting aspect for data collection. The utilization of cameras could also make data 

validation easier during the trial phase, as there would be no need to go and check 

the detected road condition problems locally, or to use Google Street View or sim-

ilar applications that may contain outdated images. 

The Faucet-Sink-Drain model was used for the first time in an actual use case, 

and it could prove useful in other applications as well. However, the model re-

quires more research and development to fully unlock its potential. Also, the 

framework [10] that is based on the model would require an actual implementation 

before more conclusions can be drawn of the model’s usefulness. 

Data security is an important factor that has not been addressed in this study. 

The prototype has basic user identification with username and password, but this 

was not used for filtering input data. Issues of data security, privacy, and anony-

mization of data need to be solved before commercialization. 
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7 Summary 

This paper introduced a study that utilized data collected by sensors – primarily 

from an accelerometer and GPS – embedded in smartphones for detecting the 

condition of road surfaces. The data were obtained from a group of users driving 

on paved roads in western Finland. Furthermore, the test setup was described in-

cluding a discussion on the challenges faced. 

This paper showed how to combine a data gathering model and a data analysis 

model. Both of the models were applied and tested in the developed prototype sys-

tem. 

The results achieved from the trial period showed that even though the chosen 

methods could, in principle, find individual road surface problems (such as pot-

holes), the results were more useful in the assessment of the overall condition of 

the road. In addition, the paper presented methods for visualizing road condition 

data collected from test users. 
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