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ABSTRACT

In this dissertation the applicability of novel machine learning methods with remote
sensing data was studied in the context of agricultural decision support systems in
smart farming. The main focus was the utilization of high-resolution unmanned
aerial vehicle (UAV) data to perform in-season crop yield estimation with spatial
and spatio-temporal deep learning model architectures in a Finnish coastal habitat.
While open-access satellite data has already been utilized in crop-related modelling,
such as crop type classification and yield prediction, intra-field scale prediction for
the smaller fields common in the Nordic countries requires images with higher res-
olution than currently available from open-access satellite systems. In addition to
using UAV remote sensing data, various combinations of crop field related sensor
data, data from open-access sources and satellite data were evaluated. Data quality is
also an important aspect with remote sensing data, with high altitude satellite-based
earth observation suffering from occasional obstructions by the cloud canopy. A
decision tree model was employed to estimate cloud coverage by using UAV data as
cloudless ground truth. In this dissertation it is shown that crop yield prediction
with convolutional neural networks (CNNs) is feasible with high-resolution UAV
data and produces results accurate enough for performing corrective farming actions
in-season. Using UAV data time series not only improves the modelling performance
(post-season prediction) with high-resolution UAV RGB data but also improves the
predictive capabilities (in-season prediction). Furthermore, the use of various data
sources for crop yield prediction in addition to UAV RGB data is shown to improve
the predictive capabilities of the model. In summary, the use of deep learning tech-
niques can be seen to improve the smart farming decision support pipeline by pro-
viding performant and reliable decision engines.
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1 INTRODUCTION

This doctoral dissertation studies the applicability of novel machine learning meth-
ods with remote sensing data in the context of agricultural decision support systems
(DSS) in precision agriculture [3] and smart farming [79]. Farmers have practiced
precision agriculture for a long time to optimize the yield of their fields. Sources
of intra-field variability were deduced by noting and exchanging annual observa-
tions and experimenting with interventions. However, both the observations and
the conclusions drawn have been more or less based on intuition, rather than on ob-
jective data. From this emerges the need for data-driven decision making, i.e. smart
farming, to aid farmers in choosing the best actions to take to optimize crop cul-
tivation [32]. The application of novel deep learning techniques has displayed an
increasing trend for the past few years in smart farming and precision agriculture ap-
plication domains [41]. One of the key reasons for this progression is the abundant
availability of sensor-based data in terms of ground-based soil sensors, low-altitude
unmanned aerial vehicles (UAV) and high-altitude satellite systems [93]. Another
factor is the open-access availability of other environmental data, such as weather
and land survey data. Thus, the use of remote sensing data to extract information
with machine learning models for data-driven decision making has become more
common. In particular, the number of studies using deep learning techniques to
perform agriculture-related modelling tasks has steadily increased [31].

Remote sensing data relevant to smart farming tends to be predominantly spatial
in nature. This stems from the objects of interest - fields, forests and plots of land.
Conventionally, open-access remote sensing data has been acquired from nationally
operated multispectral satellite sources, such as Sentinel 2 (ESA, Paris, France) or
Landsat 8 (USGS, Reston, Virginia, USA). Satellite data, while spatial, is also tempo-
ral due to regular and frequent overflights over land and sea surfaces. Commercially
available UAVs have also been utilized [56]. While some UAVs come pre-fitted with
quality RGB sensors, some systems are designed as platforms to which the desired
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sensor technology is to be mounted. Due to the altitude at which the data is ac-
quired, satellite and UAV data differ greatly in spatial resolution. This is illustrated
in Figure 1.1, where (a) is an orthomosaic of UAV images of a field and (b) is the cor-
responding image as captured by the Sentinel 2 satellite at approximately the same
time. While the pre-fitted RGB cameras of UAVs allow data capture resolutions well
below 1 m/px, open-access satellite data is available at resolutions starting from 10
m/px (Sentinel 2). This data, both satellite and UAV, comes in an image-like spatial
format. Other field-related observational data, such as data from soil sensors or soil
samplings, is often interpolated over the plots of interest to generate image-like data
in the form of spatial rasters.

Figure 1.1 Images of a field from week 24 of 2018 from (a) UAV and (b) Sentinel 2.

The form of input data directly affects the selection of suitable data-based mod-
elling techniques. Convolutional neural networks (CNN) [47, 48], a subset of neural
network based deep learning techniques, excel with spatial data related tasks. These
tasks include object recognition, image classification and image-based regression. Re-
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cently, multiple studies have been conducted with CNNs in the context of agricul-
ture and smart farming [30]. The use of sequential models capable of extracting
temporal features is also relevant to remote sensing data. Long short-term memory
(LSTM) networks [17, 24], an implementation of recurrent neural networks (RNN)
[62], have been shown to perform well in modelling tasks involving sequential data
[29]. LSTMs have to be coupled with CNNs to perform spatio-temporal modelling.
Another way to tap into spatio-temporal data is to use three-dimensional CNNs,
where two dimensions are used for single point-in-time spatial inputs and the third
dimension is used as the dimension of change between distinct spatial inputs [86].

1.1 Research questions

In the context of using remotely and manually gathered field-related data, the re-
search questions of this study are as follows:

RQ1. Can intra-field yield variability be reliably predicted using deep learning
models based on high-resolution remote sensing data from the early phase of
the growth season?

RQ2. Which data sources add value to high-resolution yield prediction with
deep learning models?

RQ1 is heavily centred around data-based modelling with field-related data. Al-
though excelling at complex decision making with fuzzy problems, humans are ill-
equipped to derive causal and correlational relationships, whether linear or non-
linear, from larger bodies of raw numerical data. Spatial data, such as RGB images of
a field, consists of thousands of data points with multiple values associated to a single
point. Spatial deep learning models, on the other hand, have been specifically devel-
oped to perform input-output mapping with spatial data. Due to the nature of these
models, they require black-box optimization techniques to find the optimal combi-
nation of various hyperparameters. Hyperparameters are values that have an effect
on the training and the capabilities of the model. These values include the learning
rate coefficient of the model’s optimizing algorithm or the number of neurons, a cal-
culation unit, within a layer of the layered deep learning architecture. Successfully
attaining the first objective also requires proper handling of input and target data
samples. The data has to be both ingestible by the models, and the model’s results
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have to be meaningful and interpretable by us humans. An additional key aspect
is the usability of the models in commercial production environments. In terms of
usage and adoption, the usability of the models as a part of a bigger DSS has to be
evaluated.

Generally, deep learning models benefit from feature-rich data. Being non-linear
and layered, the models are optimized during training to find the most effective com-
binations of input and hidden features built from the input data to accomplish the
performance goals. Data, however, incurs a resource cost on the modelling process.
Firstly, the data acquisition has an effect on the overall feasibility of the modelling.
UAV data, for example, requires manual operation in Finland due to legislation and
regulations. Secondly, the contribution to model performance is not equal between
distinct data sources. Yet another aspect of data is its quality, which itself might affect
the general performance of the model and the system the model is used in. Thus,
the data used in the modelling has to be evaluated both in terms of feasibility and
usability (RQ2).

For a number of years, the number of farmers has been on the decline in Finland.
With a rather static number of field plots, the farms are becoming bigger and are thus
in need of better farm and process management tools. Manual, semi-automated and
automated data acquisition from various operational areas requires data processing
automation to provide actionable items in an actionable time frame. Thus, this study
is an attempt to answer the question of whether data-based modelling is beneficial
for farm management and process optimization.

1.2 Publications and author’s contribution

The publications selected for this dissertation fall into three categories. The first
category concerns novel intra-field crop yield prediction model development. Pub-
lications [I] and [IV] belong to this category. The second category is related to data
evaluation assessment. The publications belonging to this category are [III] and [V].
The last category is the context in which crop yield modelling is performed, i.e.
decision-support systems for agriculture. Publication [II] belongs to this last cat-
egory. For the publications in the first and second categories, the author did the
majority of the work. In these publications, the author alone was responsible for ac-
cumulating, pre-processing and preparing the data from various sources. The author
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carried out the work of developing, implementing and training the models presented
in the publications. Model performance evaluation and comparison to the state-of-
the-art research was also conducted by the author. However, in those publications,
the author did not partake in manual data acquisition, such as operating the UAVs
during the growing season. The author was also responsible for writing the majority
of text in these publications. In the publication [II] category, the work of the author
was utilized in the study. The model architecture, code and results of [I] were uti-
lized as a case study in the report. Specifically, the author provided the results of
[I] and was involved in the analysis the results and the writing of the publication in
relevant sections.

Intra-field crop yield prediction model [I] [IV]

Performing crop yield predictions from RGB image data requires the use of models
capable of ingesting spatial data and deriving salient features from them. As part of
the Mikä Data project carried out in the Data Analytics and Optimization research
group of the Pori unit of Tampere University, Finland, several fields were imaged
during the growing seasons of 2017-2019. UAV-based orthomosaic images of crop
fields contain the data in a resolution high enough to allow for extracting image
frames of fixed dimensions. The images of these fields were used to train models to
perform frame-based crop yield prediction with single point-in-time [I] as well as
time series [IV] image data. Throughout this study, point-in-time is used as an ex-
pression to distinguish between temporally distinct inputs from temporal sequences
of multiple inputs. The point-in-time model is based on a CNN, with its depth
and configuration tuned to perform mapping of RGB image frames of crop fields
to geolocationally matched yield data collected from yield mapping sensors during
harvest time. The time series model is evaluated from a selection of spatio-temporal
deep learning model architectures: a CNN-LSTM, a convolutional LSTM and a 3D
CNN. The best performing model architecture for mapping the time series of RGB
image frames of crop fields to corresponding crop yield data was the 3D CNN. While
crop-related modelling has been performed on larger scales such as county-scale in
the USA [78] and China [27] and country-scale in Europe and Africa [65], field-scale
UAV-based crop yield estimation for intra-field predictions is a novel contribution
to the best of the author’s knowledge.
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Remote sensing data evaluation [III] [V]

In addition to performing crop yield estimation with UAV remote sensing data ac-
quired manually, the use of crop field related sensor data, remotely and locally col-
lected, is a topic of interest in the context of decision support in farming. As with
any data, quality is one of the key interests. High altitude satellite-based earth ob-
servation suffers from occasional obstructions by the cloud canopy. While Sentinel
2 data products contain pre-calculated information about the possible presence of
cloud cover, there is still work to do on the detection accuracy [10]. Using UAV
RGB image data as the ground truth for cloudless data of crop fields, a random forest
ensemble decision tree was trained in [III] to perform pixel-wise cloudiness classifi-
cation of Sentinel 2 data. The normalized difference vegetation index (NDVI) was
calculated for UAV RGB and Sentinel 2 true colour RGB data and the difference used
as an indicator for building the pixel-wise ground truth labels.

Another active area of research is combining data from multiple input sources
to perform remote sensing data-based modelling [18]. In [V], field-wise UAV RGB
data was complemented with data from Sentinel 2 satellites, manually collected soil
samples, electrical conductivity of the soil, weather data and topographical data. A
CNN model configuration from [I]was then used as the baseline, as the performance
had already been demonstrated with UAV RGB data. In addition to training a base-
line RGB-only model, several input data configurations were tested and evaluated to
see which combination of input data sources would provide the best performance.

Decision support system for farming [II]

While developing machine and deep learning methods has recently become an active
research area [41], the research and development of user-friendly, decision-support
system platforms is crucial to the deployment, and thus adoption, of developed mod-
els. In [V], a basis for such a platform was established, with the focus on the persis-
tence and visualization of multi-source spatial data on crop fields. Crop yield pre-
diction models form the artificial intelligence (AI) engine of the open-source Oskari-
based (www.oskari.org, MIT & EUPL licensed) agricultural data management and
viewing platform, generating refined predicted data for deriving actionable decisions
during the growing season.
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2 DATA-BASED SMART FARMING

The objectives of this thesis stem from the farmers’ need to derive data-based farming
decisions from data measured in their fields. While aggregated field-level data pro-
vides general guidelines, actions and interventions are performed at the intra-field
scale. The decisions also have to be made within an actionable time frame during
the growing season. However, data alone is not enough. As unmanned aerial sys-
tem (UAS) overflights can be utilized to provide frequent image snapshots of fields
and crop growth, predicting an outcome from this data is a difficult task for peo-
ple. What is needed is an automated decision engine based on data-based machine
learning techniques, capable of performing intra-field predictions using the current
state of crop development. Furthermore, this decision engine should be integrated
into a holistic farming decision support system (DSS) to fully utilize the capabilities
of modern sensors, connectivity and automatic data processing. This would enable
farmers to make more informed decisions on what actions to take and in which parts
of a particular field.

This chapter starts with a review of the relevant background and the current
state-of-the-art smart farming and data sources in the context of crop yield predic-
tion. While smart farming encompasses a broader farming context, from soil and
water management to utilizing modern technology to optimize farming processes,
the discussion is constrained to the context of crop field management and crop yield
estimation.

The chapter is constructed as follows. In the first section, there will be a review
of current studies of data-driven smart farming. This is to gain a proper view of the
application context for machine learning models, which are discussed in Chapter
3. After that, data from distinct sources and the use thereof in agriculture-related
modelling tasks is reviewed. Remote sensing is of particular interest, as it has been
an active research area for several years already. Other data sources, such as soil and
weather data, are also discussed. In addition to reviewing relevant studies, the data
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utilized in the studies is also described in relation to this thesis. In the last section of
this chapter, the modelling task of crop yield prediction is reviewed.

2.1 Precision agriculture and smart farming

The technologization towards the modern age farm has been a steady process, ongo-
ing for several centuries. The first steps in this process were taken during the 18th
century with important gradual developments in crop rotation and selective breed-
ing techniques. After the World Wars, farms were quickly mechanized and farm-
ing processes started to become more industrialized. Manual labour and the use
of working animals were replaced by more effective machinery. As digital computa-
tion resources became more common via mainframe architectures starting in the late
1960s, software products were adopted as common tools for agronomic counselling
institutions and, thus, farming management practices. The introduction of the in-
ternet and developments in telecommunication, sensor and computer technologies
enabled farms to gain an increasingly detailed grasp of the different areas of crop
farming. The introduction of digital computation first transformed the data han-
dling and computation processes of agricultural experts and advisors, starting with
punch hole cards and progressing towards software applications [80].

The developments in sensors, information technology (IT) systems and the gen-
eral adoption of digital farm management and decision support systems have fur-
ther driven the transformation to what is known as precision agriculture. Precision
agriculture is seen to encompass location-based technologies, processes and manage-
ment concepts to better account for intra-field variability to achieve increased gains.
While precision agriculture is focused mainly on farming operations in the field,
smart farming extends the combination of physical sensors, IT systems and low la-
tency connectivity to a holistic and automated farm management framework. This
view is expressed in multiple studies. Sundmaeker et al. [79] position precision agri-
culture within smart farming as do Wolfert et al. [93] and Tantalaki et al. [82].
While Rose and Chilvers use the terms more interchangeably, their use of the term
smart farming implies a larger framework, encompassing precision agriculture as a
technology- and sensor-oriented sub-area [61].

As conceptual frameworks, both precision agriculture and smart farming have
experienced developments via advancements in distinct technological areas. This
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is reflected in recent studies. As discussed by Klerkx et al. in their review of digital
agriculture, technologies such as precision farming, internet of things (IoT), machine
learning (ML), deep learning (DL) and robotics have been the focus in an increasing
number of agriculture-related studies [40]. In a recent review of machine learning
(ML) based crop yield prediction, Van Klompenburg et al. have observed an increase
in publications utilizing novel data-based modelling concepts starting from 2013
[41]. A similar observation has been made in a review of the use of deep learning
(see Chapter 3) in agriculture by Tantalaki et al. [82]. They observed a monotonic
increase of 249% in the average number of annually published agriculture-related
studies focusing on deep learning between 2016 and 2019.

2.1.1 Decision support systems for agriculture

The concepts of smart farming and digitalized agriculture are among the most rele-
vant topics in the agricultural research domain. The key elements in smart farming
revolve around data collection and utilization [40], data-based decision making [32],
the interconnectivity of cyber-physical systems [101], automation of farming pro-
cesses [101] and improved management of farm processes [82].

One of the core elements of smart farming is data collection. Small and intercon-
nected sensors, more generally labelled as IoT sensors, are utilized in tandem with
sensors installed on farming equipment and machinery to produce a multi-source
data stream about the farm. Data accumulated over time paints a holistic picture of
the farm and its operations. Novel AI-related techniques further facilitate data-based
decision making via insight extraction and estimation. This enables farmers to base
their decisions on measured data in a timely and accurate manner [79]. Moreover,
the developments in soil sensors planted in crop fields enable farmers to remotely
monitor their fields, which in turn allows them to make more informed decisions
on which actions to take [82]. As a subject closely related to the IoT, the execu-
tion of data aggregation and analysis on-site via edge computing is another projected
direction for agricultural cyber-physical systems [101].

Sensors, data and insights require effective management systems. A holistic agri-
cultural management system addresses a farm’s needs on multiple levels, such as ac-
counting, traceability and on-farm process management. Management systems are
also required to connect the farm to its stakeholders, such as consumers, public au-
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thorities and actors in the food value chain [82]. With the developments of the IT
sector in general, farm management solutions have also shifted from locally installed
software to cloud-based services [101]. This change further opens up new possi-
bilities for data-based decision making [61]. In particular, resource-intensive mod-
elling techniques are easier to employ with dedicated servers. The adoption of smart
farming practices makes the farm effectively a producer and manager of goods- and
operations-related data. As part of a larger agricultural ecosystem, the data gener-
ated on-farm is seen to benefit other instances, such as actors in the logistics chain
and advisory institutions [32].

When smart farming is viewed as a holistic operating framework, the abundance
of machinery, tools and IT-systems add formidably to the complexity of the whole.
There is a true need to further develop the integration of sensors, equipment, mon-
itoring and management systems [79]. This calls for cooperation of business actors
operating in the domain of smart farming, with IT operations being the focus of de-
velopment due to integrations. With working integrations, the benefits of accurate
and timely automation can be reaped [101].

Several commercial decision support systems exist in the domain of agriculture.
As the products are generally suites of modular and specialized applications, the
products are reviewed here only generally. Minun Maatilani (Mtech Digital Solu-
tions Oy, Vantaa, Finland) provides farmers with web-based applications for cattle
and crop farm operations regarding planning, accounting and management. There
are explicit modules available for smart farming, which include features for man-
aging cropping plans, creating and exporting fertilization tasks for machinery, im-
porting UAV data and yield maps. Satellite data is utilized to provide timely views of
fields. Next Farming (FarmFacts Gmbh, Pfarrkirchen, Germany) has applications
for crop and fertilization planning, fleet management, and the creation and manage-
ment of prescription tasks for machinery. Users can import information about their
fields, such as biomass, soil and yield maps. The software suite includes smart farm-
ing services such as UAV management, seeding and fertilization optimization and
supplying geographic information system (GIS) data. 365FarmNet (365FarmNet
Gmbh, Berlin, Germany) contains applications for farm management, crop cultiva-
tion and herd management. Via partner applications, the suite provides the users
with satellite-based field monitoring, crop, seed and fertilizer planning and fertiliza-
tion optimization. MyEasyFarm (MyEasyFarm, Bezannes, France) contains appli-
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cations for plant and plot management, task management, imported data analysis
(soil, yield, etc.) and task monitoring.

2.1.2 Crop yield prediction

Crop yield prediction, the primary focus of this study, is deemed one of the most
challenging problems in the realm of smart farming, which encompasses a large vari-
ety of sub-tasks and smaller goals. Predictive yield modelling is seen to help farmers
pinpoint problem areas in their fields [75], guide management decisions and reduce
business risk [13], and provide vital information for the food supply chain [104].
As discussed by Triantafyllou et al. [87], crop and plant yield estimation is crucial
when the goal is to optimize field-wise yields in a cost-effective and proactive man-
ner. In their study of a holistic remote sensing system architecture, predictive models
are positioned adjacent to data analysis, information management and data process-
ing modules within what they call the "management layer". The management layer
provides a management logic to the applications operated by the users, farmers or
agricultural experts.

According to Ünal et al. in their review of deep learning method utilization in the
context of smart farming, yield estimation is one of the most common agriculture-
related keywords present in the review of 120 studies [89]. The output, the harvested
crop yield, is affected by a variety of environmental, crop-related and farmer-induced
factors. Data-based modelling techniques, namely deep learning models, excel with
such multivariate and non-linear data [97]. In their review of machine learning based
crop yield prediction, van Klompenburg et al. [41] observe that the data sources of-
ten present in crop yield prediction studies include soil and crop information, clima-
tological data, and information about the nutrients and actions taken by the farmer.

In addition to gathering data from multiple sources, it is also necessary to col-
lect data across multiple years. As discussed in Filippi et al., having the data cover
larger time spans (temporal coverage) is deemed more important than having the field-
related data span larger areas (spatial coverage) [13]. A key aspect to using crop yield
prediction in a smart farming DSS is to enable the farmer to decide on actionable
items. Predicting the intra-field variability allows the identification of underper-
forming areas in the fields [82]. With the increase of spatial resolution in predictions,
the goals of precision agriculture are also easier to attain by focusing on distinct prob-
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lem areas instead of treating the whole field in a uniform manner.

2.2 Data sources

Remote sensing has played a significant role in advancing crop field monitoring dur-
ing recent decades and is considered one of the most important technologies for pre-
cision agriculture and smart farming [88]. According to Khanal et al., the publicly
accessible high-altitude satellite systems, such as Sentinel (ESA, Paris, France) and
Landsat (USGS, Reston, Virginia, USA), have been major catalysts in propelling
remote sensing based agricultural research forward [38]. Other key factors in this
progression have been the developments in computation and storage capabilities of
such data. While high altitude monitoring is good for observing larger areas, low-
altitude unmanned aerial vehicles (UAV) and unmanned aerial systems (UAS) are
used to capture information in greater detail. According to Ünal et al. in their re-
view of deep learning in smart farming, the use of UAVs in recent agricultural deep
learning studies is so prevalent that their use can be considered an integral part of
the smart farming framework [89].

Agricultural data is known to be heterogeneous [32]. According to Wolfert et al.,
this stems from the heterogeneity of the means of data accumulation, which includes
various remote sensing platforms, ground-based sensors and human-inputted data
[93]. Another source of data heterogeneity concerns the objects of data measure-
ment, i.e. the environment, machinery and operational records. In a recent review
of the use of multi-source and multi-temporal data in remote sensing, Ghamisi et al.
conclude that the increased availability of data from multiple sources, accompanied
by advances in computational tools, has a positive effect on data-based modelling,
increasing the efficiency and performance of the models [18]. Their review focuses
solely on studies utilizing high- and low-altitude remote sensing platforms and their
sensors. The sensor types include visible light RGB, multi-spectral, hyper-spectral
and laser imaging, detection and ranging, hereafter called lidar as per [18]. In a review
of big data practices in agriculture, Kamilaris et al. observe that multiple data-based
modelling studies in the domain of agriculture also utilize data from other sources
[32]. These sources include weather stations, geospatial data, soil sensors, historical
data sets and records kept by organizations, institutions and governments.
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2.2.1 Low-altitude unmanned aerial vehicles

UAVs have been utilized for the past decade in multiple studies related to remote
sensing, data-based modelling and agriculture. Recently published reviews show that
the number of UAV-related studies has grown substantially. Therefore it is more
beneficial to perform a metareview on recent reviews focused on low-altitude remote
sensing and its applications.

To preface the review of UAV usage in the context of remote sensing and crop
yield estimation in agriculture, it is necessary to note that the UAVs utilized in the
studies are mainly just aerial platforms to which the sensors are mounted. This is
in contrast to several commercially available UAVs with integrated RGB cameras.
Generally, there are five types of sensors present in the recent studies: visual RGB,
multi-spectral, hyper-spectral, thermal and lidar sensors [55, 88, 96]. As implied
by the name, visual RGB sensors capture the red, green and blue bands of the visi-
ble light spectrum in the 400-700 nm wavelength range [96]. Multi-spectral sensors
usually add one to several additional channels from select wavelengths in the near-
infrared (NIR) wavelength region of 780-2500 nm. Hyper-spectral sensors are used to
capture a continuous spectral range from visible to NIR wavelengths [96]. Thermal
sensors measure the infrared radiation in the 3-8 µm wavelength region [55]. Com-
pared to the sensors mentioned above, lidar is an active sensor, emitting a signal and
measuring its reflection from various surfaces [38, 96]. Visual RGB sensors are gener-
ally the easiest to operate and cheapest to acquire. Multi-spectral and hyper-spectral
sensors often need to be acquired and mounted separately and they cost consider-
ably more than RGB sensors. In fact, thermal and lidar sensors are among the most
expensive UAV-mountable sensors [88].

Khanal et al. have reviewed the accomplishments, limitations and opportunities
of remote sensing in agriculture [38]. Searching for studies related to remote sensing
and agriculture, they discovered 3679 studies during the 20-year period from 2000
to 2019. The number of UAV-related studies, according to their research, started to
increase after 2013. The annual numbers rose from a handful at the beginning of
the considered period to well over a hundred UAV-related studies published in 2019.
Focusing on recent and major references, their study reviews the applications of re-
mote sensing in precision agriculture. They observe that UAVs have been utilized
in the following applications:
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• topographical mapping (1/3)

• tile drainage locationing (2/5)

• soil moisture and temperature mapping (3/8)

• crop emergence and density monitoring (5/5)

• nitrogen stress monitoring (1/3)

• crop disease monitoring (3/8)

• weed identification and classification (3/4)

• yield prediction (2/4).

The numbers after the items indicate the number of UAV-related references re-
ported out of all reported references for an application. Overall, they found that
UAV-related studies accounted for 16.3% of the studies regarding remote sensing in
agriculture during 2015-2019. The majority of the studies they reviewed focused
on satellite sources. Recently, however, there has been an increase in studies utiliz-
ing UAV-based data to perform data analysis and data-based modelling with high-
resolution data. In the studies they selected for closer inspection, the UAVs were
equipped with visual, multi-spectral and thermal sensors for various applications.
In their view, UAV platforms provide a reasonable means to gather high-frequency
and high-resolution remote sensing data with. Citing US prices, they report that
UAV data collection costs approximately 9.9$/ha. They also point out that operat-
ing UAVs is constrained by weather conditions, limited flight time and payload.

Tsouros et al. have conducted a review on UAV-based applications for precision
agriculture [88]. They reviewed 100 research papers published between 2017 and
2019. According to Tsouros et al., UAVs can be used to produce high- to ultra-high
resolution images of crop fields by varying the flying height. They observe that
UAVs are utilized in the following applications:

• crop growth monitoring (65.6 % of studies)

• weed mapping (12.5 % of studies)

• crop health monitoring (6.3 % of studies)

• crop irrigation management (5.2 % of studies).

While other applications were observed in addition to the above, these four formed
the majority (89.6%). Limited to these application contexts, four distinct categories
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of sensors were observed, i.e. multi-spectral (56.0%), RGB (33.6%), thermal (6.0%)
and hyper-spectral (4.4%). They conclude that the use of various vegetation indices
derived from multi-spectral data is the most effective remote sensing method in crop
parameter monitoring. Overall, they observed more than 30 distinct crop species
among the reviewed studies. For this thesis, crop growth monitoring as an appli-
cation context is of the greatest interest, while crop yield prediction is considered a
part of it in the review. RGB and multi-spectral sensors are reported to be the most
utilized types of sensors for this application. They observe that machine learning
methods are able to exploit data from all sensor types, both separately and conjoined.

Xie and Yang have reviewed the current state of the art of UAV-mounted sen-
sor utilization in plant phenotypic trait monitoring and estimation [96]. The main
phenotypic traits include plant yield, biomass, height, leaf area index, chlorophyll
content and nitrogen content. Overall, they observed 18 different plant varieties
as the targets for UAV-based sensing in their review. Concluding from studies fo-
cusing on plant yield estimation, they suggest using RGB and multi-spectral sensors
with UAVs. Biomass, height and leaf area index were also treated as proxy variables
for plant yield. Biomass estimation was performed mainly with RGB and multi-
spectral sensor data. Lidar was observed as the dominant sensor type for canopy
height estimation. The leaf area index was mostly estimated using various vegeta-
tion indices derived from multi-spectral data with some studies resorting to RGB
sensors as well. In conclusion, they observe that RGB and multi-spectral sensors are
used predominantly in plant-related monitoring and estimation studies. This is at-
tributed to lower sensor costs, sensor lightness and the ease of data collection and
analysis. Multi-spectral data, however, is seen to be crucial for some crop-related
monitoring and modelling contexts where vegetation indices based on he infrared
part of the spectrum are utilized.

Messina and Modica have reviewed the current state of the art of UAV thermal
imagery and its applications [55]. Thermal sensors detecting infrared radiation are
used mainly to monitor ground surface temperature. It has been observed to be
a rapid response variable in plant growth, yield estimation and stress factor eval-
uation. Compared to other sensor types, such as RGB and multi-spectral, operat-
ing thermal sensors requires more care. Environmental variables, such as humidity,
clouds, dust and time of day, can impede the data acquisition process. Calibration of
sensors and measuring environmental variables near the imaged objects is strongly
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recommended for performing corrections during data processing. The most com-
monly utilized applications for UAV-mounted thermal sensors observed in their re-
view were the following:

• water stress detection and monitoring (23 studies)

• phenotyping (5 studies)

• yield estimation (4 studies).

2.2.2 High-altitude satellite systems

Remote sensing studies conducted with free and commercial satellite data have been
common for longer than comparable studies with UAVs. For several years already,
satellite data has been considered a core data source in the smart farming framework
[93]. Some of the often utilized satellite systems with their specifications are given
in Table 2.1, but it is to be noted that there exists a much larger number of past
and presently operational satellite missions. For reference, please see the database of
satellite missions at [69].

Table 2.1 Some of the commonly referenced satellite systems present in remote sensing and agriculture-
related studies.

Satellite
Spatial
Resolution
[m/px]

Revisit
Time
[days]

Number of
Satellites

Spectral
Channels

Spectral
Range
[µm]

Launch
Year

Open
Access

Landsat 7 [45] 15-60 16 1 8 0.441-12.36 1999 Yes
Landsat 8 [46] 15-60 16 1 11 0.435-12.51 2013 Yes
Sentinel 2 [73] 10-60 5 2 13 0.426-2.377 2015 Yes
WorldView 2 [94] 0.31-1.84 1.1 1 9 0.450-2.365 2009 No
WorldView 3 [95] 0.31-1.24 <1 to 4.5 1 29 0.450-2.365 2014 No
PlanetScope [58] 2.7-3.2 1 140 4 0.455-0.860 2016 No
Gaofen 1 [15] 2-16 4 1 5 0.450-0.900 2013 Yes
Gaofen 2 [16] 0.81-3.24 5-69 1 5 0.450-0.900 2014 No

Since the launches of higher-resolution satellite systems, such as Landsat 8 in 2013
and Sentinel 2 in 2015, and the opening up of their data, the usage of data from re-
mote sensing satellites in various application domains has become more feasible. As
discussed by Chivasa et al., a review of maize yield estimation applications based
on remote sensing, coarse-resolution satellite data was largely unusable for smaller-
sized fields on the African continent [8]. The values in a pixel corresponding to a

30



field would effectively always be contaminated with data unrelated to the field. Fur-
thermore, to estimate a yield produced by a spatially irregularly shaped field requires
data at a high enough resolution to constrain the field data within reasonable bor-
ders.

Khanal et al. calculated that 64% of the 3679 remote sensing and agriculture-
related studies published in and after the year 2000 utilized satellite-based data [38].
They also observed that satellite data based studies were more prevalent than studies
that utilized UAV in the decade from 2000 to 2010. According to their research fo-
cused on selected studies, satellite data has been utilized in the following agriculture-
related applications:

• tile drainage locationing (1/5)

• soil moisture and temperature mapping (3/8)

• nitrogen stress monitoring (1/3)

• crop disease monitoring (1/8)

• weed identification and classification (1/4)

• yield prediction (1/4)

• grain quality assessment (1/3)

• crop residue assessment (3/4).

The numbers in the brackets indicate the satellite data utilization counts in all pa-
pers related to the particular application context. The numbers suggest that satellite-
based studies are in the minority when compared to UAV studies. This, however,
might be attributable to the authors of the review as they seem to place more fo-
cus on high resolution studies. UAVs and mid-altitude manned aircraft are better at
producing high-resolution data. Regarding economics, medium-resolution satellite
data is largely open-access and free to use. High-resolution satellite data is reported
to cost from 1.28 USD/km2 (5 m/px resolution) to 25 USD/km2 /0.5 m/px reso-
lution). Compared to UAVs at 9.9 USD/ha, the price with commercial satellites is
cheaper for larger areas. Smaller areas require an economic evaluation case-by-case,
as a minimum order size is required when purchasing commercial high-resolution
satellite data.

In another recent study, Karthikeyan et al. have reviewed remote sensing ap-
plications regarding crop growth, irrigation and crop losses [35]. Focusing on the
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international and global scale, they assessed the use of current operational satellite
systems in performing large-scale data acquisition for monitoring and modelling of
crop growth, losses and irrigation. While they affirm that data gathered on site with
UAVs and sensors is more efficient on a smaller scale, they view satellites as unri-
valled in the continuous monitoring of larger areas. Regarding crop growth, they
observe that the multi-spectral and hyper-spectral instruments in satellite platforms
enable the use of various vegetation indices relevant to crop assessment. To utilize
vegetation indices effectively, the deployed satellite systems are required to have at
least adequate spatial resolution. Similar to [8], they acknowledge the problem of
pixel value contamination for agricultural use with too coarse resolutions. For irri-
gation monitoring, they observed the utilization of visible, infrared and microwave
sensors. Recently, data fusion has also been utilized in generating yearly irrigation
maps for previous decades. In these studies satellite data was complemented with
other data, including weather, soil and topographical information. Although they
assessed several application contexts, they conclude that a higher resolution is often
needed.

2.2.3 Weather data

Optical sensing is of crucial importance when performing spatial modelling in the
context of crop yield prediction. While sensing crop growth stages is helpful, gath-
ering data about the environment is mandatory to distinguish the effects of a crop
type’s phenological factors from external factors. In a study of a holistic remote
sensing monitoring system, Triantafyllou et al. position weather data logging on a
par in terms of importance with other sensors installed and planted on site [87]. Re-
ported weather-related environmental factors include wind speed and direction, at-
mospheric pressure, light intensity, solar radiation and rainfall. In addition to specif-
ically installed sensors, nationally collected weather data and forecasts have also been
used [32].

Sun et al. have conducted a multi-source soybean yield prediction study at US
county scale [78]. In addition to remote sensing and yield data, they utilized histor-
ical daily weather data accumulated in the Google Earth Engine [20]. The weather
data, namely precipitation and atmospheric pressure, was utilized as rasters with a 1
km/px ground sample distance. Analysing their results, they attribute some of the
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lowest soybean yields partially to extreme weather. However, they note that sin-
gling out the effects of external factors on yield is complex. Their conclusion is that
weather data along with remote sensing data form a sufficient data set with which to
predict soybean yields using coarse resolutions.

In a study of maize growth stage prediction, Yue et al. have utilized a county-
level meteorological data set as the predictor data in China [100]. The weather data
consisted of daily aggregates for humidity, atmospheric pressure, temperature, pre-
cipitation, wind speed and sunlight amount, measured from a single weather station.
The temporal range of the data is reported as being from 1981 to 2017. The weather
data was temporally aligned with maize growth data to facilitate timely estimation
of the maize growth stage from meteorological data only. Using days of growth as
the predicted value, they report an average absolute error of 1.06 days.

Wolanin et al. have utilized a time series of remote sensing and weather obser-
vations to estimate crop yields in the Indian wheat belt [92]. They utilized daily
aggregates of temperature, precipitation, water vapour deficit, short-wave radiation
and day length information. In addition, they utilized vegetation indices calculated
from remote sensing data. They trained their models with data from multiple years,
aiming to isolate and extract the effects of distinct environmental factors on the crop
yield. They conclude that, while vegetation indices capture the effects of environ-
ment and render weather data somewhat redundant in their modelling approach,
analysis of the model’s utilization of meteorological features provides insights into
other study areas, such as crop breeding.

2.2.4 Soil data

Being the base of crop growth, soil and its composition play a major role in how
plants grow and produce grain. As Tantalaki et al. have shown in a review of novel
data-based applications in precision agriculture, soil and its features are commonly
the target of modelling [82]. However, studies have also been conducted where soil
and ground-related data are used as predictor values.

In a review of machine learning and crop yield prediction, van Klompenburg et
al. have observed that soil type and soil maps are often utilized in recent data-based
modelling studies in the context of agriculture [41]. Individual spatial soil features
include soil type, pH, cation exchange capacity and location. Soil-related features,
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overall, were observed to be the most prevalent group of data features present in the
reviewed studies. These features were observed as predictors of crop yield 54 times,
while the second most popular group, solar information, saw 39 uses as predictor
values in a similar setting. Soil information was also utilized both as predictor and
predicted values in the reviewed studies.

Filippi et al. have collected a multi-source data set to estimate crop yields [13].
Soil-related features included soil electrical conductivity, and the potassium, ura-
nium, thorium, clay and sand content. This acquired data was processed to a res-
olution of 10 m/px. Other data sources included remotely sensed vegetation in-
dices as well as received and forecasted precipitation. Regarding the use of soil data,
they conclude that soil maps and geophysical data are not as significant predictors
as initially assumed. However, they observed correlations between soil and ground-
related predictor values and point out that this might actually mask their combined
significance.

Khanal et al. have utilized soil-related features in their study of machine learning
based intra-field corn yield and soil feature estimation [37]. Using a single field for
their study, the soil was sampled at intervals of one acre or 0.40 ha. The ratios for soil
organic matter, potassium and magnesium were extracted from the samples. Cation
exchange capacity and pH were also measured. These features were, however, treated
as target values. The inputs for estimation consisted of high-resolution multi-spectral
(<1 m) images and digital elevation model data. Inputs were spatially aligned with
corresponding soil samples, forming the soil-related input-target data set. In their
study the authors compared statistical, linear and non-linear models. Spatial models,
such as CNNs, were not, however, taken into comparison.

2.2.5 Lidar and topographical maps

As already mentioned as one of the sensors that can be mounted on UAVs, lidar is
often utilized when acquiring remotely sensed elevation information. As pointed
out by Khanal et al., topographical features affect preseason farming management
decisions, impacting a field’s water economy and soil quality [38]. Another common
application context is tree- and forest-related studies [67].

In a review of multi-source and multi-temporal remote sensing data fusion, Ghamisi
et al. have pointed out multiple studies in which lidar data has been utilized [18].
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In raw form, a lidar sensor produces a multidimensional point cloud of data, which
contains information about the locations and altitudes of the points. They observe
that lidar is often accompanied by a separate hyper-spectral sensor. One of the main
reasons for this is that lidar generally lacks the spectral information often necessary.
This is true for scene classification, for example.

Although lidar sensors provide exceptional accuracy when a digital elevation model
(DEM) is required, other approaches exist for mapping the topography of the target
area of interest. Recent advances in UAV-based photogrammetry, i.e. modelling a
structure from images taken from different angles, provide an alternative approach
to mapping intra-field topographical variability [38]. Namely, the advances in UAV-
based photogrammetry have enabled the production of DEMs from considerably
cheaper and lightweight RGB sensors. These methods, however, lack canopy pene-
tration when compared to lidar [54].

2.2.6 Yield maps

Crop yield estimation is an important topic in the context of smart farming and
precision agriculture. Correctly estimating the crop yield mid-season enables farm-
ers to focus proactively on problem sectors regarding their fields. This can lead to
increased profits via increased yields and cost savings due to the ability to focus on
distinct areas instead of performing uniform treatments. The traditional approach
to measuring the crop yield from a field consists mainly of weighing the harvested
grain and calculating the average for the field. To facilitate support of intra-field de-
cision making, combine harvesters can be equipped with yield monitoring systems.
Various methods of measuring harvested yield exist. These methods include optical
measurement and kinetic mass flow sensors. Additionally, yield monitoring systems
utilize a global navigation satellite system (GNSS) to assign location information to
the measurements. Accurate yield maps are necessary to model intra-field yield vari-
ability [38].

As shown by van Klompenburg et al. in their review of 50 machine learning based
crop yield prediction studies, performing yield estimation with input data from var-
ious sources is a current and developing research topic [41]. The use of spatial crop
yield data, i.e. geolocated yield information at the intra-field scale, is becoming com-
mon. While the authors of the review do not examine the formats of the data used
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with regard to spatially arranged yield targets, the notable presence of CNN architec-
tures (36.4%) indicates the presence of spatial input-target pairs as training samples.
This is in contrast to crop yield estimation studies, where crop yield information is
aggregated over larger areas, such as counties [51, 78, 91].

Filippi et al. have utilized 10 m/px resolution yield maps as target data in their
study of crop yield estimation using multi-layered and multi-farm data with machine
learning methods [13]. Yield information was initially generated by combine har-
vesters equipped with yield mapping sensors and was then processed to generate yield
maps for the study. In addition to using yield maps as targets, yield maps from pre-
ceding years were also used as inputs with which the predictions were made. Other
inputs included soil, satellite and weather data, all of them represented in spatial for-
mat in resolutions from 10 m/px up to 5 km/px.

Khanal et al. [37] have performed soil variable and corn yield prediction at intra-
field scale, utilizing combine harvester generated spatial yield maps as one of the
target values. The authors utilized the size of the harvester head and the travelled
distance of the combine harvester between each logged yield point to assign input
pixels (multi-spectral data, various indices and DEM data) to certain yield values.
Input and yield data was, thus, utilized in point-wise rather than spatial format with
regard to modelling.

Similarly, Zhao et al. [104] have utilized yield maps produced by combine har-
vesters as the target values for predicting wheat yields from raw and processed Sen-
tinel 2 data. They derived various vegetation indices from multi-temporal Sentinel
2 multi-spectral data, which were then utilized in a linear and multivariate time se-
ries model to estimate yields. While the input data was utilized as points, albeit
initially spatial, the point-wise models were utilized to estimate yield maps from
within-season satellite data.

2.3 Conclusions

Current research on crop yield prediction, a subset of data-based smart farming, fo-
cuses mainly on using data from either low-altitude UAVs or high-altitude satellite
systems. Other utilized data sources include weather data, soil information, lidar-
based topographical maps and yield maps of previous years. There is a notable dis-
persion of application scale, ranging from close-up images of fruits to country-scale
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predictions. Studies at smaller scales often utilize UAVs, while satellite-based data is
generally more utilizable with larger scales.

The ability to gain timely and accurate information is important in predicting
crop yields within time frames of growing seasons. This is why both manually oper-
ated UAVs and satellite systems are among the primary data sources for remote sens-
ing data for predicting crop yields. While satellite-based data is automatically gener-
ated and a popular data source for spatial and spatio-temporal crop-related studies, it
provides insufficient spatial resolutions for performing spatially context-aware intra-
field predictions for fields in sizes of several hectares. UAV-based data has sufficient
resolution for intra-field spatial modelling but is harder to come by due to required
manual labour. On the other hand, temporally slowly updating data sources, such as
national lidar-based topographical maps or soil maps generated by sensing the soils
conductivity, are more problematic to use on their own. These temporally slower
data sources can, however, be used to enrich the temporally more currant remote
sensing data.

In terms of data sources for crop yield prediction, the studies selected for this
dissertation focus mainly on using high-resolution UAV images as the main source
of remote sensing data to perform intra-field crop yield prediction.
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3 SPATIO-TEMPORAL DEEP LEARNING IN

AGRICULTURE

Deep learning refers to models composed of multiple layers. Generally, a model is
viewed as deep if it has at least an input layer, one hidden layer and an output layer.
The term neural, on the other hand, refers to the fact that originally the operating
principle of artificial neural networks was taken from that of the brain, which con-
tains neurons as its basic building blocks. As discussed by Tantalaki et al., the increas-
ing volume of agricultural data from multiple sources calls for modelling techniques
with an ability to perform automatic feature weighing and selection with complex
and heterogeneous data [82]. Being non-linear and data-based, deep learning models
have recently become more and more the modelling technique of choice in several
application contexts.

The intention of the preceding chapter was to provide a broad overview of the
data sources and their prevalence in the realm of agricultural data-based modelling.
The goal of this chapter is to give the reader an overview of the tasks and problems
in smart farming where deep learning structures have been successfully used and to
provide enough background to understand the selection of particular models in the
studies included in this thesis as well as their application contexts. With the publi-
cations of this dissertation focusing on spatial data, the discussion will be limited to
spatial and spatio-temporal applications. In addition to considering recent relevant
reviews, this chapter also delves deeper into individual studies in terms of methods,
application contexts and attained performance.

Thus, this chapter is constructed as follows. The first section is dedicated to re-
viewing studies focusing on deep learning and smart farming in general. The focus
of the section is to build a contextual foundation of how deep learning has been uti-
lized recently in an agricultural context. After that, the following section and its
subsections are dedicated to distinct model architectures. For each architecture, a
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brief introduction is given on the operating principles. These introductions are then
followed by reviews of different studies to provide the reader with an understanding
of the possibilities and possible limitations of each architecture.

3.1 Deep learning in agriculture

The use of deep learning techniques in agriculture and agriculture-related remote
sensing applications has gained a lot of attention recently. According to several re-
views, the number of deep learning studies in the above-mentioned context has in-
creased dramatically since 2015. According to a review of deep learning techniques
in agriculture by Kamilaris and Prenafeta-Boldú, the number of deep learning re-
lated studies in the context of agriculture were virtually non-existent prior to 2015
[31]. In a review of crop studies focusing on crop yield prediction using machine
learning, the annual distribution of studies is heavily concentrated in the past two
years [41]. A similar observation has also been made in [89], where 76 out of 120
reviewed papers were published in 2019.

In the review conducted by Kamilaris and Prenafeta-Boldú, 40 deep learning and
agriculture related studies were examined [31]. The authors identified 16 distinct
applications for deep learning, including crop or weed detection (8), plant or crop
type classification (4), plant recognition (4), fruit counting (4) and crop yield esti-
mation (2). Out of the selected studies, 30 studies utilized computer vision based
algorithms in some form. These algorithms include various custom-defined and
pre-trained convolutional neural networks (CNN). Other algorithms present in the
studies include long short-term memory networks (LSTM), auto-encoders and a hy-
brid CNN-LSTM. They observe that, in addition to performance increases attained
with the use of deep learning techniques, the need to pre-engineer independent pre-
dictor features is mainly eliminated. The models are generally seen as performant,
albeit the training times are observed to be generally higher than with traditional
machine learning methods. However, the need for large data sets is seen as a consid-
erable drawback. Another data-induced limitation is the training data set’s limited
expressiveness of the underlying data-producing phenomenon. Nevertheless, they
conclude that, with image-like data, deep learning offers effective and reliable mod-
elling techniques.

Tantalaki et al. have also discussed the role of neural networks and deep learning
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in their review of data-driven decision making in agriculture [82]. They attribute the
increased use of deep learning techniques in agriculture partially to the models’ abil-
ity to handle complex and non-linear agricultural problems. Their review is focused
more on the developments of machine learning in the agricultural domain up until
recent times. Neural network related techniques are divided into simpler artificial
neural networks (ANN) and more complex image-based deep learning techniques.
Out of 29 studies published between 1995 and 2018, they found 15 studies utilizing
ANNs and two deep learning related studies. ANNs have been utilized in crop-, soil-
, weed-, disease- and weather-related applications. Crop-related studies, where both
ANN and deep learning techniques were utilized, include yield estimation, type clas-
sification and feature estimation. Their general observation is that, with the devel-
opments in data-based modelling techniques, IT infrastructure and data generation
processes, deep learning is a prominent trend for data-based modelling.

In a review focusing on crop yield prediction using machine learning, van Klom-
penburg et al. found 50 related studies starting from 2008 [41]. Of these, 30 studies
utilized deep learning in some form or other. In these studies, a total of 33 various
deep learning architectures were present. The architectures included CNN, LSTM
and deep neural networks (DNN), with CNN being the most common with 11 oc-
currences and LSTM and DNN being both present seven times. Spatio-temporal
architectures were also observed in some studies, including three-dimensional (3D)
CNNs and CNN-LSTM hybrid models. In addition to deep learning models, several
traditional machine learning algorithms were also used. These include linear regres-
sion and ensemble models, such as decision tree based random forest models. These
models, according to the authors, are often used as benchmark models for their deep
learning counterparts.

3.2 Performance metrics to evaluate yield prediction

Crop-related deep learning research in agriculture is still a developing field which is
starkly illustrated by the variety of performance metrics used across various studies.
Kamilaris and Prenafeta-Boldú identified 16 different performance metrics in their
review of 40 agriculture-related deep learning studies [31]. The usage of metrics
varies according to the modelling task (e.g. classification or regression) and formu-
lation of the modelling problem (object recognition) [30].
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Even with a specific task, i.e. crop yield prediction, at least 11 different perfor-
mance metrics were in a study by van Klompenburg et al. [41]. The most popular
metric with 40% usage according to [41] was the root mean square error (RMSE).
While easy to calculate from the data, the interpretation of the metric is reliant on the
knowledge of the value range and scale of true targets. This is true with other similar
metrics, such as mean absolute error (MAE) and mean square error (MSE). Lower
scores generally indicate better performance with these metrics. There are at least
three key factors affecting the variability of performance metrics. The first has to
do with data pre-processing and, more specifically, data scaling, where the use of ab-
solute values produces different performance values from scaled values. The second
factor is the environment with changes in annual weather patterns (local variability)
and studies performed on similar crops but in different climates and soil character-
istics (global variability). The third factor introducing variability in performance
metrics is crop variety. While a modelling method would be comparable to another
method in terms of architecture and design, crop yields differ between different crop
types (e.g. corn versus wheat). Xie and Yang identified at least 18 different types of
crops while listing only a portion of all cereal crops [96]. A selection of crop types
and their average values across continents are given in Table 3.1 to give a sense of
scale for RMSE, MAE and MSE performance value interpretations.

Table 3.1 Average crop yields of 2018 by crop type and continent. Values obtained from Crop Yields
Data Explorer [60] from the Our world in data service are given in tonnes per hectare.

Crop Africa Asia Australia Europe North America South America

Wheat 2.86 3.38 1.92 4.00 3.21 2.98
Barley 1.70 2.11 2.24 3.55 3.67 3.80
Rice 1.53 3.54 2.02 4.23 7.59 4.45
Maize 2.04 5.37 7.34 7.54 11.77 5.26

One of the most popular yield prediction performance metrics is R2, the coeffi-
cient of determination, which was used in 26% out of all crop yield regression studies
reviewed in [41]. The general definition of the metric is as follows:
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(3.1)

where yi is a target value, µy is the average of all target values and ŷ i is a prediction
corresponding to a target value yi . The metric represents the degree of variance
explained in the target value given the input features in the regression model. R2

values range typically from 0 to 1, with 1 indicating a perfectly fit model. A score
of 0.5 can be interpreted as the model being able to account for 50% of variance
w.r.t. the target values. Being a proportion-based metric, it is scale-invariant and
thus produces comparable values as long as the compared data sets describe similar
phenomena.

Another utilized scale-invariant metric is the mean absolute percentage error (MAPE),
which is defined as

MAPE=

∑︁n
i
|yi−ŷ i |

yi

n
(3.2)

where the value represents the average proportional deviation from true target val-
ues. As with RMSE, MSE and MAE, a lower score indicates better performance.
However, while MAPE is scale-invariant, the threshold of good performance de-
pends on the data and requires domain knowledge in order to draw deeper conclu-
sions.

3.3 Spatial and temporal deep learning architectures

Data is one of the most crucial factors to take into account when selecting model
architectures. Real-world spatial data requires architectures with the capability to
extract non-linear spatial features. Sequential data requires models capable of mod-
elling change in the dimension of time, or change in general. A time series of spatial
data requires architectures with both of the aforementioned capabilities.

Deep learning has been utilized in multiple smart farming-related applications,
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as described in the previous section. In this section, the focus is narrowed to discuss
the model architectures relevant to spatial and spatio-temporal modelling. The pub-
lications selected for this dissertation mainly utilize spatial data. Publications [I-II]
utilize UAV-based remote sensing data as spatial inputs. One input conforms to a
distinct point in time. Publication [IV] utilizes time series of UAV-based spatial, i.e.
spatio-temporal, data. While Publication [V] makes use of temporally distinct spa-
tial data, it differs from Publications [I-II] in the use of multiple data sources. The
only publication where spatial or spatio-temporal modelling is not utilized is [III],
where the data, albeit initially spatial, is utilized in a row-like manner.

3.3.1 Convolutional neural networks

Convolutional neural networks, often referred to as CNNs, have solidified their
place in modelling tasks where the input data is either spatial or spatially repre-
sentable [42, 81]. The main component of the model is the convolution operation,
where a set of trainable kernels (or filters) is applied to the input data, resulting in
a set of spatial features describing the data. The model learns basic features in the
first layers and composite features of these basic features in further layers [103]. To
help the model learn these features better, batch normalization can be applied to the
inputs [26]. The final output of a plain CNN is a set of feature maps. Depending
on the use case, these can be either utilized directly or, for example, flattened and fed
to a fully connected (FC) layer for regression or classification purposes. The tradi-
tional use case is to employ a CNN to extract spatial features from two-dimensional
(2D) inputs. While spatial data normally contains multiple channels, the 2D kernels
are applied to each channel, separately. CNNs can also be utilized in a non-spatial
manner when the input data is tabular, i.e. row-like. The convolution operation is
then applied one-dimensionally (1D), with the kernels operating on adjacent values
in the row as defined by the kernel size.

As shown in multiple recent reviews of deep learning method utilization in agri-
culture and smart farming, CNNs constitute the majority of modelling approaches
[31, 41]. Kamilars and Prenafeta-Boldú have conducted a review of studies utilizing
CNNs in the domain of agriculture that were published in the period from 2014 to
2017 [30]. They selected a total of 23 studies for closer inspection. They found that
CNNs were utilized mainly for classification tasks related to weed identification and

44



fruit counting. Yield prediction was also observed as a major task. The studies were
divided evenly between using pre-trained models (12 studies) and custom-developed
and trained architectures (11 studies).

In a study of CNN-based yield response modelling to crop management activi-
ties in the US, Barbosa et al. have developed four different CNN architectures to
predict corn yield using medium-resolution multi-source input data [2]. The input
data consisted of rates for nitrogen and seeds, elevation maps, soil electroconduc-
tivity and 3 m/px resolution commercial satellite data. The data used in the study
was not multi-temporal, meaning that each input represented a single point in time.
Three of the models were based on 2D convolutions, differing in how the input data
was introduced to the model and how the model features were combined to produce
the final output. The last of the models was a 3D CNN, which is discussed later in
section 3.3.5. In the study, the authors tested several traditional ML models and each
of the CNN architectures. The best performance was attained with a CNN extract-
ing spatial features from distinct spatial input channels. They reported that the best
performance was 0.70 root mean squared error (RMSE). The RMSE is a proportion
of the standard deviation of crop yields, translating to 1140 kilograms per hectare
(kg/ha) on average when unscaled.

Tedesco-Oliveira et al. have utilized several existing CNN-based architectures
to classify cotton bolls and predict cotton yields from high-resolution images taken
manually at hand-held heights [83]. One of the employed models was a two-stage
Faster R-CNN [59], which first proposes areas of interest and then identifies target
objects from the areas. They also employed a CNN-based Single Shot Multibox De-
tection (SSD)[53] algorithm designed for recognising multiple objects from images.
The last employed model was a lighter version of the SSD algorithm optimized for
mobile devices, MobileNetV2 [68]. The Faster R-CNN architecture performed the
best, having an average recall of 0.66 and average precision of 0.59. Using spatial
models as automatic boll counters, a linear regression model was trained to predict
yield from automatically acquired image data. The yield prediction model utilizing
the CNN’s outputs attained a mean absolute percentage error (MAPE) of 17.86%.

Yang et al. have developed a CNN architecture to separately utilize RGB and
vegetation indices derived from multi-spectral data for predicting rice grain yield
and ripening stages from high-resolution UAV-based images [98]. For the RGB data,
the CNN consisted of five distinct convolutional layers. The CNN using vegetation
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indices had three convolutional layers. Their approach to yield estimation was to
transform the regression problem into a classification problem by assigning a class
label to a distinct yield range. While they report fluctuations in performance, at-
tributing the cause to the variability in the input data, they report that their best
model attained 20.4% MAPE and 0.585 for the coefficient of determination (R2).

Kang et al. have evaluated several machine learning and deep learning algorithms
for maize yield prediction in the US with various data aggregated to county scale
[33]. They utilized a variety of low-resolution spatial data sources in addition to
governmental and institutional sources related to the environment. The number of
input variables was between 58 and 891 depending on the experimental variable selec-
tion scheme. When a CNN was utilized, they used it for tabular data, performing 1D
convolutions. With tabular data, the CNN achieved 10.1% MAPE, while the best
performing model, a gradient-boosted decision tree called XGBoost [7], achieved
an MAPE of 9.1%. Regarding the CNN’s performance, the authors acknowledge
that the architecture was designed to be used with spatial data while their data was
non-spatial, albeit containing data from spatial sources pre-aggregation.

3.3.2 Long short-term memory networks

The Long Short-Term Memory (LSTM) networks, originally introduced in [24],
have been widely utilized in sequence modelling tasks [70]. LSTMs belong to the
deep learning architecture family of recurrent neural networks (RNN). An LSTM
generally operates with vector-like inputs, which include tabular data and vector out-
puts from other models. There are two general concepts in the LSTM that help it
in learning temporal features from data. The first is the concept of memory, intro-
duced as the cell state. The other is the concept of gates, effectively trainable FC
layers, manipulating this cell state in response to new inputs from the data and past
outputs of the model. To handle the sequences of data, the model loops over the
sequences, altering its cell (C ) and hidden (H ) states in the process using a combina-
tion of learned parameters in the gates and non-linear activations when combining
the gate outputs. LSTMs can also be employed in bidirectional and stacked form.
Bidirectional LSTMs train an additional model in comparison to the unidirectional
LSTM. One LSTM reads the input from the start of the sequence to the end (t0 → tn),
while the other reads the input from the end to the start (tn → t0). The outputs of
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these two parallel models are then combined as a final sequence of temporal features
[71]. When LSTMs are stacked, the first LSTM operates on the input sequence and
subsequent LSTMs operate on sequences of feature vectors produced by preceding
models. Bidirectionality helps the model learn features from both sides of the input
sequences, while stacking helps in learning higher level temporal features [21].

Jiang et al. have developed a phenology-based LSTM for estimating corn yields in
the US at county scale [28]. Using phenological data derived from remote sensing,
crop information, meteorological and topographical sources, they aggregated tabu-
lar data to predict county-wise corn yields. The data was temporal, consisting of five
time steps corresponding to distinct maize growth stages during the growing season.
To predict the corn yields, they developed a stacked LSTM architecture with two
layers. They observed that, with longer sequences, the LSTM model achieved better
results in predicting the crop yield, rising from 0.45 R2 with a single year of observa-
tions to 0.76 R2 with ten years of observations. Inversely, the RMSE decreased from
1450 kg/ha to 870 kg/ha using one and ten years of observations, respectively. The
best results were achieved with multiple years of training data, using 10 preceding
years of data to predict the 11th year.

Kang et al. have also evaluated the effectivity of an LSTM in their assessment of
machine learning methods for maize yield prediction in the US [33]. The study is
outlined in subsection 3.3.1. With the sequential LSTM model, they report 9.1%
MAPE and approximately 15.0 bushels per acre (bu/ac) RMSE at best. As the data
of the study was processed to be tabular, the sequential model was, at best, on par
with the generally best performing model, the XGBoost. The authors, however,
note that the overall performance of the LSTM was only slightly better than that
attained by the CNN.

Lin et al. have utilized weekly aggregates of meteorological factors to predict crop
yield anomalies with an LSTM-based model [51]. Their LSTM architecture con-
sisted of three stacked LSTMs, followed by an attention mechanism. As the study
area, the US corn belt region, is vast, the authors divided the inputs into spatially
distinct regions. Corn yield estimates were generated separately for each region in
the final FC layers of the model. The LSTM-based model attained an RMSE of 820
kg/ha and an R2 score of 0.76. The authors also trained two traditional machine
learning models, a random forest and a lasso regression model. Their respective per-
formance metrics were 1050 kg/ha RMSE (0.60 R2) and 1140 kg/ha RMSE (0.53
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R2).
Schwalbert et al. have studied the use of LSTMs in satellite data based soybean

yield estimation in southern Brazil [72]. They utilized data from multiple sources,
including low-resolution MODIS satellites, weather data and soybean yield infor-
mation. Data was acquired for several years, from 2002 to 2016. The temporally
sequential data was arranged in tabular form, aggregated according to municipalities
by averaging. The time step between samples in a sequence was eight days with a
sequence start in mid-October. They trained three models in total: an LSTM and
two benchmark models: ordinary least squares (OLS) linear regression and random
forest. As input sequences were extended by shifting the sequence end from 16th Jan-
uary to 5th March, the LSTM outperformed both baseline models with the best per-
formance at 320 kg/ha RMSE. However, with the shortest input sequence lengths,
both of the baseline models exhibited better performance. With the shortest se-
quence, the OLS model attained 530 kg/ha RMSE and the random forest 570 kg/ha
RMSE, whereas the LSTM achieved 680 kg/ha RMSE. The observed soybean yields
ranged from 200 kg/ha to 4200 kg/ha.

3.3.3 Hybrid CNN-LSTM

Due to the spatial nature of remote sensing data closely related to the task of crop
yield estimation, LSTMs (and their variants) are often coupled with spatial feature
extraction CNNs. The hybrid CNN-LSTM is a composite model consisting of a spa-
tial feature extractor or transformer, i.e. a pre-trained CNN, and a temporal model,
the LSTM [66]. The ability to perform temporal modelling with spatial data is often
necessary with, for example, multi-temporal remote sensing data. The general idea
is to gain both the ability to utilize spatial data and perform sequential modelling
with LSTM networks. Instead of feeding the final outputs of a CNN to an FC layer
for regression or classification purposes, the CNN output is fed as an input to a se-
quential LSTM model. The final regression or classification result is produced from
the features outputted by the LSTM.

Khaki et al. have built and trained a hybrid CNN-LSTM model to predict corn
and soybean yields in the US corn belt area [36]. In their model, the spatial inputs,
namely soil and weather data at 1 km/px resolution, were first processed by CNNs
to extract the vectors of high-level spatial features. These features were then fed to
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the LSTM alongside management data and yield data from the previous year. They
used yearly data from 1980 to 2015 to train the models. The model attained yield pre-
diction average correlation coefficients of 87.3% and 86.2% for corn and soybean, re-
spectively. Compared to the benchmark models, the results were, on average, 17.4%
and 25.9% units higher for corn and soybean yield prediction, respectively. The
authors observe that the CNN-LSTM model is able to perform feature selection ef-
ficiently from a large feature space. They also observe that the model generalizes
well to unseen samples.

Yaramasu et al. have utilized a CNN-LSTM architecture to extract spatio-temporal
features from nationally generated crop type maps in the US [99]. The extracted fea-
tures were then fed to a decoder to reconstruct an estimate crop type map for the
upcoming year. The spatial feature extracting CNN of the spatio-temporal encoder
was a pre-trained VGG11 [76]. Their input data consisted of medium-resolution, 30
m/px, spatial crop type classification maps spanning the US continent. Using a year
as the time step, they trained the model to predict a crop map for a 512 × 512 px or
236 km2 area based on crop type changes in the preceding years. They achieved an
average overall accuracy of 77%.

Yue et al. have also developed spatio-temporal encoder-decoder architectures to
predict progressions of meteorological factors, such as daily precipitation [100]. Encoder-
decoder architecture first learns to compress the data and feature-wise interactions
to a high-level vector or matrix representation, and the decoder is then used to recre-
ate the desired target from this encoded output [90]. The encoder and decoder are
jointly trained to facilitate extraction of robust high-level features. Daily data was
utilized from a year to predict the progression of distinct meteorological variables
for the year following the input data. These predictions were then further utilized
to estimate maize growth stages. While the focus of their study was a convolutional
LSTM-based encoder-decoder architecture, they also trained a CNN-LSTM based
encoder-decoder for comparative purposes. Their input data consisted of tabular me-
teorological data, meaning the convolutional operations were 1D. The CNN-LSTM
encoder-decoder architecture was able to surpass the best performing convolutional
LSTM in daily cumulative precipitation prediction with an MAE of 3.33 mm (0.55
mm MAE difference).

Rustowicz et al. have built a multi-source CNN-LSTM architecture to classify
crop types in Ghana, South Sudan and Germany from satellite data [65]. Using
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high-resolution PlanetScope and medium-resolution Sentinel 1 and Sentinel 2 satel-
lite data, they built an architecture capable of utilizing time series of spatial data
from each satellite source. The model consisted of three CNN-LSTMs for each in-
put source. The outputs of these models were then concatenated to generate the final
model output, a crop type classification result. The authors also built and trained a
spatio-temporal 3D CNN model, discussed in Section 3.3.5. A random forest model
was trained as a baseline model. The CNN-LSTM performed the best for the ma-
jority of crop types in Germany and Ghana, attaining an overall accuracy of 95.8%
and 59.9%, respectively. For South Sudan, the baseline RF performed the best for
the majority of crops with an average accuracy of 88.7%, whereas the CNN- LSTM
model attained an accuracy of 82.6%.

Sun et al. have designed and trained a hybrid CNN-LSTM architecture to pre-
dict county-level soybean yields in the US [78]. The input data used was multi-year
and multi-source, consisting of data from the MODIS satellite system, weather in-
formation, crop yield statistics and county boundary information. The sequence of
yearly spatial inputs consisted of 34 time steps with an eight-day span between the
steps. The CNN extracts spatial features from each spatial input of the whole in-
put sequence. The sequence of spatial inputs is thus transformed into a sequence of
high-level feature vectors. The sequence of vectors is then the input for the LSTM. In
addition to using full sequences, the authors examined the model’s prediction perfor-
mance with shorter sequences from the beginning of the season. The CNN-LSTM
attained 0.78 R2 with a full sequence and 0.74 R2 using ten eight-day time steps from
the beginning of the season.

3.3.4 Convolutional LSTM

Convolutional LSTM [74] is a model combining the features of convolutional and
sequential models into a single architecture, using convolutional layers (convolution
with pooling etc.) as the LSTM’s gate functions. This makes it possible to feed the
spatial data directly to the sequential model. Akin to how convolutional networks
learn, the gates learn to utilize the convolutional kernels to provide the best set of
spatial features when building and modifying the cell state C . Thus, in contrast to
the CNN-LSTM, no pre-extraction of spatial features is required. While LSTM has
been predominantly utilized in agriculture-related sequential modelling tasks [31,
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41], convolutional recurrent architectures have also been employed with a gated re-
current unit (GRU) [9]. The general difference between LSTM and GRU is the
number of gates and, thus, trainable parameters. Convolutional layers are present in
both with their convolutional recurrent variants.

Yue et al. have studied maize growth stage prediction with encoder-decoder model
architectures and meteorological data, focusing on a convolutional LSTM-based model
[100]. The setting of the study is described in Section 3.3.3. The authors decided to
utilize 1D convolutions in the convolutional LSTM’s input gate functions to extract
features depicting the complex interactions within the meteorological data. The
authors reported that the convolutional LSTM encoder-decoder architecture per-
formed the best in the majority of meteorological factor estimation cases: 2.60 oC
MAE and 3.46 oC RMSE for average temperature, 3.88 oC MAE and 10.50 oC RMSE
for daily cumulative precipitation and 3.45 oC MAE and 4.17 oC RMSE for daily
sunshine duration. The convolutional LSTM achieved the closest average predicted-
to-real ratio of 0.91. The next best average ratio of 0.75 was attained by a gated
recurrent unit (GRU) based model.

Rußwurm and Körner have sought to utilize the temporal nature of spatial earth
observation satellite data in pixel-wise crop type multi-class classification by design-
ing bidirectional convolutional recurrent models [63]. The compared models uti-
lized either LSTM or GRU as the recurrent model. Using Sentinel 2 data interpo-
lated to 10 m/px, they gathered data from a 4300 km2 area in southern Germany,
subdividing it into smaller 15 km2 areas. Time was encoded to the data by introduc-
ing the information of the year and day-of-year of the satellite fly-over. The authors
observed that the performance of both models was so similar that they reported
only the performance of the GRU-based convolutional recurrent model. They re-
ported that the model attained an 89.6% average classification with data from 2016
and 2017. They conclude that their model is able to attain state-of-the-art accuracy
without common satellite data pre-processing, such as atmospheric correction or
cloud identification.

Russwurm and Körner have further investigated the robustness of a single-layer
convolutional LSTM to clouds in satellite time series data [64]. The data was from
the same area and overall similar to [63]. Training the model with similar data, they
performed ablation experiments with varying degrees of cloud coverage. They ob-
served that the convolutional LSTM is indifferent towards occasional cloud coverage.
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With images sorted according to their cloudiness from no clouds up to half-cloudy,
the model was in all cases capable of achieving an accuracy of between 90% and 93%.
The accuracy was determined with regards to crop type classification. The authors
conclude that clouds are effectively noise in temporal data and that the convolutional
LSTM is able to account for that.

Ienco et al. have developed a multi-source CNN and convolutional GRU based
model to classify land cover from multi-temporal Sentinel 1 and Sentinel 2 data [25].
Their model consisted of two identical architectures for the different satellite sources.
The architecture contained a CNN and a convolutional GRU, both producing a
high-level feature vector of set length. The vectors were concatenated and then fed to
a FC layer for classification. The satellite time series data was acquired from two dif-
ferent sites in the Reunion Islands and Burkina Faso. Using only the convolutional
GRU models, they attained an accuracy of 88.2% on pixel-wise land type classifica-
tion. Comparatively, using the CNN models only produced an accuracy of 87.7%.
The full model attained 89.9% accuracy.

Liu et al. have utilized a bidirectional convolutional LSTM with hyper-spectral
data to perform spectral-spatial land cover classification [52]. Using three distinct
satellite-based hyper-spectral image data sets, the authors utilized the sequential na-
ture of the convolutional LSTM for learning inter-spectral high-level spatial features
from the input data. They compared the model to several other architectures, includ-
ing CNN, LSTM, 3D CNN and CNN-LSTM. The best results on 16-class land cover
classification were achieved with bidirectional convolutional LSTM, 3D CNN and
CNN-LSTM, with respective average accuracies of 97.1%, 95.2% and 94.5 % over all
data sets.

3.3.5 Three-dimensional CNN

As initially reported by [86], 3D CNNs were shown to perform remarkably well in
modelling tasks involving spatio-temporal data. As CNNs, the 3D CNNs utilize all
the same architectural features as the more commonly used convolutional models.
What is different is their use of convolution in the depth dimension, searching for
robust features across sequences of input data in addition to spatial features extracted
from the individual images. The sequential nature of input data is not limited to time,
but can also be, for example, hyper-spectral multi-layer point-in-time data with the
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aim of finding high-level inter-channel features [50].
Barbosa et al. have developed and trained multiple models to predict crop yield

from spatially formatted crop management data [2]. The outline of the study is
elaborated in Section 3.3.1. One of the models was based on 3D CNN architecture,
consisting of a single 3D convolutional layer coupled with two FC layers. They
utilized the 3D CNN to extract inter-channel high-level features from the inputs.
The 3D CNN model was observed to perform on par with the majority of other
CNN-based solutions, attaining 0.73 RMSE, which translates to 1190 kg/ha when
unscaled.

Terliksiz and Altylar have studied the use of a 3D CNN architecture to predict
soybean yields from spatio-temporal data at county scale in the US [84]. The in-
put data was acquired annually from 2003 to 2016 from the spatially low-resolution
MODIS satellites at eight-day intervals between each data sample. A single sequence
consisted of 24 subframes cropped from the initial, larger area. The model imple-
mented by the authors consists of two initial 2D CNN layers, followed by six 3D
convolutions and two FC layers for single value prediction. Their model attained an
average 4.42 bu/ac RMSE with various land cover ratio ablations in the input frames.
Compared to other similar studies, their result is, at minimum, 0.90 bu/ac RMSE
lower. The authors discuss, however, that the use of within-county smaller frames
can be misleading when predicting a county-wide average yield.

In their study of crop type classification in Germany, South Sudan and Ghana,
Rustowicz et al. have also built and trained a 3D CNN encoder-decoder architec-
ture to classify pixels in sequences of frames extracted from satellite data [65]. Their
study is described in Section 3.3.3. The 3D CNN model performed close to the
CNN-LSTM model, attaining 95.2%, 60.9% and 85.3% overall accuracies with the
Germany, Ghana and South Sudan data sets, respectively. While CNN-LSTM per-
formed better with Germany by 0.6% units, the 3D CNN had better overall accu-
racy with Ghana and South Sudan by 1.0% units and 2.7% units, respectively. With
ablation studies, the best setting with 3D CNN outperformed the best CNN-LSTM
setting by 1.3% units with the South Sudan data set in terms of accuracy, while the
CNN-LSTM attained a 2.2% unit higher accuracy with the Ghana data set.

Ji et al. have developed a 3D CNN model to perform crop type classification with
spatio-temporal data [27]. They used data from 4 m/px resolution Gaofen 1 and 15
m/px Gaofen 2 satellite systems, acquired for several months from 2014 to 2016. The
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model consisted of three 3D convolution layers followed by two FC layers. The 3D
CNN outperformed other methods in terms of pixel-wise classification, including
a CNN and several traditional machine learning methods. The average overall ac-
curacy of the model was 94.9%. The two closest contender models, a CNN and
a support vector machine (SVM), attained average overall accuracies of 91.8% and
91.9%, respectively.

Li, Zhang and Shen have studied the use of 3D CNN models in spectral-spatial
land cover classification with hyper-spectral data [50]. The authors used three hyper-
spectral data sets from Italy, Botswana and India. A two-layer 3D CNN architecture
was built and trained to perform a classification of remotely sensed scenes pixel-wise.
The model was compared against models developed in other studies and similar set-
tings, including a stacked auto-encoder, a deep belief network and a CNN. The 3D
CNN attained an overall accuracy of 99.3%. With notable differences (>2 % units) in
prediction accuracies only observed with the Indian data set, the authors noticed that
3D CNN had the lowest misclassification ratio out of the compared models. While
spatial models were observed to perform the best overall, the authors attributed the
best performance of the 3D CNN to its ability to learn salient inter-spectral features
from the input data.

3.4 Conclusions

The use of deep learning techniques in agriculture and agriculture-related remote
sensing applications has notably increased recently. Spatial, temporal and spatio-
temporal deep learning architectures have been utilized in a variety of tasks. Of
these modelling tasks the within-season intra-field crop yield prediction is of greatest
interest regarding this dissertation.

When successful, crop yield prediction performed in a timely manner enables
the farmers to initiate data-based corrective actions on their fields. This is why de-
ducing actionable items for each field a farmer manages requires information about
the field plots at the intra-field scale. Deep learning architectures, high-resolution
remote sensing data and crop yield prediction are common and recurring themes in
current agriculture-related machine learning studies. The novelty of the studies se-
lected for this dissertation is in how these themes are combined to achieve spatially
and temporally context aware within-season intra-field crop yield prediction, which
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has not yet been studied extensively.
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4 CROP YIELD PREDICTION WITH DEEP

LEARNING

Having established the solid background of crop yield prediction with deep learning
models, it is time to review the contributions of the publications selected for this
dissertation. The objective of this dissertation is to probe and answer the research
questions outlined in Chapter 1. RQ1 and RQ2 provide a suitable division for the
selected publications. The feasibility of spatial and spatio-temporal deep learning
models for in-season yield prediction with high-resolution remote sensing data is ex-
plicitly studied in Publications [I] and [IV]. In both, the models are designed, trained
and evaluated from scratch to perform intra-field crop yield prediction with UAV-
based data, within the growing season. Furthermore, [II] uses the model of [I] in a
case study to frame the use of such models in a farming DSS. Two of the remaining
publications, [III] and [V], focus on data sources. In [V], the effects of additional data
sources were evaluated by comparing crop yield estimation performance with a static
model architecture from [I]. Publication [III], while taking a different approach in
terms of the modelling technique used, focuses on the reliability of satellite-based
remote sensing data.

This chapter focuses on the data, methods and results of the selected publications,
leaving discussion of the results and methods to Chapter 5. The chapter consists of
two main sections and is constructed as follows. In the first section, the develop-
ments and evaluations of intra-field crop yield prediction models are described. The
section begins by looking at CNN-based yield prediction with distinct point-in-time
frames as presented in [I]. A frame is a sub-area extracted from larger images. Next,
the evaluation of the usability of the best model of [I] in the farming DSS context is
presented in [II]. Lastly, the development and evaluation of multiple spatio-temporal
deep learning models in [IV] to perform crop yield prediction using UAV-based data
are described. The second section focuses on data evaluation. The general outline
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of [V] is first described, where the effects of varying the input data source config-
urations on crop yield prediction performance were studied. The process of using
machine learning to evaluate satellite data reliability with regards to cloud canopy
[III] is described last.

4.1 Intra-field crop yield prediction

4.1.1 Single input to single target

In working towards an effective in-season crop yield predictor model for a northern
climate, the objective of [I] was to develop a CNN-based deep learning framework
using UAV-acquired multi-spectral data. RGB and NDVI images were fed as input
data. The best performing CNN configuration in terms of architectural composi-
tion and hyperparameters (parameters defining the training setup) was iteratively
developed via a tuning process.

The nine crop fields selected for this study are located in the vicinity of the city
of Pori (61◦29’6.5”N, 21◦47’50.7”E). The total area of the fields was approximately
90 ha. The main crops grown in the fields were wheat and malting barley; however,
the model was trained over the fields without making a distinction between the crop
type. Details of the fields, crops, imaging dates and corresponding growth phases
are listed in Table 4.1. Thermal times for each crop variety were taken from [44].
Sowing dates and imaging dates were used to calculate the growth phase as a fraction
of the total thermal time for the crop variety. Images with dates prior to the 1st of
July formed the early data set and the remaining images formed the late data set.

Multi-spectral data was acquired from these fields during the growing season of
2017. The data was collected with a single Airinov Solo 3DR (Parrot Drone SAS,
Paris, France) UAV equipped with an NIR-capable SEQUIOA (Parrot Drone SAS,
Paris, France) sensor. The images of individual spectral bands were stitched together
to form complete orthogonal RGB and NDVI rasters of different fields using Pix4D
software.

The harvest yield data was acquired during September 2017 using two distinct
setups attached to the harvesters: Trimble (Sunnyvale, California, USA) CFX 750
and John Deere (Moline, Illinois, USA) Greenstar 1. The data was initially in vector
data point format. The points were first filtered according to [85] to preserve only
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Table 4.1 Details of crops and their varieties sown in each of the nine fields in 2017 (reproduced from
[I]).

Field
#

Size
(ha)

Mean yield
(kg/ha)

Crop
(Variety)

Thermal
time (◦Cd)

Sowing
date

Imaging
date

Growth
phase

1 5.96 5098 Wheat
(Zebra) 1052 10 May 17 Aug 83%

2 10.26 6054 Barley
(Trekker) 979.7 16 May

8 Jun 15 %
27 Jul 64%

3 2.97 8971 Barley
(Trekker) 979.7 17 May

8 Jun 15 %
27 Jul 64%

4 13.05 4673 Barley
(RGT Planet) 982.2 15 May 6 Jul 42%

5 4.66 6482 Barley
(Propino) 981.4 15 May 15 Jun 22%

6 7.29 6884 Barley
(Propino) 981.4 15 May 15 Jun 22 %

7 10.92 7568 Barley
(Harbinger) 976.3 24 May 6 Jul 36%

8 15.28 7585 Barley
(Trekker) 979.7 18 May

1 Jun 10%
13 Jul 49%

9 18.86 6991 Wheat
(KWS Solanus) 1065 13 May

15 Jun 21%
6 Jul 72%

points corresponding to a harvester speed between 2 and 7 km/h and a yield between
1500 and 15000 kg/ha. Then the field-wise data was rasterized by interpolation using
an exponential point-wise inverse distance algorithm.

The field-wise image data was then processed using a sliding window to extract
geolocationally matched pairs of input RGB and NDVI image frames and frame-wise
averaged crop yields as targets of predefined size from all the fields. The step chosen
for the applied sliding window was 10 m, according to the resolution of Sentinel
2 satellite data and taking into account the possibility of using satellite data as an
additional input to the network in future studies. In other words, frames having sides
longer than 10 m share data with adjacent frames due to overlapping. The resolution
of the UAV data was 0.3125 m/px or 32 px per 10 m. Square image frames with side
lengths of 10 m, 20 m and 40 m were considered. The number of extracted frames
was approximately 15200 for each frame dimension. All nine fields were first split
into overlapping data frames of 10 m, 20 m and 40 m. A dedicated holdout test data
set was then built from 15% of the shuffled data frames; this data was never presented
to the model during training. The remaining 85% of the data frames were then used
for training the models with k-fold cross validation. After the training phase of each
model was completed, the test errors were calculated using the holdout test data set
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to validate the performance of the trained model. This process is illustrated in Figure
4.1.

Figure 4.1 The process of data preparation prior to and during training (reproduced from [I]).

The basic architecture of the implemented CNN model closely follows the one
reported in [43]. The general topology of the network is depicted in Figure 4.2. The
model was implemented using the PyTorch framework [57]. The model’s inputs can
be single-band or multi-band images (B) with varying dimensions (D). The network
has at least two convolutional layers accompanied by two fully connected layers. The
depth of the network is controlled by the number of intermediary convolutional
layers. The last convolutional layer has 128 kernels, whereas the intermediary layers
have 64 kernels. Max pooling is applied only in the first and last convolutional layers
so that the size of the data representation stays consistent when the network depth is
varied. The model uses non-overlapping pooling windows with a pooling window
size of five and a pooling stride matching the pooling window size. Pooling is applied
only in the first and last convolutional layers. Rectified linear units (ReLU) [22] are
used for layer-wise non-linear activation functions. This way the network is also
scalable with respect to the number of layers. Two FC layers with 1024 neurons per
layer are used to produce the final output from the CNN outputs.

Finding the optimal configuration of any deep learning network is an iterative
process, where the model’s parameters are initialized and tuned multiple times. The
best training algorithm was evaluated among three options: Stochastic Gradient De-
scent with momentum (SGD momentum) [6], RMSprop [23] and Adadelta [102] as
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Figure 4.2 The overall topology of the implemented CNN (reproduced from [I]).

suggested in [19] and presented in [34]. Of these, Adadelta performed the best. Op-
timizer parameters, such as the learning rate, coefficient of using past gradients dur-
ing backpropagation and weight decay, were tuned using random search [4]. Other
parameters were tuned by testing various values from predefined selections. These
parameters were

• input sample batch size (from 25 to 210)

• the number of intermediate convolutional layers (from 4 to 12)

• input data type (NDVI or RGB)

• frame side length (10m 20m or 40m)

• early stopping patience (from 10 to 50).

The lowest test set error of 484 kg/ha MAE and 8.8% MAPE was achieved using
RGB data from the beginning of the growing season, i.e. pre-June images. The R2

score was 0.857. The best model consisted of six convolutional layers followed by
two fully connected layers, using weight decay regularization with a coefficient of
10−3 and early stopping with a patience of 50. The optimizer was also tuned, with
the optimal values for learning rate and the coefficient adjusting the effect of past
iterations’ error corrections being 8× 10−3 and 0.58, respectively. The results show
that the lowest test errors were achieved with the largest frame side length of 40 m.
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The best performing model was also utilized in a case study of six fields containing
mostly barley, together accounting for 54.2 ha of land area and located near the city
of Pori [II]. Imaging and yield acquisition methods were identical to [I], with some
overlaps in the field-wise data. The crop yield prediction results indicate a consistent
pattern of overestimating low yields and underestimating high yields. This is shown
in Figure 4.3, where all values are absolute and in kg/ha. Over the six fields, the
model attained an R2 of 0.798, on average. Field-wise MAPE boxplots are depicted
in Figure 4.4.

Figure 4.3 Visualization of the true and predicted yield of a field (reproduced from [II]). Images of true
and predicted yields in the top row share a similar scale. The bottom left image is scaled to
predicted values only. The bottom right image depicts the error between true and predicted
yield. Units are expressed in kg/ha.

The model was also designed to be utilized as an AI engine in an Oskari-based
(www.oskari.org, MIT & EUPL licensed) geospatial data mapping and farming de-
cision support system. Through the web portal, farmers can access their personal,
authenticated accounts, upload data for visualization and call on AI-based analytical
tools for decision support.
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Figure 4.4 Boxplots of percentage error between true yield and predicted yield for each field (reproduced
from [II]).

4.1.2 Sequence of inputs to single target

In [IV] the effect of time on intra-field yield prediction was examined, as an addi-
tional feature. In particular, the focus was on the capabilities of deep learning time
series models utilizing UAV remote sensing time series data as their inputs. The
objectives were two-fold: to see if the performance of the point-in-time model of
[I] could be surpassed using spatio-temporal deep learning model architectures and
to see which spatio-temporal architecture would perform better in the same task.
The usability of spatio-temporal models was evaluated in two settings, end-of-season
(full sequence) and in-season (limited sequence) prediction. Three model architec-
tures were designed, trained and evaluated: a CNN-LSTM [66], a convolutional
LSTM [74] and a 3D CNN [86]. These models utilize the properties of CNNs
and LSTM networks to perform spatio-temporal modelling. The main contribu-
tion of the study was to perform time series based intra-field yield prediction with
multi-temporal data collected during the growing season using UAVs.

Nine crop fields were included in the study, totalling approximately 85 ha and
having wheat, barley and oats as the crop varieties. The field-wise data was acquired
during 2018 in the proximity of Pori, Finland (61◦29’6.5”N, 21◦47’50.7”E). Specific
information about the fields is given in Table 4.2. The acquisition of input and target
data was similar to [I].

Images of the fields were acquired with a SEQUIOA (Parrot Drone SAS, Paris,
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Table 4.2 The fields selected for the multi-temporal study in the proximity of Pori, Finland (reproduced
from [IV]).

Field
#

Size
(ha)

Mean yield
(kg/ha)

Crop
(Variety)

Thermal
time (◦Cd)

Sowing
date

1 11.11 4349.1 Wheat
(Mistral) 1290.3 13 May

Week 19

2 7.59 5157.6 Wheat
(Mistral) 1316.8 14 May

Week 20

3 11.77 5534.3 Barley
(Zebra) 1179.9 12 May

Week 19

4 11.08 3727.5 Barley
(Zebra) 1181.3 11 May

Week 19

5 7.88 4166.9 Barley
(RGT Planet) 1127.6 16 May

Week 20

6 13.05 4227.9 Barley
(RGT Planet) 1117.1 19 May

Week 20

7 7.61 6668.5 Oats
(Ringsaker) 1223.4 17 May

Week 20

8 7.77 5788.2 Barley
(Harbringer) 1136.1 21 May

Week 21

9 7.24 6166.0 Oats
(Ringsaker) 1216.4 18 May

Week 20

France) multi-spectral camera mounted on an Airinov Solo 3DR (Parrot Drone SAS,
Paris, France) UAV on a weekly basis for 15 consecutive weeks. To encode the pass-
ing of time for the temporal models, weather data was acquired from the open inter-
face provided by the Finnish Meteorological Institute for the Pori area. As a com-
mon way to express crop growth phase, the cumulative temperature was utilized as
the temporal feature in the input data. Temporally varying but spatially constant cu-
mulative temperature was added as an additional layer in conjunction with the RGB
layers to make sure that the data contained the necessary information for temporal
feature learning. The target data and crop yields were acquired during the harvesting
of each field. The harvesters were equipped with either a Trimble Navigation (Sun-
nyvale, California, USA) CFX 750 or John Deere (Moline, Illinois, USA) Greenstar
1 yield mapping sensor system, which produces a cloud of geolocated points with
multivariate information about the harvest for each point in vector format.

The fields were split into smaller overlapping frames of 40 × 40 m in size with a
lateral and vertical step of 10 m. Sequences of frames of fixed width and height were
extracted from sequences of field plot images and corresponding weather data as the
input data. The input frames were then geolocationally paired with the correspond-
ing yield data to form input-target pairs. A total of 2586 sequences, 15 geolocation-
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ally matching frame rasters per sequence, were extracted from the data. Lastly, the
data was shuffled and split into training and test sets in a 70%/30% ratio, respectively.
The general process of generating the frames is depicted in Figure 4.5.

Figure 4.5 Input frame sequence and target average yield extraction process (reproduced from [IV]).

All of the models were trained using a random search procedure [4]. For the
CNN-LSTM, the CNN of the model was first trained separately with different frames,
i.e. point-in-time data. Training the model from scratch was required due to changes
in the input channel count. It was trained according to the best results of [I], using
Adadelta [102] as the optimizer. For the spatio-temporal models, Adam [39] was
used as the optimizing algorithm for each model architecture similarly to [65], [99]
and [52]. The spatio-temporal models were trained with frame sequences. A total
of 950 models were trained, with 300 for each spatio-temporal model and 50 for the
CNN of the CNN-LSTM.

In the first phase the models were trained to perform end-of-season predictions
with full length frame sequences. The trained models were evaluated with a hold-out
test set and the results are given in Table 4.3. The number of trainable parameters
indicate the model complexity and the best values are shown in bold. The best per-
formance was achieved with the 3D CNN architecture.

In-season prediction performance was evaluated with the best performing 3D
CNN model configuration and using data from an actionable time frame. Earlier
growing season (pre-July) was selected as the time frame for UAV image acquisition,
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Table 4.3 The end-of-season prediction performance metrics of the best spatio-temporal models (repro-
duced from [IV]).

Model
Test RMSE
(kg/ha)

Test MAE
(kg/ha)

Test MAPE
(%)

Test R2

-
Trainable
parameters

Pretrained CNN 692.8 472.7 10.95 0.780 2.72×106

CNN-LSTM 456.1 329.5 7.97 0.905 2.94×106

ConvLSTM 1190.3 926.9 22.47 0.349 9.03×105

3D CNN 289.5 219.9 5.51 0.962 7.48×106

as per results of [I]. Multiple input data configuration was tested, forming varying
sequences of three to five frames from the five first weeks of imaging (weeks 21 to
25 of 2018). Overall, the best performing in-season sequence configuration in terms
of MAE was the four-week-long sequence taken from the beginning of the season
(weeks 21 to 24) with 292.8 kg/ha MAE, 7.17% MAPE and 0.929 R2. The Visu-
alized prediction results are illustrated in Figure 4.6 with a 10-metre step between
predicted points.

Figure 4.6 Frame-based 3D CNN model performances against true yield data (reproduced from [IV]).

4.2 Remote sensing data evaluation

4.2.1 Additional input sources

In [V] the effects of additional field-related spatial or spatial-like data on the intra-
field crop yield prediction capabilities were studied. The model architecture was
taken from [I] and a baseline was trained with RGB data from the earlier half of
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the growing season of 2018 (weeks 21 to 26). The objective of the study was to assess
crop yield prediction capabilities with the best CNN model composition from [I] by
varying the input data configurations with additional data. Additional data sources
included data from the following sources: local weather stations, soil sampling, soil
sensors and the Sentinel 2 satellite system. Disregarding the changing number of
input channels, the architectural and optimizer-related hyperparameters were not
changed so as to better isolate the effects of different input configurations on the
yield estimation performance.

Four crop fields were selected for data acquisition in the vicinity of Pori, Finland
(61◦29’6.5”N, 21◦47’50.7”E) for the growing season of 2018. The field information
is provided in Table 4.4. The multi-source input data for the fields consists of UAV-
based RGB images, multi-spectral Sentinel 2 [12] satellite data, sparsely collected and
analysed soil samples, machine-collected soil information, topography information
and local weather station data.

Table 4.4 The fields selected for multi-source study in the proximity of Pori, Finland (reproduced from
[V]).

Field
#

Size
(ha)

Mean yield
(kg/ha)

Crop
(Variety)

Thermal
time (◦Cd)

Sowing
date

1 7.59 5157.6 Wheat
(Mistral) 1316.8 14 May

Week 20

2 11.77 5534.3 Barley
(Zebra) 1179.9 12 May

Week 20

3 7.88 4166.9 Barley
(RGT Planet) 1127.6 16 May

Week 20

4 7.24 6166.0 Oats
(Ringsaker) 1216.4 18 May

Week 20

General information about the original data sources is given in Table 4.5. UAV
data was acquired with weekly overflights of each field using a SEQUIOA (Parrot
Drone SAS, Paris, France) multispectral camera mounted on a Airinov Solo 3DR
(Parrot Drone SAS, Paris, France) UAV. The Sentinel 2 satellite data for the fields was
acquired from the Copernicus Open Access Hub (European Space Agency, Paris,
France), date-matched with the UAV images. Soil samples were collected manually
during November 2018 from the fields in 50 m steps by ProAgria, an agronomic
counselling institution, and sent to a Eurofins (Eurofins Viljavuuspalvelu, Mikkeli,
Finland) laboratory for further analysis. An MSP3 soil scanner (Veris Technologies,
Salina, Kansas, USA) was used to map the fields at depths of 0-30 cm and 30-90 cm.
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The measurements were performed during April and May of 2019. Lidar-based topo-
graphical information was acquired from the open-access data portal of the National
Land Survey of Finland. Weather data was collected by two separately located Van-
tage Pro2 (Davis Instruments, Hayward, California, USA) weather stations. Yield
data was acquired during the harvest of 2018 with yield mapping sensor devices at-
tached to the harvesters, either with a CFX 750 (Trimble Navigation, Sunnyvale,
California, USA) or Greenstar 1 (John Deere, Molinde, Illinois, USA).

Table 4.5 General information of data sources and their original formats (reproduced from [V]).

Source Type Resolution/Step Multitemporal Channels

UAV Raster 0.3125 m/px Yes 3
Sentinel-2 Raster [10,20,60]m/px Yes 19
Soil samples Vector 50 m No 8
Veris MSP3 Vector 20 m No 6
Topography Vector 2 m No 1
Weather Tabular - Yes 2
Yield Vector Varying No 1

All inputs were harmonized to the spatial resolution of the RGB data, 0.3125 m/px,
by interpolating coarser data sources with GDAL utilities program gdal_grid with
the invdist:power=3:smoothing=20 interpolation algorithm. After that, overlap-
ping frames were extracted from the data for each week, resulting in a total of 16375
frames. As the number of unique fields was low, it was necessary to maximize the
sample variability seen by the model during training. The data was divided into dis-
tinct training, validation and test sets according to the UAV image acquisition week
and shuffled to eliminate spatial autocorrelation in subsequent samples due to over-
lapping frame extraction.

The last step of data processing was to build the data sets for different data source
configurations. Four different configurations were considered:

• RGB Only, which uses UAV RGB data only

• No S2, which uses UAV, soil, Veris MSP3, topography and weather data

• S2 Raw, which adds Sentinel 2 raw wavelength band data to No S2

• S2 Full, which adds calculated Sentinel 2 Level-2A product layers to S2 Raw.

Ten models were trained for each configuration to account for the random ini-
tialization of the models inner parameters (weights) and the best models for each
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configuration were considered. The performance with a larger number of fields us-
ing UAV RGB data was extensively studied in [I] and [IV]. Thus, training a model
with only UAV RGB data provided a studied baseline to which models trained with
additional data could be compared. The baseline model using UAV RGB data only
attained 1055.7 kg/ha test RMSE, 18.2% test MAPE and 0.343 test R2. The best
performing data configuration was S2 Full with 364.1 kg/ha test RMSE, 5.18% test
MAPE and 0.922 test R2 using all 39 layers of input data for each extracted frame.
Compared to the baseline RGB Only model, the S2 Full attained 65.6% lower RMSE,
67.3% lower MAE, 71.5% better MAPE and 0.579 higher R2 with the test set. Gener-
ally every model with multi-source inputs performed better than the baseline model.
This is shown in Table 4.6.

Table 4.6 The relative performance of the models trained with distinct multi-source input data configura-
tions to the baseline RGB Only model (reproduced from [V]).

Data
Setting

Relative change from RGB Only
Test RMSE Test MAE Test MAPE Test R2

No S2 -15.5% -17.2% -18.7% +0.188
S2 Raw -56.3% -59.4% -61.9% +0.532
S2 Full -65.6% -67.3% -71.5% +0.579

4.2.2 Satellite data reliability

Data from the Sentinel 2 satellites is intensively used for various applications such as
land use and vegetation mapping or crop monitoring. Depending on climate condi-
tions in the region of interest, one of the main obstacles in using the data for practical
monitoring purposes is cloud coverage. Currently, the cloud mask of the Sentinel
data is available in the form of the Level 1C product containing vector layers of
dense and cirrus clouds. Also, the percentage of cloudy pixels (dense and cirrus) in
the mask is provided. The Level 2A product further processes the Level 1C data to
obtain the Scene Classification layer with cloud and cirrus probability values at 60
m spatial resolution. According to Coluzzi et al. [10], caution has to be taken when
using the provided cloud masks and improved cloud detection algorithms would be
welcome.

Therefore, a random forest classifier was trained to assess cloud cover in Sentinel
2 data in [III], using data acquired from crop fields by UAVs as the ground truth for
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cloudless data. For cloudless multi-spectral ground truth data, ten crop fields were
selected for imaging during 2018 and 2019 in the vicinity of Pori, Finland (61◦29’N,
21◦48’E). The fields were imaged approximately weekly with two different drones in
both years, using a 3DR Solo (Parrot Drone SAS, Paris, France) for 2018 and a Disco-
Pro AG (Parrot Drone SAS, Paris, France) for 2019. The drones were equipped with
similar SEQUIOA (Parrot Drone SAS, Paris, France) multi-spectral cameras. Half of
the fields were growing wheat (Zebra/Mistral), three barley (Harbringer/RGT Planet)
and the two remaining oats (Ringsaker). The total area of the selected fields was
approximately 93 ha. The drone images were downsampled to match the highest
resolution available in Sentinel 2 images, 10 m/px. In total, the complete data set
consisted of 288 images of distinct crop field images.

However, comparing absolute values across bands for two different sensors and
imaging platforms proved to be difficult, as the data would have required scaling to
an unknown global maximum for Sentinel 2. Thus, using the NDVI values calcu-
lated from both data sources (UAV and Sentinel 2) was deemed appropriate because
the index provided normalized and thus comparable data between different imaging
systems.

To facilitate data-based modelling in a supervised setting, target values are re-
quired. Due to the UAV flight altitude of 150 metres, Sentinel 2 data can be regarded
as cloudless when the NDVI values for a field are as similar to the UAV-based values
as possible. Thus, the task of classification is that of classifying Sentinel 2 data as ei-
ther similar or dissimilar to the UAV data. The similarity for an area corresponding
to a single pixel is determined by

s i m(s ,d ) =

⎧

⎨

⎩

1, |s − d | ≤ t h r e s hol d

0, otherwise
(4.1)

where s and d are spatially and temporally aligned NDVI pixels for a field from the
satellite and drone sources, respectively. Similarity indicates that the Sentinel 2 data
is cloudless, while dissimilarity indicates cloudiness. The threshold had to be deter-
mined via empirical analysis. The task of determining the threshold for labelling is a
matter of balancing between (1) capturing as many similarities as possible, while (2)
still excluding as many dissimilarities as possible. Using Students t -test, a total of 15
statistically similar ( p = 0.01) week-aligned NVDI image pairs were found. Using
similar images, the threshold of similarity was empirically determined by comparing
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the ratio of pixels deemed similar produced by various thresholds with Equation 4.1.
The threshold of 0.075 absolute difference in NDVI was selected. A single image pair
with the calculated similarity map is shown in Fig. 4.7. The first two figures depict
the NDVI maps from corresponding sources. The third figure shows the absolute
difference between the aligned Sentinel 2 and drone NDVI values. The fourth figure
shows the thresholded absolute difference, indicating areas where the NDVI images
are sufficiently similar.

Figure 4.7 A visualization of a single week-aligned Sentinel 2 and drone NDVI image pair with the abso-
lute difference and the similarity map (reproduced from [III]).

Table 4.7 The confusion matrix of similarity label predictions (reproduced from [III]).

Pred/True 0 1

0
TP

23237
FP

2580

1
FN
1807

TN
36037

Table 4.8 Similarity estimates with hold-out test data (reproduced from [III]).

y = 0 y = 1
Mean Std Median Mean Std Median

Model 0.07 0.25 0.00 0.93 0.26 1.00
CLDPRBSIM 0.45 0.45 0.26 0.97 0.14 1.00
SCLSIM 0.28 0.45 0.00 0.95 0.22 1.00

Samples 38617 25044

The thresholded binary value maps constitute the target data for pixel-wise bi-
nary classification, while Sentinel 2 data was used as the input. A total of 381972
input-target samples (pixels) were extracted from the source data. The samples were
then shuffled and split into training and test data sets with 190986 and 63661 samples,
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respectively. Due to the use of data in a tabular manner, where an input pixel con-
tains several values and spatial dependencies are not modelled, a decision tree based
random forest was deemed an appropriate model to use. The confusion matrix of
model predictions against true labels with test data is shown in Table 4.7.

The comparison of sample-wise similarity estimations between the trained model
and Sentinel 2 data products is given in Table 4.8. The estimates are given both for
when the true target value was 0 (satellite differed from drone) and when it was 1
(satellite similar to drone). For cloudless Sentinel 2 data, the model performed close
to the existing cloudiness estimates provided with the data products. For cloudy
data, the model performed significantly better.
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5 CONCLUSIONS AND DISCUSSION

Information relevant for decision making in agriculture can be extracted from het-
erogeneous remote sensing, environmental and intervention-derived data by means
of machine learning. With advancements in computational technologies, the devel-
opment and training of non-linear multilayer algorithms has become feasible. These
methods are commonly referred to as deep learning. Probably the most widely used
deep learning structure is that of CNNs, proved to be superior in a variety of image
analysis tasks. Another common structure is the RNN, which is used for modelling
sequences of data. A common property of deep learning structures is that training
of the models is performed based on data, i.e., no predefined and pre-calculated fea-
ture vector is needed. This, however, implies that extensive data sets are required
for training the models and the operation principles of the models are usually not
revealed. Figure 5.1 depicts some application areas of deep learning in agriculture.

Figure 5.1 Application areas of DL in agriculture.

Remote sensing data can be acquired from satellites such as ESA’s Sentinel 2, for
example. The problem with satellite data is that, if there is cloud cover during the
overflight of the satellite, no useful data is obtained. The spatial resolution of Sen-
tinel 2 imagery is at best 10 m, which is enough for many applications but too low
to allow the use of texture-based information in the images. Using UAVs for data ac-
quisition offers better spatial resolution, as the data acquisition time can be selected

73



by the user and the data can also be acquired in cloudy conditions. Spectral wave-
lengths can be selected by using an appropriate camera; UAV-mountable RGB-NIR
cameras are available at an affordable price. The drawback is that the UAV has to be
operated locally and managing the data and extracting relevant information requires
highly specialized skills.

5.1 Deep learning and intra-field yield prediction

The studies described in Publications [I], [II] and [IV] sought to predict yield at the
intra-field scale using UAV-based images in order to estimate yield variance within
the field. This is in contrast to studies that utilize satellite-based, medium- to low-
resolution data and make predictions for for considerably larger areas at lower spatial
resolution. Models at intra-field scale offer the individual farmer the possibility of in-
season crop monitoring, which enables decision support systems for interventions
necessary to achieve higher yields.

Publication [I] is an important first step towards establishing a combined model
for wheat and barley yield prediction in the Finnish continental subarctic climate.
The long summer growing days in this region present a unique profile of temperature
and photoperiod, justifying a region-specific deep learning model for these crops. By
collecting high-resolution, namely 0.31 × 0.31 m/px, data using commercial off-the-
shelf UAV and camera packages, attention was focused on a spatial scale enabling
prediction of intra-field yield variation within the context of individual farm crop
monitoring. Considering that the modelling of the yield is based only on RGB im-
ages, the resulting prediction error of 484 kg/ha test MAE, 8.8% test MAPE and
0.857 R2-score is promising. The results of [I] indicate that the CNN models are
capable of reasonable accurate yield estimates based on RGB images. This suggests
that multiple spectral bands increase the information content in comparison to the
condensed NDVI raster. From the results of Publication [V] it can be suggested that
complementing the RGB data with an NIR channel might further enhance the pre-
diction capabilities of the CNN model. Additionally, NIR-based vegetation indices
could have improved modelling performance even more, as discussed in [104]. Intra-
field crop yield prediction based on multi-spectral UAV data based is, thus, a subject
for future study.

As further examined in Publication [II], the case study with the CNN from [I]
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revealed some limitations of the model in yield prediction. The model underesti-
mated/overestimated the yield in the regions of high/low yield values, respectively.
Another limitation is related to yield data pre-processing. In some cases the polygons
of yield data overlap, causing errors in yield density maps.

In Publication [IV] the feasibility of using spatio-temporal deep learning archi-
tectures in modelling crop yield at the intra-field scale was evaluated using high-
resolution UAV data. With full sequence modelling, a 3D-CNN based architecture
performed the best with 218.9 kg/ha test MAE, 5.51% test MAPE and a 0.962 test
R2 score. Compared to Publication [I] where just a point-in-time single frame pre-
dictor was used with best performance metrics being 484.3 kg/ha MAE and 8.8%
MAPE, the modelling performance was improved by 265.4 kg/ha MAE (54.8% im-
provement) and 3.29% MAPE (37.4% improvement) with time series inputs. With
a shorter sequence the 3D-CNN model attained 292.8 kg/ha test MAE, 7.17% test
MAPE and 0.929 test R2 score. As weather information was utilized in Publication
[IV] at city scale, the accuracy of the growth phase could be further improved by
using specifically located weather stations. Weather stations located in the approx-
imate vicinity of the fields under scrutiny could provide better and more accurate
measurements of the local temperatures and other climatological variables and thus
might help the model produce even better predictions when sequences are involved.
This was corrected in Publication [V] by using two different weather stations located
near the studied fields.

These results with point-in-time and multi-temporal models are competitive in
light of recent yield prediction studies. Sun et al. [77] utilized UAVs to gather
hyper-spectral data of potato tuber growth at a resolution of 2.5 cm/px. They uti-
lized traditional ML methods, such as linear models and decision trees, to perform
tuber yield estimation using individual data points gathered in-season at the intra-
field scale, achieving a 0.63 R2 score for tuber yield prediction accuracy with a Ridge
regression. Lee at al. [49] used a UAV to collect multi-spectral data from wheat and
corn fields to estimate intra-field crop nitrogen content using linear regression and
point samples - spatial features were not utilized. They fitted multiple linear models
to wheat and corn and attained a 0.872 R2 score on average. Fu et al. [14] performed
wheat leaf area index and grain yield estimation with various vegetation indices de-
rived from point-in-time multi-spectral UAV data using multiple machine learning
methods, neural networks included. The highest performance they attained was a
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0.78 R2 score with a random forest model. However, they entered the input data as
point samples. To perform county-scale soybean yield prediction, [78] used a CNN,
an LSTM and a composite CNN-LSTM to model soybean yield with in-season satel-
lite data. They achieved an average 0.78 R2 score with the spatio-temporal CNN-
LSTM model. [98] utilized RGB and multi-spectral data acquired with a UAV from
rice fields in China to predict rice yields with a composite CNN model on field block
scale. Feeding the multi-source data to distinct, parallelized CNNs, they reported a
rice yield prediction performance of 0.50 R2 and 26.6% MAPE.

In their study, Sun et al. [77] used input data with resolutions from 500 × 500
m/px to 1 × 1 km/px. Rustowicz et al. [65] performed crop type classification
in Europe and Africa with multi-temporal satellite data at resolutions from 3 × 3
m/px to 10 × 10 m/px. They attained F1 scores of 91.4 for the CNN-ConvLSTM
and 90.0 for the 3D CNN, averaged over crop types in their Germany data set. Yara-
masu et al. [99] performed pre-season crop type mapping for the state of Nebraska,
US, employing a CNN-ConvLSTM to extract spatio-temporal features from a multi-
temporal, multi-satellite composite data set. Using prior years of crop type related
data to predict a map of crop types, they attained an average accuracy of 77% across
all crop types in their data. The data was processed to a resolution of 30 × 30 m/px.
Ji et al. [27] utilized a 3D CNN to classify crop types from multi-temporal satel-
lite data gathered from an area within China, acquiring a classification accuracy of
98.9% with the model. Their input data resolutions were from 4 × 4 m/px to 15
× 15 m/px. Borra-Serrano et al. [5] performed weekly UAV image collections in
a controlled field experiment with soybeans, performing seed yield prediction with
multiple linear models fitted to the multi-temporal data. Thus, they did not per-
form spatio-temporal modelling with novel techniques. They achieved an adjusted
R2 score of 0.501 for seed yield prediction. The resolution of their data was 1.25 ×
1.25 cm/px.

In [I] and [II] it is shown that, with high-resolution UAV data, crop yield pre-
diction with CNNs is feasible and produces results accurate enough for performing
corrective farming actions in-season. In Publication [IV] it is shown that adding
time as an additional feature not only improves the modelling performance with
high-resolution UAV RGB data but also improves the predictive capabilities. Addi-
tionally, using weekly UAV data gathered during the first month provides enough
data for the model to build an accurately predicted yield map from which to draw fur-
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ther conclusions. The use of both high-resolution, point-in-time and multi-temporal
remote sensing data is beneficial in crop yield modelling and prediction with deep
learning. Furthermore, the easy accessibility of commercially available UAVs with
mounted RGB sensors enables image data acquisition at higher resolutions compared
to satellites. This in turn opens up the possibilities to perform modelling and pre-
dictions at intra-field scale. As shown in Publications [I], [II] and [IV], the use of
UAV-based data and proper spatio-temporal deep learning techniques is an enabler
of more sophisticated decision support systems in the domain of agriculture.

5.2 Multi-source input data assessment

In Publication[V], the effects of using input data from multiple sources on the task of
spatial crop yield prediction were evaluated. The performance with a larger number
of fields using UAV RGB data had already been extensively studied in Publications [I]
and [IV]. Thus, training a model with only UAV RGB data provides a studied base-
line against which models trained with additional data can be compared. The best
performing data configuration was S2 Full with 364.1 kg/ha test RMSE, 5.18% test
MAPE and 0.922 test R2 using all 39 layers of input data for each extracted frame (see
Section 3 of Publication [V]). Compared to the baseline RGB Only model, S2 Full at-
tained 65.6% lower RMSE, 67.3% lower MAE, 71.5% better MAPE and 0.579 higher
R2 with the test set. Generally, every model with multi-source inputs performed bet-
ter than the baseline model. The study indicates that increasing the number of input
data sources increases the performance of intra-field crop yield prediction. More
data is required in order to draw definite conclusions on the most optimal configura-
tion of input data sources. With more representative data, generalizable conclusions
would be more warranted. The relative improvement compared to the baseline of
using UAV RGB only as the input data was notable. Consolidating UAV RGB data
with soil information and ground topology data already somewhat improves the pre-
diction performance, while the greatest performance gains were gained from using
Sentinel S2 in addition to UAV RGB, soil sampling, Veris MSP3 soil scanner, weather
and topography data. As the data in Publication [V] focuses on a single growing sea-
son, the generalization of a multi-source crop yield prediction model with multiple
years of data is another subject for future study.

The study of Publication [III] indicates that the random forest model outper-

77



forms the Sentinel 2 CLDPRB and SCL data layers in detecting cloudy areas (y = 0).
For non-cloudy areas the detection accuracy was slightly higher for the Sentinel
products. The developed method was found to improve the usability of Sentinel
data in crop monitoring. It was observed by visual inspection that, in many cases,
when the Sentinel 2 products indicated that the whole crop field was cloud-covered,
there were still significant areas of almost clear skies. The proposed algorithm proved
capable of detecting these areas with considerable accuracy. The classification re-
sults could be utilized further in different applications. Firstly, commercial applica-
tions routinely utilize satellite data based NDVI maps, which would greatly benefit
from accurate estimations of pixel-wise cloud canopy. Another application is in pre-
processing satellite data used as inputs for crop yield estimation.

5.3 Limitations

One limitation of these crop yield estimation studies is the use of aggregated crop
type data collected from various fields. Using a single model to predict for wheat,
barley and oats constrains both the inference and the performance analysis of the
model on a per crop basis. Additionally, the remote sensing data based modelling
approach does not take into account any existing crop growth models. They could
well be utilized to further provide better performance, similarly to what has been
done in [5].

Models trained at a large regional scale rarely extrapolate to finer scales, although
efforts have been made to develop scalable models [11]. A good strategy of divid-
ing the data into training, validation and testing sets on a field basis would be re-
quired to prove that models are capable of being generalized. This raises an impor-
tant discussion point regarding how the frames were extracted in Publications [I],
[II], [IV] and [V], especially considering the overlap of data across adjacent frames.
The frames were randomly allocated to training and test sets. Another important
point related to input sample independence is the invariability of data from distinct
sources. This issue is specific to Publication [V], where input samples contained
both temporally and spatially invariable data. Temporally invariable data includes
soil sampling, Veris MSP3 soil scanner data and topographical maps. Weather data,
on the other hand, is spatially constant. While the cumulative temperatures and rain
totals do change over time, time-specific weather layers are effectively rasters with
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constant values. Whether the input data is split spatially or temporally into training
and test sets, there is a case to be made that some data might be present in a similar
form in all split data sets simultaneously. With traditional machine learning, such
as linear models, data which is not independent and identically distributed would
require extensive prior work to find feature-wise couplings. As pointed out in [78],
neural networks learn these couplings implicitly from the data. Thus, the input lay-
ers are not handled in isolation one by one but are always utilized in the context of
other data present in an input sample. The context includes spatial, temporal and
inter-channel dimensions. Therefore, the test data as a combination of inputs can be
considered as distinct from training and validation sets. This is further reinforced
by the results of Publication [V]. The performance gains with UAV RGB data com-
bined with temporally invariant soil information and ground data is trumped by
the performance gains of data configurations using Sentinel S2 data as additional in-
puts. This would suggest that the combination of the inputs matters more than the
presence of distinct, invariant data in the training, validation and test sets.

Regarding multi-source data in the context of smart farming and crop yield esti-
mation, data itself is an evolving research topic. The use of multi-source inputs in
remote sensing, while focusing on multi-spectral data acquired from satellite systems
orbiting the globe, has been extensively reviewed in [18]. The use of multi-spectral
data from UAVs and the prediction architectures thereof is also an emerging topic
[55]. Another topic related to spatial data is that of autocorrelation [1]. To address
the autocorrelation of spatial frames in a future study, the inclusion of pixel-wise
location information, as suggested in [1], should be sufficient to inform the deep
learning model whether data similarity is due to proximity or some other factor or
combination of factors.

Several issues should be considered regarding cloud cover classification in Publi-
cation [III]. Firstly, when training the random forest classifier, the thresholded abso-
lute difference between the Sentinel 2 and drone data was used as the ground truth.
While it can be argued that the main cause of this difference is cloudiness, there may
also be other factors involved, such as shadows or differences in irradiance. The
satellite and drone imagery were not necessarily acquired during the same time of
day or same day of the week, although best time-matching pairs were sought when
selecting the data. In some cases a couple of days may cause significant changes in
crop development. Another limitation comes from using the NDVI data layers for
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ground truth assessment. While the NDVI index contains significant information
for vegetation monitoring and is probably a good choice when assessing cloud cover
in crop fields, its use reduces the generalizability of the results to other land cover
types.

5.4 Conclusions

In summary, it is shown in Publications [I] and [II] that, with high-resolution UAV
data, crop yield prediction with CNNs is feasible and produces results accurate enough
for performing corrective farming actions in-season. In Publication [IV] it was shown
that adding time as an additional feature (time series data) not only improved the
modelling performance (post-season prediction) with high-resolution UAV RGB data
but also improved the predictive capabilities (in-season prediction). Additionally, us-
ing weekly UAV data gathered during the first month provided enough data for the
model to build an accurately predicted yield map from which to draw further con-
clusions. The use of both high-resolution point-in-time and multi-temporal remote
sensing data is beneficial in crop yield modelling and prediction with deep learning.
Furthermore, the easy accessibility of commercially available UAVs with mounted
RGB sensors enables image data acquisition at higher resolutions compared to satel-
lites. This in turn opens up possibilities to perform modelling and predictions at
intra-field scale. As shown in Publications [I], [II] and [IV], the use of UAV-based
data and proper spatio-temporal deep learning techniques is an enabler of more so-
phisticated decision support systems in the domain of agriculture. Furthermore, the
study presented in Publication [V] shows that using various data sources for crop
yield prediction, in addition to UAV RGB data, improves the predictive capabilities
of the model. Regarding the use of specialized equipment in data acquisition, lim-
iting the data sources to those common to the majority of fields would, however,
ensure better generalizability for the models. Finally, as shown in Publication [III],
data-based modelling can also be employed to perform quality assurance for satellite-
based data used in yield estimation and other relevant application contexts.
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A B S T R A C T

Using remote sensing and UAVs in smart farming is gaining momentum worldwide. The main objectives are crop
and weed detection, biomass evaluation and yield prediction. Evaluating machine learning methods for remote
sensing based yield prediction requires availability of yield mapping devices, which are still not very common
among farmers. In this study Convolutional Neural Networks (CNNs) – a deep learning methodology showing
outstanding performance in image classification tasks – are applied to build a model for crop yield prediction
based on NDVI and RGB data acquired from UAVs. The effect of various aspects of the CNN such as selection of
the training algorithm, depth of the network, regularization strategy, and tuning of the hyperparameters on the
prediction efficiency are tested. Using the Adadelta training algorithm, L2 regularization with early stopping and
a CNN with 6 convolutional layers, mean absolute error (MAE) in yield prediction of 484.3 kg/ha and mean
absolute percentage error (MAPE) of 8.8% was achieved for data acquired during the early period of the growth
season (i.e., in June of 2017, growth phase< 25%) with RGB data. When using data acquired later in July and
August of 2017 (growth phase> 25%), MAE of 624.3 kg/ha (MAPE: 12.6%) was obtained. Significantly, the
CNN architecture performed better with RGB data than the NDVI data.

1. Introduction

Development-minded farmers have practiced what is now known as
precision agriculture long before the dawn of the computing age. They
were able to deduce sources of field variability and the actions to take
for trying to secure an enhanced level of crop yields. The farmers ac-
complished this by taking notes of their fields during growing seasons
and harvest time operations and tried to figure out the best actions for
the year to come based on the accumulated knowledge and experience.
However, as studied by Wolfert et al. (2017), the increase in data-
producing devices and sensors has been an on-going trend in agri-
culture having enabled the farmers to shift towards data-driven deci-
sion-making. This is commonly called smart farming. A comprehensive
review of various objectives and techniques used in smart farming can
be found in Kamilaris et al. (2017).

An important trend in smart farming is the use of remote sensing to
facilitate the extraction of information relevant for data-driven deci-
sions (Miyoshi et al., 2017; Matikainen et al., 2017). Remote sensing
data can be acquired from satellites such as ESA’s Sentinel-2A, for ex-
ample. The problem with the satellite data is that if there is a cloud
cover during the overflight of the satellite, no useful data are obtained.
The spatial resolution of Sentinel imagery is at best 10 m, which is
enough for many applications but too low to allow using texture-based

information in the images. Satellite data contains predefined wave-
length bands from both the visible and the Near Infrared (NIR) spectral
regions. In satellite-borne sensors, designed keeping in mind agri-
cultural applications, the spectral bands are optimized for the calcula-
tion of relevant indices such as the Normalized Difference Vegetation
Index (NDVI), for example. The spatial and temporal resolution of sa-
tellite data will improve in years to come, however, cloud cover will
remain an obstacle, especially in northern climate.

Using Unmanned Aerial Vehicles (UAVs), or drones, for data ac-
quisition offers better spatial resolution, the data acquisition time can
be selected by the user and the data can be acquired also in cloudy
conditions. Spectral wavelengths can be selected by using appropriate
camera; UAV-mountable RGB-NIR cameras are available at affordable
price. The drawback is that the UAV has to be operated locally and
managing the data and extracting relevant information requires highly
specialized skills. As the variety of UAVs and UAV-mountable sensors is
high compared to satellite-borne sensors, analysis frameworks and
services based on UAV-borne data are not yet equally developed. In
Näsi et al. (2017), extraction of information related to the biomass and
nitrogen content of vegetation (barley and grass) in test fields using
various modalities of remote sensing data (satellite/aircraft/drone
using RGB/multispectral/hyperspectral sensors) has been considered.

Information relevant for decision making in agriculture can be
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extracted from remote sensing data by means of machine learning.
Traditional machine learning techniques involve feature extraction as
an initial stage. Based on the features, different tasks such as crop
classification, weed detection or yield prediction can be addressed. In
Ruß (2009) several traditional machine learning techniques have been
applied to the task of yield prediction. It is, however, often difficult to
find optimal features and the ability of the traditional methods to learn
from the data is limited. With advancements in computational tech-
nology, the development and training of novel multilayer algorithms
has become feasible. These methods are commonly referred to as deep
learning. Among the various deep learning paradigms, Convolutional
Neural Networks (CNNs) have proved especially efficient in image
classification and analysis. In case of CNNs no features need to be pre-
calculated as the feature extraction operation is performed by the
convolutional layers of the network and optimal features are obtained
in the course of training. Due to this kind of structure, CNNs require
large amounts of training data to converge. The advantage of CNNs
compared to traditional machine learning methods in crop yield pre-
diction is discussed, for example, in You et al. (2017). CNNs have been
successfully applied to crop classification (Chunjing et al., 2017) and
weed detection (Sa et al., 2017; Milioto et al., 2017).

In working towards an effective in-season crop yield predictor
model for the northern climate, our effort in this preliminary study is to
develop a CNN based deep learning framework using UAV-acquired
multispectral data. RGB and NDVI images, representing patches of
wheat and barley fields, are fed as input data to a CNN and training is
performed to tune the network parameters. In addition to testing the
usefulness of deep learning models for crop yield prediction in general,
we also experiment with various setups and training schemes of the
CNN model. Training a deep learning network is typically an iterative
process as there is a substantial number of cross-related parameters to
tune. We first select the most promising training algorithm from three
candidates (see Section 3.1) and determine the optimal number of
convolutional layers of the CNN. After that, we optimize the perfor-
mance of the network in terms of regularization and parameters of the
training algorithm. The optimized framework is evaluated using two
types of input data (RGB and NDVI) and three patch sizes (10, 20 and
40m).

2. Data and methods

2.1. Data acquisition

The nine crop fields selected for this study are located in the vicinity
of the city of Pori (61°29′6.5″N, 21°47′50.7″E). The total area of the
fields was approximately 90 ha. The main crops grown in the fields
were wheat and malting barley, however the model was trained over
the fields without making a distinction between the crop type.

Multispectral data were acquired from these fields during the
growing season of 2017 (i.e., from June to August; see Table 1). The
data were collected with a single Airinov Solo 3DR UAV equipped with
Parrot’s NIR-capable SEQUIOA-sensor. The images of individual spec-
tral bands were stitched together to form complete orthogonal RGB and
NDVI rasters of distinct fields using the Pix4D software.

The UAV data were organized into two sets according to the time of
data acquisition to see if the phase of the growing season had an effect
on predicting the yield from the input image. Growing phase here is
defined as the percentage of total thermal time on the day of imaging.
Thermal time for each day was calculated as the magnitude of daily
average temperature above °5 C. The temperature readings were
downloaded from the Finnish Meteorological Institute. Beginning of
July 2017 was chosen as the separating time point between the two
data sets as the UAV data dispersed equally enough around that date.
The data sets containing images only prior to July 2017 were labeled as
early (growth phase< 25% of the total thermal time) and the re-
maining data as late (growth phase>25% of the total thermal time).

Details of the fields, crops, imaging dates and corresponding growth
phases are listed in Table 1.

The field-wise image data were then processed using a sliding
window to extract geolocationally matched pairs of input image frames
(UAV data) and targets (yield data) of predefined size from all the
fields. The step of the applied sliding window was chosen to be 10m
according to the resolution of Sentinel-2A satellite data considering the
possibility of using satellite data as an additional input to the network
in future studies. Image frames of sizes 10× 10 m, 20× 20 m and
40× 40 m were considered. The resolution of the UAV data was
0.3125m or 32 pixels per 10m. The overall number of extracted frames
according to crop fields is given in Table 2. The individual data frames
were treated as independent inputs fed to the CNN models. The process
of data preparation prior to and during training is illustrated in Fig. 1.

The harvest yield data was acquired during September 2017 using
two distinct setups attached to the harvesters: Trimble CFX 750 and
John Deere Greenstar 1. As the yield measurement devices produce an
irregular set of data points with multiple attributes, the data had to be
processed to be handled as rasters of field-wise yield from the viewpoint
of the trainable network. The data points were first filtered according to
(Tiusanen, 2017) to preserve only points corresponding to harvester
speed between 2 and 7 km/h and yield between 1500 and 15,000 kg/
ha. The filtering and generation of rasterizable vector files was done
using the FarmWorks software. The field-wise vector data files were
then rasterized by interpolating them using an exponential point-wise
inverse distance algorithm. Yield values constitute targets the model is
trying to predict during the training of the CNNs. Thus, yield values
were also extracted using sliding windows similar to the UAV images to
have geolocationally matching pairs of inputs and targets. Yield values
were then averaged over the analysis window to obtain scalar target
values. The histograms and statistics of yield values for point data as
well as window-averaged data using three sample area window sizes
(10m, 20m and 40m) over all crop fields are given in Fig. 2. As can be
expected, the larger the window, the more concentrated the yield va-
lues are around the mean.

For clarity, we also visualize several NDVI and RGB input images of
the largest sample area window size (40m) with their corresponding
yields in Fig. 3 with the color bar corresponding to yield image value
range. The images with similar identifiers are from the same location.
However, the target for the network will be the mean of the yield values
over the analysis window corresponding to the input area. It is also
important to note that the network was trained separately for RGB and
NDVI input images so that the possible misalignment between the two
image sources does not affect prediction results. This kind of approach
enables us to evaluate which one of the two input sources, RGB or
NDVI, gives better prediction results.

2.2. Building the convolutional neural network

Convolutional neural networks, or CNNs, are deep learning models
specialized in handling grid-like data. Such data can be images or rows
of multi-column data. Deep learning refers to models composed of
multiple layers. Generally, a model is viewed as deep if it has at least an
input layer, one hidden layer and an output layer. The term neural on
the other hand refers to the fact that originally the operation principle
of artificial neural networks was taken from that of the brain, con-
taining neurons as its basic building blocks. Compared to traditional
feedforward neural networks, CNNs possess some special features
making them extremely efficient in finding salient features within the
data. Some of these features are:

1. exploitation of the convolution operation
2. post-convolution pooling
3. specific non-linear activation functions.

In the following we provide a brief description of these elements
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with additional information on other key elements of CNNs such as
batch normalization and regularization. We evaluated various setups of
these CNN elements to find the best-performing algorithm and assess its
performance in crop yield prediction.

2.2.1. Convolution operation
The convolution operation is the first of multiple transformations

performed in a convolutional layer of CNNs. Generally, the convolution
operation can be described as calculating the sum of products between
a set of input values and values of a convolutional kernel, also called a
filter. In CNN, the kernel values are trained to find optimal features from
the point of view of the task to be solved (in our case, predicting crop
yield). The operating principle of the kernel is depicted in Fig. 4 and the
position of convolutional layers in the overall structure of the CNN used
in this study can be seen from Fig. 7.

2.2.2. Batch normalization
While not a requirement for CNNs, the state-of-the-art is to apply

batch normalization (Ioffe and Szegedy, 2015) as a constituent of deep
learning model layers. Batch normalization is an optimization strategy

Table 1
Details of crops and their varieties sown in each of the 9 fields in 2017. Thermal times for each crop variety are taken from a report published by Laine et al. (2017).
Sowing dates and imaging dates are used to calculate the growth phase as a fraction of the total thermal time for the crop variety. Images with dates prior to 1st of
July form the early data set and the remaining images the late one.

Field # Size (ha) Mean yield (kg/ha) Crop (Variety) Thermal time Sowing date Imaging date Growth phase

1 5.96 5098 Wheat (Zebra) 1052 10 May 17 Aug 83%
2 10.26 6054 Barley (Trekker) 979.7 16 May 8 Jun 15%

27 Jul 64%
3 2.97 8971 Barley (Trekker) 979.7 17 May 8 Jun 15%

27 Jul 64%
4 13.05 4673 Barley (RGT Planet) 982.2 15 May 6 Jul 42%
5 4.66 6482 Barley (Propino) 981.4 15 May 15 Jun 22%
6 7.29 6884 Barley (Propino) 981.4 15 May 15 Jun 22%
7 10.92 7568 Barley (Harbinger) 976.3 24 May 6 Jul 36%
8 15.28 7585 Barley (Trekker) 979.7 18 May 1 Jun 10%

13 Jul 49%
9 18.86 6991 Wheat (KWS Solanus) 1065 13 May 15 Jun 21%

6 Jul 72%

Table 2
Number of data frames extracted from each field using frame sizes of 10m,
20m and 40m. The number of frames decreases slightly with increasing frame
size due to field edge effects.

Field # 10×10 m data
frames

20× 20 m data
frames

40× 40 m data
frames

Mean data
frame count

1 761 745 735 747
2 1102 1159 1150 1137
3 783 731 691 735
4 1494 1486 1454 1478
5 610 586 590 595
6 942 931 916 930
7 1240 1247 1224 1237
8 3736 3786 3812 3778
9 4556 4548 4520 4541

∑ 15224 15219 15092 15178

Fig. 1. All nine fields were first split to overlapping data frames of sizes 10m, 20m and 40m. A dedicated holdout test data set was then built from 15% of shuffled
data frames; these data were never presented to the model during training. The remaining 85% of data frames were then used for training the models with k-Fold
Cross Validation. After the training phase of each model was completed, the test errors were calculated using the holdout test data set to validate the performance of
the trained model.
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for training deep models more efficiently. Batch refers to a subset of
training data used for updating the model parameters (including kernel
values) at a single iteration, albeit the term mini-batch is generally used
to distinguish the whole data set (batch) from it’s subset (mini-batch). It
has been shown that normalizing the network layers for each batch (or
mini-batch) of data stabilizes the learning, allowing to use higher
learning rates and thus resulting in faster learning (Goodfellow et al.,
2016). There are different implementations of batch normalization; the
implementation used in the CNN of this study follows Eq. (1), where x is
a mini-batch of activations, ∊ a non-significant constant to prevent
numerical underflow, γ is the momentum and b is a layer-wise bias:

=
−

+ ∊
∗ +y

x μ
σ

γ b.x

x (1)

2.2.3. Max pooling
The convolution operation is usually followed by pooling. Pooling

means grouping of adjacent values using a selected aggregation func-
tion, which in our case was taking the maximum (hence max pooling)
over the neighboring values within a predefined window. The step size
of moving this window along the feature map is called stride. Pooling
effectively diminishes the input image dimensions making the detected
features more coarse and thus more robust to small variations
(Goodfellow et al., 2016). The amount of dimension reduction is con-
trolled by the stride parameter. The stride dictates how many applica-
tions of the pooling window are performed. An example of max pooling
is given in Fig. 5 and the position of pooling in the overall structure of

the CNN used in this study can be seen from Fig. 7.

2.2.4. Rectified linear units
A key element in any neural network is the layer-wise activation

function of the neurons. A variety of activation functions have been
designed, but the use of the rectified linear function in the activation
units is the current standard for CNNs (He et al., 2015; Goodfellow
et al., 2016). Activation units employing rectified linear functions are
commonly referred to as ReLUs. The operating principle of this acti-
vation function is to allow only positive inputs to proceed linearly and
is depicted in Fig. 6. We too use ReLUs as the activation functions in
both the convolutional as well as the fully connected layers (see Fig. 7).

2.2.5. Fully connected layers
The convolutional layers of a CNN extract salient features from

input images, i.e., factors with highest descriptive power regarding the
data producing process. To utilize the learned features in a regression or
a classification task, they have to be successfully mapped to a target
value. This is performed typically by adding fully connected (FC) layers
after the convolutional layers. The term fully connected refers to the
principle that in these layers, each neuron (or unit) of the previous layer
has a connection to each unit of the layer in question. Increasing the
number of FC layers increases the capacity of the network to learn the
mapping between the features and the target. It also increases the
burden of optimization, as in FC layers the number of connections
grows exponentially with the number of layers.

Fig. 2. Histograms and statistics of point-wise and window-averaged yield data. The histograms are normalized to probability densities to make point-wise graphs
align with sliding window histograms count-wise. While sliding windows contain no-data points near field edges, only points containing data were taken into
account.

Fig. 3. Visualizations of NDVI and RGB input images and yield targets. The identification numbers above the images denote the distinct area from which the images
were extracted.
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2.2.6. Regularization strategies
Increasing the depth of a deep learning model allows it to learn

more complex functions. This is also known as increased model’s ca-
pacity (Goodfellow et al., 2016). When a model’s capacity increases, it
becomes more prone to overfitting to the training data in which case its
ability to generalize (and, therefore, its performance on test data) de-
teriorates. This can be avoided with regularization, which effectively
reduces the model’s capacity diminishing the gap between training and
test errors. Regularization is a comprehensive term for methods in
machine learning that are used to lower the test error without focusing
on training error.

In our model we make use of two distinct regularization strategies.
First of the two is the L2-penalty, also known as the weight decay. It
diminishes the model’s layer-wise parameters with each training
iteration. When applied in conjunction with training by error back-
propagation, the most relevant of the model’s parameters retain their
magnitude while non-relevant ones diminish. The second implemented
regularization strategy is called early stopping. It is a robust meta-al-
gorithm integrated into the training process to halt the training after n
non-improving iterations. The hyperparameter n is called patience
(Goodfellow et al., 2016).

2.2.7. Overall architecture
The basic architecture of the CNN implemented in this study follows

closely the one reported by Krizhevsky et al. (2017). Their model per-
formed extremely well in ImageNet Large Scale Visual Recognition
Competition (Russakovsky et al., 2015) attaining top classification re-
sults in multiple categories. The general topology of our network is
depicted in Fig. 7. The network was implemented using the PyTorch
framework (Paszke et al., 2017). In our network we use non-over-
lapping pooling windows with pooling window size of 5 and a pooling
stride matching the pooling window size. We also include the pooling
function only in the first and the last convolutional layer. The reason for
this is that at the lowest (i.e., in the case of 10m ground resolution) our
image size is 32 × 32 pixels and too many pooling operations would
cause the data representation to collapse. This way our network is also
scalable with respect to the number of layers. Regardless of the number

of source image bands, our convolutional layers contain 64 kernels
except for the last layer containing 128 kernels. Krizhevsky et al. (2017)
incorporated two FC layers to the model with 2048 neurons per layer.
We used similar number of layers with half the width, i.e., 1024 neu-
rons per layer.

2.3. Optimizing the network

Finding the optimal configuration of any deep learning network is
an iterative process, where the model’s parameters are initialized and
tuned multiple times. The goal is to find a set of model’s parameters
(weights, biases, etc.) and hyperparameters (learning rate, optimizer
coefficients, etc.) that in conjunction produce the best performance.
The output of the iterative process is a single model usually performing
best when compared to other models produced within the process. We
used absolute error between the network output and the target value
(i.e., crop yield values) as the performance measure. In machine
learning, the best performing model is considered to be the one that
generalizes well to previously unseen data. To measure the general-
ization performance across training instances, we extracted and re-
served a subset of data as a holdout test set. This test data set was used
outside of the training loop to ensure that the model never learned from
it. With the rest of the data we performed k-fold cross validation using
three folds per epoch. An epoch is a single complete iteration over the
full training data set consisting of windowed image samples of all 9

Fig. 4. The kernel K is applied to the input image I in a sliding window fashion. With each application, a sum of element-wise products is calculated and stored. After
the kernel has been applied to the whole image, a complete feature map F is produced. A feature map indicates the result of detecting a kernel-specific feature in the
input image.

Fig. 5. An example of a simple application of max
pooling, where the pooling is applied to a feature
map F with pooling window size of 2 × 2 and a
stride equaling the kernel size.

Fig. 6. An illustration of the effect of applying the rectified linear activation
function to a pooled feature map.
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fields.
The best training algorithm was evaluated among three options:

Stochastic Gradient Descent with momentum (SGD-momentum)
(Bottou, 1998), RMSprop (Hinton et al., 2014) and Adadelta (Zeiler,
2012). These training algorithms are suggested in Goodfellow et al.
(2016) and they are also among the ones compared in Karpathy and
Fei-Fei (2017). In a preliminary test, the three algorithms were tested
for convergence by training the network for three epochs. Training was
performed for each of the three data window sizes and each of the four
sets of input data. The batch size was varied from 25 to 210. The worst
performing algorithm was excluded and a second test performed on the
remaining two by fixing the batch size to 128 (27) and training for 50
epochs, a number consistent across the training of almost every model.

The effect of the depth of the network on the performance was
evaluated by training models with 4, 6, 8, 10 and 12 convolutional
layers over 50 epochs per training session. The training was conducted
for the NDVI and RGB images from early and late data sets and with all
three input image dimensions using the previously selected training
algorithm. At this stage, the best performing combination of - network
depth, image type (NDVI or RGB) and window size - was selected based
on error performance over the test data.

In the next step, the chosen training algorithm’s hyperparameters
(i.e., the learning rate and the past iterations’ error correction adjust-
ment) were tuned. In order to evaluate performance, benchmark
models were created by initializing a model for each of the four data
sets (i.e., early and late, RGB and NDVI). The hyperparameter values
were searched over a coarse grid for values producing lowest test errors,
followed by a more refined random search in the vicinity of the coarse
minimum. Sensitivity of the network performance to initial values of
the CNN parameters was also assessed.

In the last step, the hyperparameter combinations producing the
best performance were used to test and tune the effect of regularization
algorithms. Tuning of the weight decay coefficient (L2 regularization)
for early and late data sets was performed by searching over a coarse
grid of values followed by refined search. Subsequently, the effect of
early stopping was tested using values 10, 20, 30, 40 and 50 for the
patience parameter (see Section 2.2.6).

3. Results

We measure the performance of the CNN by mean absolute error, i.e.,
the mean absolute difference between the true yield value and the CNN
output (predicted value). This can also be called loss. We consider two
different errors: the training error, obtained for the same data the
network is trained with, and the test error, obtained for the data set
aside for testing. The former one indicates how well the model is able to
fit to the data, i.e., what is its capacity, while the latter one indicates
how well the network is able to generalize to unseen data samples.

3.1. Selection of the training algorithm

Of the three training algorithms – Adadelta, SGD-momentum and
RMSprop – the RMSprop showed poor convergence and was therefore
ruled out from subsequent tests. Between the two remaining algorithms,
Adadelta outperformed SGD-momentum and was chosen as the training
algorithm for further experiments (see Table 3).

3.2. Depth of the network

In Fig. 8 the test and training errors for the three window sizes and
for various networks depths are shown for the RGB data of earlier
growth phase. The largest window (size 40 × 40m) produced lowest
test errors in majority of cases regardless of the network depth. The
colored areas indicate gaps between training (lower bound of the area)
and test (upper bound of the area) errors, also referred to as

Fig. 7. The overall topology of the implemented CNN. Network’s inputs can be single-band or multi-band images (B) with varying dimensions (D). The network has at
least two convolutional layers accompanied with two fully connected layers. The depth of the network is controlled by the number of intermediary convolutional
layers. The last convolutional layer has 128 kernels while the intermediary layers have 64 kernels. Max pooling is applied only in the first and last convolutional
layers so that the size of the data representation stays consistent when network depth is varied.

Table 3
Lowest mean absolute test errors (kg/ha) observed among the three data
window size configurations (10m, 20m and 40m) with 50 epochs of training
and a batch size of 128 samples for each source image type. Adadelta performed
best with almost every source image configuration.

Optimizer NDVI early NDVI late RGB early RGB late

SGD with Momentum 1751.2 1183.7 1231.5 985.0
Adadelta 842.8 1165.1 836.2 989.5
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generalization gaps. The lowest test and training error combination is
obtained with 6 convolutional layers. Also, the 40m window and net-
work depth of 6 convolutional layers result in the narrowest general-
ization gap.

3.3. Optimization of Adadelta hyperparameters

The hyperparameters of the chosen training algorithm, Adadelta,
were tuned by considering the effects of the adaptive learning rate and
the coefficient adjusting the effect of past iterations’ error corrections
(in the form of squared gradients) on learning. The latter is effectively
similar to momentum, defining the magnitude by which the past affects
the current learning process. The previous experiments were performed
using default values for these hyperparameters, i.e., 1.0 for the learning
rate, 0.9 for the coefficient for computing a running average of squared
gradients, and 0 for the weight decay (see Table 4).

The initial grid search was conducted with hyperparameter values
similar to those found in the original Adadelta research paper with an
epoch limit of 50 compared to the original study’s 6 epochs (Zeiler,

2012). For the early RGB data set, the optimal values were approxi-
mately 8 × −10 3 for the learning rate and 0.58 for the coefficient ad-
justing the effect of past iterations’ error. For the late data set the re-
spective values were −10 4 and 0.9. The effect of hyperparameter tuning
on the performance of the network can be seen from the results in
Table 4.

3.4. Optimization of the regularization parameters

The CNN models using optimal hyperparameters for the Adadelta
training algorithm were trained next with early and late RGB data sets
of 40 × 40m window to determine the effect of regularization on the
prediction error and to tune the regularization parameters. The tuning
of weight decay coefficient with grid search first and zoomed-in random
search after that resulted in the optimal coefficient value of −10 3 for
both data sets. The optimal patience values were around 50, again for
both data sets. It was observed that the increase in patience increased
the training time significantly. The selected patience value allowed the
models for both data sets to converge in approximately 250 epochs. The
effect of using the L2-regularization alone and combined with early
stopping can be seen from Table 4.

4. Discussion and conclusions

This study presents a training paradigm of a CNN based deep
learning model for predicting wheat and barley yield. The results in-
dicate that the best performing model can predict within-field yield
with a mean absolute error of 484 kg/ha (MAPE: 8.8%) based only on
RGB images in the early stages of growth (< 25% total thermal time).
The model for RGB images at later growth stage returned higher error
values (MAE: 680 kg/ha; MAPE: 12.6%). In searching for optimal per-
formance, the input data window size (10m, 20m, 40m), the data
acquisition time (early vs. late) and data modality (RGB vs. NDVI) were
varied. The 9 fields included in the study were imaged by a camera
mounted to UAV and together taken as a source of> 10,000 input
image frames covering a total area of 90 hectares. Network depth (i.e.,
the number of convolutional layers), the training algorithm and its
hyperparameters as well as the CNN regularization scheme were also
optimized. The lowest error was achieved using a network consisting 6
convolutional layers followed by two fully connected layers regularized
with L2-regularization coefficient of −10 3 and early stopping patience of
50. The optimizer was also tuned for the optimal value of the learning
rate ( × −8 10 3) and the coefficient adjusting the effect of past iterations’
error corrections (0.58). The results show that the lowest test errors
were achieved with the largest data window size tested (40m).

The training of any neural network is always influenced by the

Fig. 8. The generalization gaps with early RGB images. The generalization gap is depicted as the difference between the training and the test errors. It shows how
close the test error is to the effective capacity of the model, the training error. The lowest test errors (upper bound of the area) were achieved rather consistently with
the source image window size of 40 × 40m.

Table 4
The total improvement in test error compared to the benchmark model when
using regularization and optimization of training algorithm hyperparameters.
The benchmark models were trained with the early and late RGB image data
with default parameters. Window size was 40 × 40m. Errors are reported as
mean absolute error (MAE) and mean absolute percentage error (MAPE). The
best results are formatted in bold.

RGB early RGB late

MAE [kg/
ha]

MAPE MAE [kg/
ha]

MAPE

Benchmark 997.8 18.3% 1021.5 19.5%
learning rate: 1.0
past err. coeff.: 0.9
weight decay: 0
patience: ∞

with Optimized Adadelta params. 546.2 9.6% 624.3 11.4%
learning rate (early/late): 0.008/
0.0001

past err. coeff. (early/late): 0.58/
0.9

and with L2-regularization 558.4 9.4% 700.4 13.1%
weight decay: 0.001

and with Early Stopping 484.3 8.8% 680.4 12.6%
patience: 50
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combined randomness resulting from how the data is shuffled between
cross validation folds, the optimization process and other factors. This
in turn means that, while discrete error metrics produce a ranking
across hyperparameter setups, slight variations between test errors can
be attributed to the random nature of the optimization process as a
whole. We optimized distinct models for early and late RGB data sets.
The best performing model used RGB images from the early growing
season and benefited from regularization. The model using the late RGB
images didn’t gain from added regularization, as the best performance
was achieved during the tuning of the training algorithm (see Table 4).

In yield prediction, the shift from using traditional regression
methods (Ruß, 2009) towards artificial neural network based methods
(Chlingaryan et al., 2018) has resulted in improved performance (Jiang
et al., 2004; Kaul et al., 2005). Among these ANN based studies, those
using remote sensing image data to train their prediction models have
achieved low prediction errors (≈ 5%). These models are specific to the
crop types whose images they are trained with (e.g., soybean, wheat,
rice). Jiang et al. (2004) working with satellite images reported an
average relative winter wheat prediction error of 3.5%. The indices
used for training the model were: NDVI, surface temperature, absorbed
photosynthesis active radiation, water stress index and 10-year average
crop yield. Bose et al. (2016) employed spiking neural networks to
estimate winter wheat yield from satellite based NDVI images at the
region level, achieving a best average relative error of 4.35%. In their
recent work, You et al. (2017) leveraged advanced hybrid machine
learning algorithms to achieve very low soybean yield prediction errors
(3.19–5.65%) using only satellite images.

A commonality among these studies is the use of satellite imagery
and large spatial scales of their analyses (region or county level pre-
dictions). Our study, in contrast, seeks to perform predictions at the
intra-field scale using UAV based images in order to spatially analyze
yield within the field. In one of the earliest studies on this topic, Davis
and Wilkinson (2006) used satellite imagery of wheat crop (visible,
infrared and radar) and an ANN model showing promising results (error
slightly above 10%) for a single field (≈ 36 ha). Khanal et al. (2018)
employed various machine learning algorithms (including neural net-
works) and aircraft based multi-spectral images to predict corn yield on
a single field (17.5 ha). A few studies have applied ANN’s for classifying
crops (Rebetez et al., 2016) and yield (Pantazi et al., 2016) at the intra-
field scale. However, rather than classifying within yield categories this
study aims at quantitative predictions. Models at intra-field scale would
offer the individual farmer the possibility of in-season monitoring of
crop, which would enable decision support systems for interventions
necessary to achieve higher yields. Models trained at large regional
scales rarely extrapolate to finer scales, though efforts are underway to
develop scalable models (Donohue et al., 2018). The methodology in-
troduced by You et al. (2017) shows great potential and as authors
claim its scalability, it would certainly be of interest in testing at the
intra-field scale.

One important aspect of remote sensing based yield prediction has
been finding image channels or indices containing the most dis-
criminating features necessary for analysis (Panda et al., 2010). Con-
sequently, the finding in this study that the RGB images perform better
than NDVI, assumes significance and aligns with the study for esti-
mating biomass and crop height (Näsi et al., 2017). This indicates that
multiple spectral bands increase the information content in comparison
to the condensed NDVI image. From a utility perspective, RGB cameras
are cheaper with most commercially available UAVs already fitted with
decent cameras able to produce images of high resolution. Models that
can perform well without the need for expensive specialized equipment
will make the analyses accessible to an individual farmer.

The relationship between crop yield and its environment is non-
linear and may not be sufficiently contained in the features captured by
images. As shown by the studies reporting low prediction error levels,
by adding multi/hyper spectral data, temporal image data, soil and
environmental features in the feature matrix, it is possible to constrain

the resulting model error effectively. Considering that this study models
the yield based only on images, the resulting prediction error of 8.8% is
promising. Additionally, collection of multi-year yield maps from
sensor-equipped harvesters would add valuable information to act as
ground truth. More than 90 hectares of fields were mapped in this study
(2017 season). In 2018 a similar set of data has been acquired while the
data acquisition will be continued in 2019. This valuable database will
serve to further train, tune and verify the current model for greater
accuracy. An additional limitation of this study is that only minimal
preprocessing was applied to the source data. Developing automated
error correction methods for data preprocessing would be another im-
portant task when developing remote sensing based crop yield models.
Careful artifact rejection and preprocessing would probably benefit the
modeling considerably.

In conclusion, this study is an important step towards establishing a
combined model for wheat and barley yield prediction in the Finnish
continental subarctic climate. The long summer growing days in this
region presents a unique profile of temperature and photoperiod, jus-
tifying a region specific deep learning model for these crops. By col-
lecting data using commercial off-the-shelf UAV and camera packages,
we focus our attention on a spatial scale that enables us to predict intra-
field yield distribution within the context of individual farm crop
monitoring. The results indicate that the CNN models are capable of
reasonable accurate yield estimates based on RGB images. It is worth
noting that the CNN architecture seemed to be performing better with
RGB images than NDVI images. In the future, the developed model will
be trained on a larger set of features (climate and soil) along with time
series image data to tune the trained model for accuracy.
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Abstract. Precision Agriculture and Smart Farming are increasingly important con-
cepts in agriculture. While the first one is mainly related to crop production, the lat-
ter is more general, involving also the capacity of carbon capture of the crop fields
(Carbon Farming) as well as optimization of the farming costs taking into account
the dynamics of market prices. In this paper we present our recent work in building
a web-based decision support system for farmers to help them comply with these
trends and requirements. The system is based on the Oskari platform, developed
in Finland for the visualization and analysis of geospatial data. Our main focus so
far has been in developing tools for Big Data and Deep Learning based modelling
which will form the analytical engine of the decision support platform. We first
give an overview on the various applications of deep learning in crop production.
We also present our recent results on within-field crop yield prediction using the
Convolutional Neural Network (CNN) model. The model is based on multispec-
tral data acquired using UAVs during the growth season. The results indicate that
both the crop yield and the prediction error have significant within-field variance,
emphasizing the importance of developing field-wise modelling tools as a part of a
decision support platform for farmers. Finally, we present the general architecture
of the overall decision support platform currently under development.

Keywords. Smart farming, crop yield prediction, decision support, deep learning

1. Introduction

For ages, farmers have made notes on their farming activities to undertake proper actions
to increase the productivity of their fields. The means and extent of these actions have
changed in time - instead of digging ditches using spades, whole fields can be levelled by
modern powerful machinery and fertilizers and pesticides are used to increase the yield.
However, much of the decision-making regarding these modern means of cultivation is
still done by intuition. At the same time, increasingly strict environmental regulations
concerning farming and competition on the crop market forces farmers to optimize their
cultivation activities to the limits. This optimization has multiple targets such as yield,
carbon capture, environmental requirements, market prices etc. As in many other indus-
tries, data-driven modelling of production and developing model-based decision support
systems has become an active area of research and development in agriculture [1].

1Corresponding Author: Pohjoisranta 11A, Tampere University, Pori, Finland; E-mail:
nathaniel.narra@tuni.fi.



Figure 1. Illustration of crop production as a system with big data input and yield as the output.

Crop production can be viewed in engineering parlance as a system with input and
output (see Figure 1). Climate, soil and other biotic and abiotic factors that have a bear-
ing on plant growth (i.e. system dynamics) can be considered as input. These also in-
clude interventions conducted to either stimulate plant productivity or mitigate factors
detrimental to productivity. With increasing accessibility in terms of affordability, ease
of use and technical reliability, Internet of Things (IoT) and remote sensing technologies
have enabled high amounts of data to be collected from crop fields. These data can either
represent the input factors directly or constitute an indirect representation of the effects
of these factors on the system (i.e. crop). Multi- or hyperspectral remote sensing is a
common example of the latter type of data. Having all these data available, often in real
time, opens up new avenues for studying the contribution of various factors to the yield
(i.e., the output of the system).

The collected data comes in vast amounts and its analysis involves high computa-
tional cost that often preclude traditional analytical methods. Also, yearly variation in
various factors such as climate, for example, suggests that the analytical tools used for
decision support in agriculture have to be capable of learning from the environmental
conditions. For example, in addition to training a model for crop yield prediction, it is
also important to learn how the model needs to be adapted to the changes in the envi-
ronment. Recent developments in Artificial Intelligence (AI) and, more specifically, in
Machine Learning (ML) have produced promising new models for extracting informa-
tion from large heterogeneous data sets. These methods have been extensively applied to
study various aspects of agriculture [2][3][4].

A common term for the recent advancements in ML is Deep Learning (DL). DL
refers to Neural Network type structures containing multiple computational layers with
often thousands (or even millions) of parameters to be adapted in the training phase.
Probably the most widely used deep learning structure is that of Convolutional Neu-
ral Networks (CNNs), proved to be superior in a variety of image analysis tasks. Other
common structures include Long Short-Term Memory (LSTM) networks used for mod-
elling sequences of data such as text, for example, and Generative Adversarial Networks
(GANs), designed especially for generating new data based on certain features charac-



teristic to the training data set. A common property of the deep learning structures is that
training of the models is performed based on data, i.e., no predefined and pre-calculated
feature vector is needed. This, however, implies that extensive data sets are required for
training the models and the operation principles of the models are usually not revealed.

In this study we present our recent work in designing a decision support platform for
farmers. A central component of the platform is its analytical engine, involving machine
learning models for various phenomena. Before presenting the general structure of the
platform we present an overview on recently developed applications of deep learning in
agriculture. We also present a case study on the development of crop yield prediction
model using CNNs.

2. Applications of Deep Learning in Agriculture: Overview

The developments in DL algorithms, and importantly the deployment of numeric soft-
ware tools to implement them, have resulted in a surge in their applications. Agriculture
has been the domain of some such applications, indicated by a sharp increase in the num-
ber of publications applying DL methods to different areas of agriculture. In one of the
earliest works, Kamilaris & Prenafeta-Boldú [5] review 47 published studies and recog-
nize 16 topical areas. They further concentrate on CNN, a specific framework within DL,
and review agriculture related studies using this methodology [6]. For the purpose of this
study, we chose to focus on the literature considering crop production in open fields and
related issues, thus excluding topics such as greenhouse farming, land-use classification,
animal husbandry and fruit/orchard plantations (see Figure 2). This selection of scope
was due to our ongoing work on crop yield monitoring of mainly wheat and barley fields
in Finland.

Figure 2. Application areas of DL in agriculture. In this study we focus on crop production, identifying six
specific problems that can be targeted using DL models.

2.1. Crop recognition/classification

Crop recognition and classification using DL algorithms is generally relevant when the
objective is to ascertain crop coverage over a large region (covering multitude of farms)
based only on remote sensing images. The task can be to detect a single crop or a set of



crops. CNN based DL models have performed well in comparison to other ML methods,
reaching very high classification accuracy (> 85%) [7][8]. Most studies addressing this
task use satellite data, but UAV imagery can also be used [9].

2.2. Phenotyping

Crop development can be assessed by quantifying the quality, structure or biomass pro-
ductivity of the plants in a series of developmental stages. Ascertaining these phenolog-
ical stages of plants can be important in precision agriculture for monitoring crop con-
dition. This has implications for timing of harvest, pest control, yield prediction, farm
monitoring and disaster warning. Various measures of performance can be used such as
leaf counting, growth stage classification or plant maturity (age regression). Image based
DL approaches have been shown to be superior to analyses based on hand crafted fea-
tures [10][11]. In a recent article, Mochida et al. present an overview of various image
based phenotyping studies that employ ML techniques [12].

2.3. Disease Detection

Disease, due to biotic stressors, of crops is a prime topic for testing the efficacy of DL
methods in monitoring crop health. DL methods have show significant potential in im-
proving the speed, accuracy and reliability in early detection of diseases [13]. Golhani
et al. have presented an excellent review of neural network based approaches to disease
detection using hyperspectral images [14]. Among the studies they review, a couple of
CNN based studies performed especially well. Such studies tend to require higher reso-
lution images and thus are most suitable for UAV based imagery. Though hyperspectral
cameras are expensive currently, with falling costs they have the potential to be employed
as an essential farm monitoring tool in the near future.

2.4. Abiotic Stress Detection

Abiotic stress is often unavoidable, especially in open-field cropping, and monitor-
ing their expression in plants is important in mitigating their detrimental effect on
crop productivity [13]. The stressors can be, for example, herbicide damage, water ex-
cess/deficiency, temperature extremes, nutrition deficiency. Using DL to detect and clas-
sify stress states, has resulted in superior performance in comparison to traditional re-
gression methods.

2.5. Weed Detection

As with disease, weeds and pests can also reduce crop productivity significantly. This
is essentially a task of identifying weeds and discriminating them from the crop by us-
ing detection/classification strategies. Early detection is of importance, which can be
effectively accomplished using high resolution data able to capture the weeds at early
stages of growth. Thus aerial and terrestrial autonomous vehicle based remote sensing
systems are ideally suited for data collection. DL frameworks applied to UAV imagery
have shown good results in accurately detecting and delineating specific weeds among
crops [15][16]. However, this is a very challenging task and highly dependent on the
specific context of the crop type and weed type. Visual similarity of the crop and weed
or occlusion of the weeds in images can significantly complicate the analysis procedure.



2.6. Yield Prediction

All efforts in crop monitoring ultimately seek to improve crop productivity, i.e., yield.
Earliest attempts at harnessing the potential of DL methods in predicting yield were
made with encouraging results (> 80%)[17]. Panda et al., used neural networks with
multiple vegetation indices to predict corn yield with high accuracy (83.5%−96%) [18].
Typically the output of the prediction model is in terms of yield classes (i.e. high, medium
or low). Elavarasan et al. in their review of ML studies in yield prediction include studies
with DL based yield prediction [19]. One of the interesting studies conducted by You et
al (2017) used a combination of CNN and LSTM networks to predict soybean yield at
regional level with very high accuracy [20]. Their method has the potential for scaling
down to intra-field yield prediction.

3. Case Study: Prediction of Yield of Wheat and Barley Fields in Satakunta,
Finland

DL models represent the data that they are trained on. As the growth of crops depends
on climate and sunlight conditions, the variation of these conditions in time and space
will potentially pose a challenge for a universal model. Thus there is a need for training
models specific to regional conditions. Keeping this in mind, an effort was made to test
the feasibility of using CNN models to predict wheat and barley yield grown in the
Finnish continental subarctic climate.

3.1. Materials

Six fields, located in the Satakunta region of Finland near the city of Pori, were se-
lected for this study. They vary in size, together accounting for 54.2 ha of land area.
The data acquisition was conducted during the 2017 growing season. Image data were
acquired using a UAV (Airinov Solo 3DR) with a multispectral camera (SEQUIOA, Par-
rot) mounted to it. Images were acquired in the early stage of crop growth, within 25%
of the total thermal time of the respective crop variety. Pertinent details about the test
fields are provided in Table 1. Crop yield data was collected in September 2017 using
two sensor systems (Trimble CFX 750 and John Deere Greenstar 1) mounted to combine
harvesters. Growth phase was determined by calculating the cumulative daily thermal
time commencing from the date of sowing for each field. Thermal time for each day was
calculated using Eq.(1), based on the daily mean temperature calculated at specific times
(t = {02:00,05:00,08:00,11:00,14:00,17:00,20:00,23:00}):

T ht = max
((1

8 ∑Tt

)
,5
)
−5 (1)

3.2. Methods

The yield data from the harvester mounted sensors were contained in shape files (a file
format for vector type geospatial data). The yield information is represented by polygons
with an attribute describing the yield (in kg) collected over the area of the polygon.



Table 1. Details of crop fields and crop varieties in the 6 test fields. Thermal time for each crop variety is the
total thermal time to crop maturity. The data to calculate the thermal time is taken from [21]. Sowing dates and
imaging dates are used to calculate the growth phase as a fraction of the total thermal time for each particular
crop variety.

Field
#

Size
(ha)

Crop:
(Variety)

Thermal
time

Sowing
date

Imaging
date

Growth
phase

1 5.14 Barley:Trekker 979.7 16 May 8 Jun 15 %
2 2.97 Barley:Trekker 979.7 17 May 8 Jun 15 %
3 4.66 Barley:Propino 981.4 15 May 15 Jun 22 %
4 7.29 Barley:Propino 981.4 15 May 15 Jun 22 %
5 15.28 Barley:Trekker 979.7 18 May 1 Jun 10 %
6 18.86 Wheat:KWS Solanus 1065 13 May 15 Jun 21 %

These were converted to point data (polygon centroids) attributed with the yield density
(kg/ha). This point data was then interpolated and rasterized to serve as the ground truth
in training the DL model. The FarmWorks software tool was used in preprocessing the
yield data.

The high resolution (0.31×0.31m) images collected using the multispectral camera
were compiled as mosaics using the Pix4D software tool and masked with the shape
of respective fields. Two types of data sets were constituted from the measurements –
3-band RGB images and 1-band Normalized Difference Vegetation Index (NDVI) data.

A CNN model was constructed using the PyTorch [22] software library and refined
through iterative tuning of relevant parameters such as: network depth (i.e., the number
of convolutional layers of the CNN), the weights of the training algorithm, the hyperpa-
rameters of the training algorithm and the parameters of the regularization method. Addi-
tionally, three different image frame sizes (10m,20m and 40m) were tested to determine
the best image size to be fed to the CNN model. After all tests were performed, the best
performance was observed with 40m× 40m RGB image frames fed to a CNN network
with 6 convolutional layers using the Adadelta training algorithm (learning rate = 0.008,
past iterations’ error adjustment coefficient = 0.58) with L2 regularization (weight decay
= 0.001) and early stopping (patience = 50).

The CNN takes three 40m×40m image frames (1 per channel in RGB) and outputs
a single density value (predicted yield). The resulting point data is georeferenced, repre-
senting the yield density predicted over the area of the image frame. In order to observe
the capacity of the model to represent the spatial distribution of yield within a field, the
point data was rasterized to visualize the predicted yield as a composite image of a single
field.

3.3. Results

The ability of the CNN model to represent the yield distribution for each field is illus-
trated by the scatter plots in Figure 3. While the trend lines have similar slopes for each
of the 6 fields, the data indicate a consistent pattern of overestimating low yields and
underestimating high yields. In order to illustrate the prediction error relative to the mag-
nitude of the yield, the mean absolute percentage error (MAPE) for each field is pre-
sented in (Figure 4). It can be seen that among the 6 fields the average percentage error
is within 6% – 14%, with corresponding medians within 4% – 10%. The largest field
(#6: 18.86 ha) was chosen to illustrate the ability of the model to follow the spatial yield



Figure 3. Correlations between the true and predicted yield for each of the 6 fields included in the study.



Figure 4. Boxplots of percentage error between true yield and predicted yield for each field.

Figure 5. Visualisation of the true and predicted yield of Field 6. a) The spatial distribution of yield as recorded
by the yield sensor on the combine harvester. b) Yield predicted by the CNN model. c) Predicted yield with
colour-scale adjusted to min-max range. d) Error between predicted and true yield.

distribution within a field (Figure 5). The raster of the predicted yield when viewed as a
colour map (Figure 5c) clearly illustrates the capability of the model to predict the spatial
variations of the true yield. However, Figure 5b illustrates that the model is only capable
of representing a limited range of values of the true yield. Figure 5d shows that the errors
(calculated by subtracting true yield from predicted yield) are mostly in the high and low
end of the range of values of true yield; thus the model over-predicts in low yield regions
and under-predicts in high yield regions.



Figure 6. Structure of the Oskari based decision support platform for farmers.

4. Decision Support for Farmers: the Oskari Platform

A project was initiated with the goal of implementing a web based data repository as
well as an analysis and decision support platform tailored to farmers’ needs. The project
explored various services and platforms and evaluated suitability based on their capabil-
ity to handle access rights of farmers to their uploaded/transferred data on an individual
basis. At the same time, emphasis was also placed on using open-source frameworks and
contributing towards open data [23]. Consequently, mapping existing solutions revealed
about 150 different platforms, though this search was not exhaustive. Overwhelming ma-
jority of the platforms were found to be either paid-for services and/or closed-source soft-
ware and were therefore considered unsuitable. Among the few suitable platforms, Os-
kari was chosen. Oskari is an open-source (www.oskari.org; licence: MIT & EUPL) tool
for web mapping applications using distributed spatial data infrastructure like Geoserver
running as the back-end. Its front-end allows data management and custom visualisation
based on an HTTP server and Java servlet extension.

The Oskari service for this project was implemented such that it can be accessed
through the peltodata.fi domain. The architecture envisaged at this stage is illustrated in
Figure 6. Through the web portal farmers can access their personal, authenticated ac-
counts, upload data for visualization and call on AI based analytical tools for decision
support. The technology to implement the analytical tools in the web based service envi-
ronment has not yet been decided; the most promising options are the Shiny environment
using the R language or the Python environment which has best support for DL models.
The models implemented so far, including the CNN based yield prediction model, have
run on a separate computer cluster.

The Data available to the farmers includes open source and proprietary data. Ex-
amples of open source data include weather data, satellite image data and land drainage
maps, for example. Farm specific harvester yield maps, UAV based remote sensing im-
age data (multispectral) and soil nutrient content maps are examples of proprietary data
whose access is restricted and controlled by their owners.



5. Discussion and Conclusions

Application of ML and DL methods to agricultural (big) data has gained a lot of attention
recently. The variety of problems addressed using these methods is wide, ranging from
fruit counting to political decision making. In this paper we have focused on decision
support for farmers cultivating open-field crops. Even in this restricted scope, there are
various tasks that could be addressed by ML and DL as indicated in section 2.

As a case study, we have presented a CNN based yield prediction model, imple-
mented and evaluated using UAV-acquired multispectral data from 6 crop fields in Sa-
takunta, Finland. The results of the case study indicate that it can, with decent accu-
racy, model crop yield based on data acquired in the early phase of the growth season.
Significantly, the model is capable of predicting within-field patterns of yield variation
with good similarity to true yield. Training DL algorithms requires large amount of data.
Kamilaris & Prenafeta-Boldú [5] lists some of the openly available datasets for train-
ing and possibly benchmarking the models. Also, training of the model and tuning of
the model parameters is of high computational complexity and therefore cannot be per-
formed on-line as a part of a decision support platform. Once trained, using the model for
yield prediction is computationally relatively inexpensive. It remains to be studied how
well the tuning of the algorithm can be generalized to the data from other areas and/or
acquired in different years. Learning the effects of climate and other environmental con-
ditions on the model efficiency is a long term research pursuit as data from different re-
gions and weather conditions needs to be acquired and analyzed. Also, employing time
sequences of data possibly using the LSTM DL networks would be a promising research
area.

The presented case study revealed some limitations of the CNN model in yield pre-
diction. The model underestimated/overestimated the yield in the regions of high/low
yield values, respectively. The reason for this kind of behavior needs to be investigated.
Another limitation is related to yield data pre-processing. In some cases the polygons of
yield data overlap causing errors in yield density maps. This limitation will be addressed
in the future by more careful pre-processing flow.

In its current form, the peltodata.fi portal aims to provide a few key services to the
local farming community. Currently, the farmers can explore the harvester yield distribu-
tion, soil properties maps, UAV multispectral images among other open source maps. The
farmers can also avail of the analyses such as predicted yield. The collaborating farmers
will be involved in the development of the service to serve their needs most appropriately.
With regards to the platform, Oskari has been adopted by several municipalities and gov-
ernment agencies in Finland, thereby forming a considerable user base. This has resulted
in a core group of Oskari developers monitoring the trends and customer requirements
to develop appropriate solutions. In addition, there are a lot of interesting data interfaces
available, for example, from the Spatineo Director. (https://directory.spatineo.com/). An
important aspect to be implemented in the future is the capability of data trading or
download/port to smart devices for intervention (e.g. application of fertilizer, weedicide
and irrigation).
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and S. Burgos, “Augmenting a convolutional neural network with local histograms - a case study in
crop classification from high-resolution uav imagery,” in 24th European Symposium on Artificial Neural
Networks, ESANN 2016, Bruges, Belgium, April 27-29, 2016, 2016.

[10] H. Yalcin, “Plant phenology recognition using deep learning: Deep-pheno,” 2017 6th International Con-
ference on Agro-Geoinformatics, pp. 1–5, 2017.

[11] J. R. Ubbens and I. Stavness, “Deep plant phenomics: A deep learning platform for complex plant
phenotyping tasks,” Frontiers in Plant Science, vol. 8, p. 1190, 2017.

[12] K. Mochida, S. Koda, K. Inoue, T. Hirayama, S. Tanaka, R. Nishii, and F. Melgani, “Computer vision-
based phenotyping for improvement of plant productivity: a machine learning perspective,” Giga-
Science, vol. 8, no. 1, jan 2019.

[13] A. K. Singh, B. Ganapathysubramanian, S. Sarkar, and A. Singh, “Deep learning for plant stress phe-
notyping: Trends and future perspectives,” Trends in Plant Science, vol. 23, no. 10, pp. 883–898, oct
2018.

[14] K. Golhani, S. K. Balasundram, G. Vadamalai, and B. Pradhan, “A review of neural networks in plant
disease detection using hyperspectral data,” Information Processing in Agriculture, vol. 5, no. 3, pp.
354–371, sep 2018.

[15] M. D. Bah, A. Hafiane, and R. Canals, “Deep learning with unsupervised data labeling for weed detec-
tion in line crops in UAV images,” Remote Sensing, vol. 10, no. 11, 2018.

[16] H. Huang, J. Deng, Y. Lan, A. Yang, X. Deng, and L. Zhang, “A fully convolutional network for weed
mapping of unmanned aerial vehicle (UAV) imagery,” PLOS ONE, vol. 13, no. 4, pp. 1–19, 04 2018.

[17] I. C. Davis and G. G. Wilkinson, “Crop yield prediction using multipolarization radar and multitemporal
visible/infrared imagery,” Proc.SPIE, vol. 6359, pp. 6359 – 6359 – 12, 2006.

[18] S. S. Panda, D. P. Ames, and S. Panigrahi, “Application of vegetation indices for agricultural crop yield
prediction using neural network techniques,” Remote Sensing, vol. 2, no. 3, pp. 673–696, 2010.

[19] D. Elavarasan, D. R. Vincent, V. Sharma, A. Y. Zomaya, and K. Srinivasan, “Forecasting yield by inte-
grating agrarian factors and machine learning models: A survey,” Computers and Electronics in Agri-
culture, vol. 155, pp. 257–282, dec 2018.

[20] J. You, X. Li, M. Low, D. Lobell, and S. Ermon, “Deep Gaussian Process for Crop Yield Prediction
Based on Remote Sensing Data,” 31th AAAI Conference on Artificial Intelligence, pp. 4559–4565, 2017.
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I. INTRODUCTION

Data from the Sentinel satellites are intensively used for
various applications such as land use and vegetation map-
ping or crop monitoring, for example. Depending on climate
conditions in the region of interest, the main obstacle in
using the data for practical monitoring purposes may be cloud
coverage. This is especially restricting if the data should
be acquired from a narrow time window corresponding, for
example, to a certain growth phase of crops. The problem
could be alleviated by more accurate and higher resolution
cloud coverage assessment compared to that available by the
product of the Sentinel data.

Currently the cloud mask of the Sentinel data is available
in the form of the Level 1C product containing vector layers
of dense and cirrus clouds. Also, the percentage of cloudy
pixels (dense and cirrus) in the mask are provided. The
Level 2A product further processes the Level 1C data to
obtain the Scene Classification layer with cloud and cirrus
probability values at 60 m spatial resolution. Calouzzi et.al. [1]
assessed these products concluding that caution has to be taken
when using the provided cloud masks and improved cloud
detection algorithms are welcome. Recently, Baetens et.al.
[2] compared three cloud mask calculation algorithms: MAJA
(used in the Level 2A product), Sen2Cor (used by ESA) and
FMask (used by USGS), using their Active Learning Cloud
Detection (ALCD) method for producing reference cloud
masks. Classification accuracy of about 90 % was obtained
by MAJA and FMask while SenCor gave 84 % accuracy.

In this paper we train the random forest classifier to assess
cloud cover in Sentinel-2 data. Our primary usage of the data
is crop monitoring and yield prediction for decision support for
farmers. Therefore, the classifier is trained using data acquired
from crop fields by UAVs: as UAVs fly below the clouds
and the data they produce is not affected by cloud cover (if
properly corrected for changes in irradiance), the difference
between the UAV and Sentinel data can be used as ground
truth for cloud cover.

II. DATA

A. Drone Images

For cloudless multispectral ground truth data, ten crop fields
were selected for imaging in the vicinity of Pori, Finland

(61◦29’N, 21◦48’E) and were imaged as a part of the MIKA
DATA project [3], [4]. The total area of the selected fields
was approximately 93 ha. Half of the fields had wheat (Ze-
bra/Mistral), three had barley (Harbringer/RGT Planet) and
two remaining had oats (Ringsaker) as the cultivated crop. The
fields were imaged during the growing season for years 2018
and 2019 from the time of sowing to the time of harvest. All
fields were imaged weekly. Due to varying weather conditions
and the proximity of an airport, the temporal allocation of
imaging flights to within a fixed daily time range was not
possible. The images were thus taken during day time.

The fields were imaged with two distinct drones, using
3DR Solo for the year 2018 and Parrot Disco-Pro AG for
2019. The drones were equipped with similar Parrot Sequioa
multispectral cameras. Distinct images were collated for each
field to build a complete image of a field using the Pix4D
software. During the process of building the image mosaics,
the band data were also automatically normalized in terms
of radiance utilizing the information provided by the multi-
spectral camera’s irradiance sensor. Using the red and near-
infrared (NIR) channels, the normalized difference vegetation
index (NDVI) was then calculated from each field’s multi-
band mosaic. To use the drone data in conjunction with the
Sentinel-2 data, the collated drone images were downsampled
to match the highest resolution available in Sentinel-2 images,
10 m/px. The downsampling was done using cubicspline
interpolation algorithm in the gdalwarp utility. Lastly, the
images for each field were cut to proper shape with field
block border data provided by Ruokavirasto (Finnish Food
Authority) [5]. This resulted in a total of 288 distinct crop
field images. The field-wise sizes, crop varieties, yearly image
counts and average valid pixel counts per image are given in
Table I

The use of NDVI images calculated from drone data is
discussed in Sec. II-C. Next we will discuss the acquisition
and processing of the Sentinel-2 satellite data.

B. Sentinel-2 Data

Sentinel-2 satellite images were selected as the source data
for the study. The data provided by the dual satellite system
are widely used in agriculture and is freely available. The
satellite images processed to the Sentinel product Level-2A [6]
were downloaded from Copernicus Open Access Hub [7].



TABLE I
SIZES, CROPS, IMAGE COUNTS AND AVERAGE PIXEL COUNTS OF FIELDS

SELECTED FOR DRONE IMAGING.

Field Size, ha Crop Image Counts Avg. Valid
Px Per Image2018 2019

1 11.08 Wheat 13 16 1065.5
2 8.24 Wheat 15 14 759.1
3 11.77 Wheat 13 16 1120.9
4 11.12 Wheat 15 16 1051.9
5 7.59 Wheat 15 16 705.2
6 7.61 Oats 12 15 739.8
7 7.24 Oats 13 15 681.9
8 7.77 Barley 13 15 1016.6
9 13.05 Barley 12 16 1251.3
10 7.95 Barley 12 16 715.5

The satellite data products were downloaded for the growing
seasons of 2018 and 2019.

The satellite data were selected with no limits on the
estimated cloud coverage. The goal was to be able to find
week-matching pairs for the drone data. The data was used
as the training data for which information about the cloudless
ground truth was available via drone data. The gathered data
spanned initially the growing seasons of years 2018 and 2019.
Part of the downloaded data was omitted during the process
of week-matching Sentinel-2 data to Drone data. The satellite
image data were cut to shape using field block borders already
utilized with the drone data to ultimately generate image
pairs of drone and satellite data aligned both temporally and
geographically for distinct fields.

C. Target Data

Supervised machine learning requires the existence of a pri-
ori labeled data, the ground truth. With the aim of estimating
cloud coverage in Sentinel-2 data in the spatial scale of crop
fields, NDVI images gathered with drones at the altitudes well
below clouds are considered as cloudless ground truth. This
consideration is in relation to satellites flying at atmospheric
altitudes. Comparing absolute values across bands for two
different sensors and imaging platforms has proven to be
difficult, as the data would require scaling to an unkown global
maximum for Sentinel-2. However, the use of NDVI alleviates
this problem by providing normalized and thus comparable
data between distinct imaging systems.

Target data needs thus to be generated using the week-
aligned NDVI data from both sources, the drone and the
Sentinel-2 systems. Each spatially and temporally aligned
satellite and drone NDVI image pair is compared pixel by
pixel to determine whether the images are similar on the level
of distinct pixels. A pixel correponds to an area of 10 × 10
meters. The similarity for a single pixel-corresponding area is
determined by

sim(s,d) =

{
1, |s− d| ≤ threshold

0, otherwise
(1)

where s and d are spatially and temporally aligned pixels for
a field from the satellite and drone sources respectively. The

mean absolute errors (MAEs) of all week-aligned image pairs
are depicted in Fig. 1. The determination of the threshold is
discussed next.

To determine a proper absolute NDVI difference threshold
for labeling Sentinel-2 pixels either similar or dissimilar to the
drone pixels (see Eq. 1), the two data sources were compared
using the Student t-test. The test was applied over the pixels in
the images to compare whether the NDVI values in the images
were statistically similar or not. A total of 15 statistically
similar (p = 0.01) week-aligned image pairs were found. It
is to be noted though, that the number of image pairs having
MAE in close proximity to the similarity threshold was higher
than just 15 (see Fig. 1).

Fig. 1. The mean absolute errors (MAE) and mean absolute deviations (MAD)
of week-aligned NDVI pairs in ascending order. The statistics are calculated
over the pixels in the paired Sentinel-2 and drone NDVI images.

The statistically similar data (15 image pairs) were then used
to empirically determine the proper threshold for classifying
NDVI differences in terms of pixel-wise similarity. The tested
thresholds were selected from the proximity of upper end of
the MAE for the statistically similar data samples as shown
in Table II. In more general terms, the task of determining
the threshold for labeling is a task of balancing between (1)
capturing as much similarities while (2) still excluding as
many dissimilarities as possible. To elaborate, labeling every
pixel in the statistically similar images as similar would require
increasing the absolute NDVI threshold to levels possibly
having some pixels incorrectly labeled as similar. The ratios
of pixels labelled as similar for each similar image pair with
different thresholds is given in Table III. In combination with
visual evaluation, a threshold of 0.075 absolute NDVI differ-
ence was selected. A single image pair with the calculated
similarity map is shown in Fig. 2.

TABLE II
NDVI DIFFERENCE METRICS

FOR SIMILAR IMAGE PAIRS

Image pairs 15

Avg. Diff. 0.001 ±0.046
MAE 0.026 ±0.022
MSE 0.003 ±0.010
RMSE 0.046 ±0.092

TABLE III
SIMILARITY RATIOS WITH

VARIOUS THRESHOLDS

Threshold Similarity

0.025 89.13%
0.050 94.40%
0.075 96.14%
0.100 97.13%

D. Building the Modeling Data Sets

After the generation of field and week specific similarity
label maps, the data required only minor preprocessing. As



Fig. 2. A visualization of a single week-aligned Sentinel-2 and drone NDVI image pair with the absolute difference and the similarity map. The first two
figures depict the NDVI maps from corresponding sources. The third figure shows the absolute difference between the aligned Sentinel-2 and drone NDVI
values. The fourth figure shows the thresholded absolute difference, indicating areas where the NDVI images are similar enough.

the Sentinel-2 data products are delivered as separate files
for distinct bands and layers, the satellite data were merged
to construct multi-band images instead of multiple images of
distinct bands. The following Sentinel-2 data were merged:

• Sensor bands: 1 to 8, 8A, 9, 11 and 12
• Level-2A layers: AOT, SCL, TCI, WVP and CLDPRB

The separately calculated NDVI data were also merged
in conjunction with the alpha-channel generated during the
processing of the data. As per machine learning best-pactices,
the categorical values from the scene classification layer
(SCL) needed to be separated to distinct binary raster layers
according to the SCL classification labels, which is also known
as transforming a multi-class representation to class-wise one-
hot representation [8].

Thus, the final processed input data constituted 30 distinct
layers of data for each pixel. The dataset was then created by
extracting multi-band Sentinel-2 pixels as input samples and
their spatially and temporally corresponding binary similarity
label map pixels as target values. In other words, a single input
sample was a [1 × 30] and its corresponding target sample a
binary-valued [1 × 1] vector. A total of 381972 input-target
samples (pixels) were extracted from the source data. The
samples were then shuffled and split into training and test
data sets with 190986 and 63661 samples, correspondingly.
No scaling was applied due to the selected decision tree based
model.

III. MODEL

Data based modeling with machine learning methods is in
practice a tradeoff between model explainability and increased
performance. While training an accurate model for classifying
distinct Sentinel-2 pixels as similar or dissimilar to the cloud-
less ground truth data from drones is the primary goal while
the explainability was deemed as an important objective to
pursue as well. This is why an ensemble model called Random
Forest from the decision tree algorithm family was selected.
The ensemble model is able to model non-linear relationships,
work with unscaled data and provide easily understandable ex-
planations of decisions’ causes [9]. The model implementation
was part of the Python’s scikit-learn framework [10].

TABLE IV
THE CONFUSION MATRIX OF SIMILARITY LABEL PREDICTIONS.

Pred/True 0 1

0 TP
23237

FP
2580

1 FN
1807

TN
36037

IV. RESULTS

The model was allowed to train 500 sub-trees, varying
the tree structure and features used for each tree, using the
training data set only. The performance of the model was then
evaluated with the hold out test data set. The confusion matrix
of model predictions against true labels is shown in Table IV.
The precision of the model is

PPV =
TP

TP + FP
= 0.900, (2)

where PPV stands for positive prediction value. The model’s
true positive rate, i.e., recall, is then

TPR =
TP

TP + FN
= 0.923. (3)

The F1-score, a statistical test accuracy measure for binary
classification analysis is then calculated using Eqs. 2 and 3 by

F1 = 2 ∗ PPV ∗ TPR

PPV + TPR
= 0.911. (4)

Another interesting metric is the negative prediction value

NPV =
TN

TN + FN
= 0.952, (5)

which shows the model’s precision in predicting dissimilari-
ties. In conjunction with test data set result analysis, the model
was also evaluated with distinct images from the original
source data.

Due to Sentinel-2 satellite data being sensitive to changes
and disturbances in atmospehric conditions, the cloud estima-
tion information from the scene classification layer (SCL) and
cloud probablity mask (CLDPRB) calculated in the Level-2A
processing of the Sentinel-2 data can not be taken as definitive



truth. They, however, form a proper baseline to which compare
the trained model’s performance against.

The model predictions are based on the similarities of
Sentinel-2 and drone NDVI images, i.e. label 1 indicates
predicted similarity. Taking a mean of a set of predicted values
describes the mean predicted similarity for that set. The two
cloudiness estimation masks in the Sentinel-2 data product are
formulated differently.

As the name indicates, the CLDPRB mask contains pixel-
wise probability values for the estimated degree of cloud
coverage. The model-equivalent similarity measure would thus
be

CLDPRBSIM = 1− CLDPRB, (6)

where larger values imply increased degree of estimated
similarity.

On the other hand, the SCL layer contains pixel-wise labels,
with some labels indicating cloudiness (see [6]). To gain
information about the SCL layer’s model-equivalent similarity
measure, the cloud-related label ratio

pcl =
count(SCLcl)

count(SCL)
(7)

is first counted with the cl being a set of cloud-related class
labels. The inverse

SCLSIM = 1− pcl (8)

can then be seen as the implied cloudless ratio for a set of
samples. The comparison of sample-wise similarity estima-
tions between the trained model and Sentinel-2 data products
are given in Table V. The estimates are given both for when
the true target value was 0 (satellite differed from drone) and
when it was 1 (satellite similar to drone).

TABLE V
SIMILARITY ESTIMATES WITH HOLD OUT TEST DATA.

y = 0 y = 1
Mean Std Median Mean Std Median

Model 0.067 0.250 0.000 0.928 0.259 1.000
CLDPRBSIM 0.446 0.454 0.260 0.970 0.138 1.000
SCLSIM 0.282 0.450 0.000 0.949 0.220 1.000

Samples 38617 25044

V. DISCUSSION AND CONCLUSIONS

Our study indicates that the Random Forest model outper-
forms the Sentinel-2 CLDPRB and SCL data layers in detect-
ing cloudy areas (y = 0). For non-cloudy areas the detection
accuracy was slightly higher for the Sentinel products (see
Table V). Several issues should be considered, however, when
comparing these results. Firstly, when training the Random
Forest classifier, the thresholded absolute difference between
the Sentinel-2 and drone data was used as the ground truth.
While it can be argued that the main cause of this difference
is cloudiness, there may also be other factors involved such as
shadows or differences in irradiance. The satellite and drone

imagery were not necessarily acquired during the same time of
the day or same day of the week, although best time-matching
pairs were looked for when selecting the data. In some cases
a couple of days may cause significant changes in the crop
development. Another limitation comes from using the NDVI
data layers for ground truth assessment. While the NDVI index
contains significant information for vegetation monitoring and
is probably a good choice when assessing cloud cover in crop
fields, its use reduces the generalizability of the results to other
land cover types.

Despite the mentioned limitations, the developed method
was found to improve the usability of Sentinel data in crop
monitoring. By visual inspection it was observed that in many
cases when the Sentinel-2 products indicated the whole crop
field to be cloud-covered, there were still significant areas of
almost clear skies. The proposed algorithm proved capable in
detecting these areas with considerable accuracy.
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Abstract: Unmanned aerial vehicle (UAV) based remote sensing is gaining momentum worldwide in
a variety of agricultural and environmental monitoring and modelling applications. At the same time,
the increasing availability of yield monitoring devices in harvesters enables input-target mapping of
in-season RGB and crop yield data in a resolution otherwise unattainable by openly availabe satellite
sensor systems. Using time series UAV RGB and weather data collected from nine crop fields in Pori,
Finland, we evaluated the feasibility of spatio-temporal deep learning architectures in crop yield time
series modelling and prediction with RGB time series data. Using Convolutional Neural Networks
(CNN) and Long-Short Term Memory (LSTM) networks as spatial and temporal base architectures,
we developed and trained CNN-LSTM, convolutional LSTM and 3D-CNN architectures with full
15 week image frame sequences from the whole growing season of 2018. The best performing
architecture, the 3D-CNN, was then evaluated with several shorter frame sequence configurations
from the beginning of the season. With 3D-CNN, we were able to achieve 218.9 kg/ha mean absolute
error (MAE) and 5.51% mean absolute percentage error (MAPE) performance with full length
sequences. The best shorter length sequence performance with the same model was 292.8 kg/ha
MAE and 7.17% MAPE with four weekly frames from the beginning of the season.

Keywords: crop yield prediction; UAV; spatio-temporal modelling; time series; deep learning;
cnn-lstm; convolutional lstm; 3d-cnn

1. Introduction

The abundance of modern sensor and communication technology already present in production
facilities and similar highly connected environments has also seeped into the realm of agriculture.
Various globally, nationally and locally available data generating remote sensing systems are in place,
providing relevant data for optimizing several agricultural outputs. On the global and national scale,
satellite systems (Sentinel and Landsat missions, for example) provide temporally relevant spatial
data about visible land surfaces. Nationally, there are various instruments in place to both track
and predict climatological variables. Data for fields and relevant other entities is also gathered on a
per-field basis by agricultural expert institutions. While satellite data is meaningful when monitoring
large fields, smaller fields common to European countries, as an example, require higher resolution
data. Human-operated unmanned aerial vehicles (UAV) play a key role in high resolution remote
sensing in fields, that otherwise would wholly be covered by just tens or, at most, a couple hundreds
of open-access satellite spatial data resolution pixels (10 × 10 m/px for Sentinel-2, for example).
Also, utilizing modern sensors and global navigation satellite system (GNSS) tracking with agricultural
machinery further adds detail to the pool of generated data. Modern data-based modeling techniques
also benefit from increased resolution of spatial data, as they are able to better learn the relevant
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features in performing a given task, e.g., intra-field yield prediction. Feeding this data to automated
processing and decision making pipelines is a vital part of Smart Farming enabling Decision Support
Systems [1].

In [2] we performed crop yield estimation with point-in-time spatial data, point-in-time estimation
being contrary to time series regression. In this study we examined the effect of time, as an additional
feature, on intra-field yield prediction. Especially, we focused on the capabilities of deep learning time
series models utilizing UAV remote sensing time series data as their inputs. Firstly, we wanted to see
if we could surpass the performance of the point-in-time model [2] by using spatio-temporal deep
learning model architectures. Secondly, we wanted to see which spatio-temporal architecture would
perform better in the same task. Lastly, we perform comparative evaluation of different sequence
configurations to perform actionable crop yield predictions with data collected at the beginning of the
growing season.

We utilize the properties of Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) networks to perform spatio-temporal modelling. The CNN is briefly discussed
in Section 2.3.1 and the LSTM in Section 2.3.2. The model architectures that we implemented are
the following:

CNN-LSTM. CNN and LSTM networks can be utilized as separate but sequentially connected
feature extractors, where the CNN first ingests spatial data and then provides extracted spatial
feature data to the LSTM [3]. These models are hereafter referred to as CNN-LSTM are discussed in
Section 2.3.3.

ConvLSTM. Convolutional learning properties can also be utilized differently. Models that utilize
convolutional layers embedded into the LSTM architecture in a manner that eliminates the necessity to
use spatial feature extraction prior to feeding the data to a sequential model are hereafter referred to as
ConvLSTMs [4] and discussed in Section 2.3.4.

3D-CNN. A fully convolutional architecture can also be used to model sequential data. It is
done by applying the convolution in the direction of time (or depth) in addition to width and
height dimensions of spatial data [5]. Fully convolutional models utilizing the third dimensions
for convolution are hereafter referred to as 3D-CNNs and discussed in Section 2.3.5.

1.1. Related Work

Regarding data similar or related to our study, recent crop-related studies utilize satellite-based
data at scales larger than single fields. Ref. [6] performed county-scale soybean yield prediction
with a CNN-LSTM architecture in parts of US. In addition to US national weather and yield data,
they used time series satellite data from the MODIS satellite system. The data resolution was from
500 × 500 m/px to 1 × 1 km/px. Ref. [7] performed crop type segmentation of small holder farms in
Germany, Ghana and South Sudan using data from Sentinel S1, S2 (10 × 10 m/px) and PlanetScope
(3 × 3 m/px) satellite systems and time of year as an additional feature. Ref. [8] performed crop type
mapping with a 30 × 30 m/px crop-specific annual land cover data combined from various satellite
data sources for the area of Nebraska, US. Ref. [9] classified crop varieties from satellite time series
data frames collected by the Chinese Gaofen missions with data resolutions from 4 × 4 m/px up to
15 × 15 m/px.

In the broader context of time series modelling with remote sensing data, several recent studies
utilize spatio-temporal model architectures. The US county-scale soybean yield prediction by [6]
was performed using a CNN-LSTM composite architecture, where a sequence of input frames was
transformed into vectors of spatial features and then fed to an LSTM. Ref. [7] employed both a
CNN-LSTM and a 3D-CNN model to perform crop type classification in Ghana and South Sudan,
feeding multi-layer remote sensing time series data frames to the models. Ref. [8] built and trained a
bidirectional ConvLSTM to predict crop maps from satellite data at the early stages of the growing
season in Nebraska. While their main contribution was to affirm the feasibility of such model, they also
employed their model in a CNN-LSTM setting, using pre-trained CNN called VGG11 [10] to extract
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spatial features from sequences of past crop map images and then feeding these sets of spatial-like
features further to the ConvLSTM. Ref. [9] used a 3D-CNN architecture in their crop type mapping
study, feeding sequences of RGB image data from distinct areas to the network thus having the model
learn both spatial and temporal features from the data. Ref. [11] built and trained a bidirectional
ConvLSTM to automatically extract meaningful features from hyperspectral data consisting of several
hundred bands for land cover pixel classification. They utilized the sequential modeling power of
the ConvLSTM for feature extraction from individual images, feeding distinct bands to the model as
if they were items in a sequence. Among other models, they also trained a 3D-CNN for the task to
compare performance. Ref. [12] utilized a Gated Recurrent Unit (GRU) in building the convolutional
recurrent model, i.e., ConvLSTM-like architecture. Their domain of application was in utilizing
novel machine learning methodologies in performing land cover classification from satellite data.
They employed their ConvLSTM-like model in parallel with a CNN to produce pixel-level land cover
classification and report improved performance against widely utilized decision tree models for similar
task. Ref. [13] employed the ConvLSTM in a encoder-decoder architecture to predict maize growth
stage progression using several meteorological features using nationally collected meteorological data
in China. The ConvLSTM was used as a feature extracting encoder while the decoder was an LSTM
producing a desired output sequence. They modified the ConvLSTM to perform 1D convolutions
on row-like data. A CNN-LSTM was also trained for comparative purposes. Ref. [14] compared
the performance of 3D-CNNs against other deep learning architectures in the task of performing
scene classification based on hyperspectral images. While the domain of their application is that of
spectral-spatial and not spatio-temporal, they report 3D-CNN performing the best among other tested
model compositions. Ref. [15] employ a wide array of CNN configurations to perform yield estimation
using soil and nutrient information available pre-season arranged as spatial data. Most relevant to our
study is their utilization of a 3D-CNN architecture which they use to ingest point-in-time data and
learn salient features across varying input data rasters to estimate the crop yield.

1.2. Contribution

In contrast to studies performed at larger spatial scales, the main contribution of our study is to
perform time series based intra-field yield prediction with multi-temporal data collected during the
growing season with UAVs. In the context of using of remote sensing data in performing data-based
modeling to aid in Smart Farming, we perform time series regression with remote sensing data,
which is both collectable using commercially available UAVs and has spatial resolutions well below
1 × 1 m/px. We also use meteorological information, cumulative temperatures, to inform the models
about change between weekly data. Our study builds on [2], introducing an extra variable to the
modeling task, time, to see whether using time series data is more beneficial than using point-in-time
data only. We develop, train and compare several spatio-temporal models to determine the most
suitable model for intra-field yield modelling from a selection of models already utilized in the context
of spatio-temporal modelling with remote sensing data. To also see if the spatio-temporal models can
be used with a limited sequence of data from the beginning of the growing season, we evaluate the
predictive capabilities and, thus, the usability, of the best performing model by feeding it time series
data limited in this manner.

2. Materials and Methods

2.1. Data Acquisition

RGB images. Nine crop fields totaling to approximately 85 ha and having wheat, barley and oats
as the crop varieties, were included in the study. The data was acquired during the year 2018 in the
proximity of Pori, Finland (61◦29′6.5′ ′ N, 21◦47′50.7′ ′ E). Specific information about the fields is given
in Table 1. The fields were imaged with a SEQUIOA (Parrot Drone SAS, Paris, France) multispectral
camera mounted on a Airinov Solo 3DR (Parrot Drone SAS, Paris, France) UAV from the average
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height fo 150 m using a minimum of three ground control points for each field and preflight color
calibration. The imaging was done weekly, from week 21 to 35 and spanning 15 weeks in total. Due to
weather conditions precluding UAV flight, gaps in data were present. For each field-specific set of
images, a complete mosaic image of a field was constructed with Pix4D (Pix4D S.A., Prilly, Switzerland)
software and cut to match the shape of the field boundaries. Radiometric correction was perofrmed
using the illumination sensor of the Sequioa camera. The field image data was used as inputs to
perform predictions with the considered models.

Table 1. The fields selected for the study in the proximity of Pori, Finland. The thermal time is
calculated as the cumulative sum of temperature between the sowing and harvest dates. Mean yield
has been calculated from processed yield sensor data for each field.

Field
Number

Size
(ha)

Mean Yield
(kg/ha)

Crop
(Variety)

Thermal
Time

Sowing
Date

1 11.11 4349.1
Wheat

(Mistral) 1290.3 13 May

2 7.59 5157.6
Wheat

(Mistral) 1316.8 14 May

3 11.77 5534.3
Barley
(Zebra) 1179.9 12 May

4 11.08 3727.5
Barley
(Zebra) 1181.3 11 May

5 7.88 4166.9
Barley

(RGT Planet) 1127.6 16 May

6 13.05 4227.9
Barley

(RGT Planet) 1117.1 19 May

7 7.61 6668.5
Oats

(Ringsaker) 1223.4 17 May

8 7.77 5788.2
Barley

(Harbringer) 1136.1 21 May

9 7.24 6166.0
Oats

(Ringsaker) 1216.4 18 May

Weather data. The weather data was acquired from the open interface provided by the Finnish
Meteorological Institute for Pori area. The thermal growing season started on 13th of April in 2018
and the cumulative temperature was calculated using that as the beginning date. As growth of crops
is dictated by the accumulation of sunlight amongst other climatological, soil and nutrient variables,
cumulative temperature was deemed robust enough indicator of interval between subsequent data
collection days (instead of e.g., time in days). Being a common way to express crop growth phase,
the cumulative temperature was utilized as a part of the input data to encode passing of time for the
temporal models.

Yield data. As the target data, i.e., the data used as the ground truth for training the models,
yield data was acquired during the harvest of each field. The harvesters were equipped with either
a Trimble Navigation (Sunnyvale, CA, USA) CFX 750 or John Deere (Moline, IL, USA) Greenstar
1 yield mapping sensor systems. The systems produce a cloud of geolocated points with multivariate
information about the harvest for each point in vector format. This data was first accumulated
field-wise and then filtered to contain data points where the yield was between 1500 and 15,000 kg/ha
and the speed of the harvester was between 2 and 7 km/h [2]. Finally, the yield map rasters were
generated by interpolating the vector points over each field.

2.2. Data Preprocessing

The RGB images taken with the UAV and the cumulative temperatures for imaging dates were
utilized as the input data with which the predictions about yields were performed. As spatial models
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generally have a built in limitation of being able to utilize data with fixed dimensions only, data had to
be clipped to smaller fixed dimension frames. As an intended side-effect, using smaller frames makes
it possible to better model intra-field yield variability. Like in [2], the fields were split into smaller
overlapping frames of size 40 × 40 m with a lateral and vertical step of 10 m. cumulative temperature
was added as an additional layer in conjunction with the RGB-layers to have the data contain necessary
information for temporal feature learning. The added layer contains constant values corresponding to
the field and time of acquisition. The design choice of introducing this data as an additional layer was
to have a single source of similarly constructed data for each model architecture.

During the extraction of frames we included every frame that had at least half of its data present
at field edges into the final data set. The reasoning behind this was that the spatial models effectively
learn filters that are applied over the spatial input data in a successive manner (see Section 2.3.1 for
more). Thus, salient features are expected to be present in a frame albiet being just partial due to being
located at a field’s edge.

The data was also scaled to aid the models in their learning. All values were scaled to
the range [0, 1] using feature-wise maximum values as scalers. For the value ranges of unscaled
input RGB data, the cumulative temperature calculated from the beginning of the thermal growing
season and yield data, see Table 2. As the input data for this study was temporally sequential,
the geolocationally matched frames were clipped across every image acquired at a different date for
each field. Each sequence of frames was then coupled with geolocationally matching average yield.

Table 2. The value ranges of used input and target variables prior scaling.

Data Min Max Mean Std

RGB: R 105 254 186.0 19.5
RGB: G 72 243 154.3 18.8
RGB: B 58 223 126.7 18.9
Cumulative ◦C 388.6 2096 1192 545.0
Yield, kg/ha 1500 14,800 5287 1816

As the last step, the sequences of frames coupled with matching yield information were shuffled
and split to training and hold out test data sets with 70%/30% ratio. The samples in the training set
are used to optimize the model during the training. The test set is then utilized to evaluate model
capabilities with previously unseen data, i.e., its generalization capabilities.

With the total number of generated sequences of frames being 2586, the training data set contained
1810 frame sequences (27,150 frames) and the test set 776 frame sequences (11,640 frames). The general
process of generating the frames is depicted in Figure 1.

With the resolution of 0.325 px/m, a single spatial layer in the input data had the dimensions of
128 × 128 px. Using RGB-data with an additional layer constructed from the cumulative temperature
conforming to the imaging date, a single frame of data consisted of four layers. With 15 frames,
each frame corresponding to a particular week of the growing season, an input sequence of frames
thus had the dimensions of [15× 4× 128× 128].
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Figure 1. Input frame sequence and target average yield extraction process. Sequences of frames S
of fixed width and height were extracted from cumulative temperature enhanced RGB image mosaic
sequences as the input data, with f being a distinct field and s f

i,j an extracted sequence of frames from
f . The four-layer YBRG, Y being the cumulative temperature, input frames were then geolocationally
paired with corresponding yield data to form input-target pairs. Lastly, data was shuffled and split to
training and test sets.

2.3. Model Architectures

2.3.1. Convolutional Neural Networks

Convolutional neural networks, often referred to as CNNs, have solidified their place in modeling
tasks where the input data is either spatial or spatially representable [16,17]. The main component of
the model is the convolution operation, where a set of trainable kernels (or filters) is applied to the
input data resulting in a set of spatial features describing the data. For more in-depth explanation
of the operations within a single convolution layer, like the application of convolution and pooling,
see [2]. The model learns basic features in the first layers and composite features of these basic features
at further layers [18]. To help the model better learn these features, batch normalization can be applied
to the inputs [19]. The final output of a plain CNN is a set of feature maps. Depending on the use case,
these can be either directly utilized or, for example, flattened and fed to a fully connected (FC) layer
for regression or classification purposes.

2.3.2. Long Short-Term Memory Networks

The Long Short-Term Memory (LSTM) networks, originally introduced in [20], have been widely
utilized in sequence modeling tasks [21]. There are two general concepts to the LSTM that help it in
learning temporal features from the data. The first is the concept of memory, introduced as the cell
state. The other is the concept of gates, effectively trainable FC layers, manipulating this cell state in
response to the new inputs from the data and past outputs of the model. To handle sequences of data,
the model loops over the sequences altering its cell (C) and hidden (H) states in the process using the
combination of learned parameters in the gates and non-linear activations when combining the gate
outputs. Following the Pytorch [22] implementation of LSTM, the following functions are computed:
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where g{i, f ,c,o}
t are the outputs of the input, forget, cell and output gates, respectively. The gates of

the model contain its trainable parameters W. xt denotes the external input and ht−1 the model’s
previous output. t denotes the current time step. Ct and Ht are the final computed cell and hidden
states, respectively. The output Ot of the model is the last computed hidden state Ht. b are the bias
factors and � is the dot product. The general architecture of an LSTM is depicted in Figure 2.

Figure 2. The inner architecture of an LSTM at a time step t. The model takes as its inputs the
previous cell state Ct−1 and hidden state Ht−1 with the current item xt of the input sequence. The Ht−1

and xt are then passed to forget (WF), cell (WC), input (W I) and output (WO) gates. These gates,
effectively shallow FC layers, are responsible for determining what to keep from previous memory
Ct−1 accumulated from past experiences and what to incorporate to it as the current Ct. This is how
the model is able to learn temporal features.

LSTMs can also be employed in bidirectional and stacked form. Bidirectional LSTMs train
an additional model in comparison to the unidirectional LSTM presented in Figure 2. One LSTM
reads the input from start of the sequence to end (t0 → tn), while the other reads the input from
end to start (tn → t0). The outputs of these two parallel models are then combined as final
temporal feature outputs [23]. When LSTMs are stacked, the first LSTM operates on the input
sequence and subsequent LSTMs then operate on sequences of temporal feature outputs produced by
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preceding models. Bidirectionality helps the model learn features from both sides of input sequences,
while stacking helps in learning higher level temporal features [24].

2.3.3. CNN-LSTM

The CNN-LSTM is a composite model consisting of a spatial feature extractor or transformer,
i.e., a pretrained CNN, and a temporal model, the LSTM [3]. The general idea is to both gain the ability
to utilize spatial data and perform sequential modeling with LSTM networks.

The architecture of the pretrained CNN was implemented according to [2] with certain adaptations
to have the model better serve as pre-trained spatial feature extractor of the composite CNN-LSTM.
Firstly, the model was modified to accept four-band inputs. Secondly, the CNN layers were decoupled
from the prediction-producing FC layers as a separate sub-module. Other than those two, the CNN
consists of six convolutional layers with batch normalization in every layer and max pooling applied
in the first and last layers. All convolution operations utilize 5× 5 kernels with 128 kernels in the last
operation and 64 in the ones preceding that. The convolutions are performed with zero padding to
maintain constant dimensions. The maintaining of dimensions was initially implemented to allow
adding an arbitrary number of in-between convolutional layers to the model without diminishing
the intermediate hidden output dimensions to oblivion. The input max pooling uses a 8× 8 and the
output max pooling a 2× 2 kernel. The output of the last convolutional layer is passed to a linear layer,
squashing the hidden feature space to 256 features akin to [3]. These features are fed to the recurrent
LSTM model. When pre-training the CNN only, the output of the squashing linear layer is fed to
another linear layer producing the prediction outputs for error metric calculations. This outermost
linear layer is omitted when the CNN is used as a part of the CNN-LSTM. The architecture of the
spatial feature extracting CNN of the composite CNN-LSTM model is depicted in Figure 3.

Figure 3. The spatial feature extracting CNN of the CNN-LSTM composite model, i.e., the pretrained
CNN. The model is similar to the best performing model of [2]. Alterations in the FC layer composition
had to be made to provide sufficient features for the LSTM utilizing the CNN as its input generator.

The temporal feature extracting part of the model is an LSTM, accepting sequences of spatial
features as its inputs. During the hyperparameter optimization, we performed architectural
experiments also with bidirectional and stacked (multi-layered) LSTMs. Generally, the option to
use dropout [25], a regularization technique, is also part of the architectural implementation and that
is also the case with Pytorch’s LSTM implementation.

While the spatial feature extracting CNN could have been jointly trained with the LSTM, we chose
to use a pre-trainend CNN to see whether the point-in-time spatial features could be utilized to perform
sequential regression, similar to [10]. We selected this approach also to tie the composite model better
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to the framework of the study by [2] by first training the CNN and then examining the ability of the
LSTM to learn the temporal features in isolation from the CNN.

2.3.4. ConvLSTM

ConvLSTM [4] is a model combining the features of convolutional and sequential models into
a single architecture, using convolutional layers (convolution with pooling etc.) as the LSTM’s gate
functions. This makes it possible to feed the sequential model the spatial data directly. Akin to how
convolutional networks learn, the gates learn to utilize the convolutional kernels to provide the best
set of spatial features when building and modifying the cell state C. Thus, contrary to the CNN-LSTM,
no pre-extraction of spatial features for further spatial modelling is required. Our implementation of
the recurrent architecture follows Equation (1).

From the point of architectural composition, the ConvLSTM is an LSTM at its essential core. In the
ConvLSTM, using Figure 2 as a reference, the cell and hidden state altering gates W{F,C,I,O} have,
however, been changed from conventional LSTM’s shallow FC layers to shallow CNNs. To extract
robust features from the input data, the gates W∗x for inputs also employ a max pooling layer with a
3× 3 kernel having padding and stride to halve input image dimensions after the first convolution.
Due to the nature of CNNs learning spatial features in increasing complexity from layer-to-layer,
we also allowed the model to utilize up to two convolutional layers for each W. Like with the
CNN of the CNN-LSTM, we wanted to make sure that the intermediate feature map dimensions
remaing unchanged, i.e., do not diminish as items in the sequences are processed. Thus, we used
32 convolutional kernels with 5× 5 kernel shape and sufficient padding. The possibility to use batch
normalization for inputs, stacking, bidirectionality and dropout were also implemented to find the
best performing architectural composition.

2.3.5. 3D-CNN

As initially reported by [5], 3D-CNNs performed remarkably well in modeling tasks involving
spatio-temporal data. Being CNNs, the 3D-CNNs utilize all same architectural features as more
commonly used convolutional models. What’s different is their use of convolution in the depth
dimension, searching for robust features across sequences of input data in addition to spatial features
extracted from the individual images. The sequential nature of input data is not limited to time,
but can also be, for example, hyperspectral multi-layer point-in-time data with the aim of finding
salient intra-band features [14]. The 3D-convolution is applied with a learnable three dimensional
kernel, depicted in Figure 4. Kernel dimensions are in [Z × X × Y] format, where Z denotes the
time dimension.

Figure 4. An illustration of 3D convolution. The 3D convolution operation effectively applies the kernel
in one additional dimension cmompared to the normal convolution, the depth or z-axis. Like the input,
the kernels are three dimensional. The dimensions of the feature map conform to how many times a
kernel can wholly be applied to the input data along all three dimensions. With stride of one in each
dimension, a [2× 2× 2] kernel is applied on a [4× 3× 3] input sequence of layers two times in x and y
dimensions and thrice in z dimension, resulting in a [3× 2× 2] feature map, its values being sums of
products over distinct applications of K akin to 2D convolution.
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The general architecture of the 3D-CNN we implemented conforms closely to how a CNN is
generally constructed with the exception of using 3D instead of 2D convolutions. In the first layer
the data is, however, grouped by layers as depicted in Figure 5. This is to have the model learn the
spatio-temporal features of the data on a per-layer basis.

Figure 5. In the first layer of the 3D-CNN, the sequences of multi-layer input data are handled
layer-wise. This helps the model first learn layer-wise spatio-temporal features, which are then
composed as interlayer spatio-temporal features in the subsequent layers.

Our implementation follows the general CNN architecture of Figure 3. All layers prior to the
last have the same number of kernels, the last having twice as many. We employ max pooling
only in the first and last layers while the intermediate layers preserve intermediate feature map
dimensions. The exact number of kernels is determined via hyperparameter tuning. As per [5],
we perform convolutions with [3 × 3 × 3] kernels with zero padding, having the pooling layers
perform the diminishing of feature map dimensions. Mixing the depth-wise steps from [5] and spatial
steps from [2], the first max pooling employs a [1× 8× 8] kernel while the last a [2× 2× 2] kernel.
The kernels’ strides equal respective kernel sizes, i.e., no overlap is applied. Like with the ConvLSTM,
we the option to utilize batch normalization in every layer was also implemented for hyperparameter
tuning purposes.

2.4. Training and Optimization

The process of training neural networks generally requires hyperparameter tuning. While model
parameters, such as the layer-wise weights, are optimized during training in response to regression
errors with the selected optimization algorithm, the hyperparameters are what dictate how the model
is initialized and in what manner the optimization is applied. Examples of these hyperparameters
include the learning rate and model depth. From available hyperparameter tuning methods we chose
to use random search, in which a distribution is defined for each hyperparameter and then a value is
randomly drawn for each distinct training [26].

We first performed the hyperparameter tuning for the pretrained CNN of the CNN-LSTM.
Unlike sequential models, the pretrained CNN was fed single frames (i.e., point-in-time) drawn
randomly from the set of all training data set frames. The goal was to have the model learn general
spatial features for the whole growing season. Following [2], we used Adadelta [27] as the optimizer.
Due to having input data consist of four distinct layers instead of only RGB layers, we performed
tuning for the learning rate. Weight decay and the ρ coefficient were utilized from [2].

For the spatio-temporal models, we used Adam [28] as the optimizing algorithm for
each model architecture akin to [7,8,11]. The spatio-temporal models were trained with frame
sequences. Each model was tuned for LSTM and CNN architectural (where applicable) and
optimizer hyperparamenters. The architectural and optimizer hyperparameters are given in Table 3.
All hyperparameters were tuned simultaneously and not in sequential succession, meaning that the
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hyperparameter values were drawn from their respective distributions for each hyperparameter at the
start of a training.

Table 3. The model-specific hyperparameters and their distributions tuned during the random search.
Square brackets indicate closed interval with lower and upper limit included, while curly brackets
indicate a set from which a value was chosen from. The presence of ∨ indicates a boolean toggle with
p = 0.5. The log10-uniform distribution used for the learning rate draws a value a from a float-uniform
distribution in a given range to calculate 10a.

Hyperparameter Distribution Pre-CNN CNN-LSTM ConvLSTM 3D-CNN

LSTM Architectural parameters
LSTM layers int-uniform - [1, 3] [1, 3] -
Dropout float-uniform - [0, 1] ∨ 0 [0, 1] ∨ 0 -
Bidirectional bool 0∨ 1 0∨ 1 -

CNN Architectural parameters
CNN layers int-uniform - - [1, 2] [2, 5]
Batch normalization bool - - 0∨ 1 0∨ 1
Kernels set - - {32, 64, 128} {32, 64, 128}

Optimizer parameters
Learning rate log10-uniform [−4,−1] [−4,−2] [−4,−2] [−4,−2]
L2-regularization float-uniform - [0, 1] ∨ 0 [0, 1] ∨ 0 [0, 1] ∨ 0

With each sequential model type we performed 300 distinct model training session, using random
search for hyperparameter tuning and Skorch [29] as the training framework. For the pretraining of
the CNN-LSTM’s spatial feature extracting CNN, 50 models were trained to tune the learning rate due
to the additional layer in inputs. The ρ-coefficient of the Adadelta algorithm and the weigth decay
parameters were utilized from [2]. The total number of trained models was thus 950. The parameters
of each model were initialized with xavier-uniform intialization [30]. During training, we utilized early
stopping with patience for stagnant progress of 50 epochs. A single training iteration was allowed to
continue for a maximum of 250 epochs. With continued training, where the best performing model
parameter configuration is utilized as the starting point for a subsequent round of training, a model
was allowed to be trained a maximum of 500 epochs. However, the use of early stopping was allowed
to halt the training prior reaching that limit. Training was conducted with a separate training data
set, having the training process utilize 5-fold cross-validation, where the training and validation
batches are derived from the training data set. The final evaluation of a trained model was performed
with the hold-out test data set. The models were trained in a distributed computation environment,
utilizing Nvidia Tesla V100 Volta and Pascal architecture cloud GPUs.

3. Results

From the sets of trained models produced during the hyperparameter tuning process, the best
performing models were singled out. During training we monitored the mean squared error (MSE)
of the 5-fold cross validation. We also computed metrics for root mean square error (RMSE),
mean absolute error (MAE) of unscaled targets, mean absolute percentage error (MAPE) and the
coefficient of determination (R2). The best performing model architecture was the 3D-CNN, expressing
notably better performance with the best performing model than the rest of the trained architectures.
The model performing worst was somewhat surprisingly the ConvLSTM, showing performance
inferior even to the pretrained CNN trained with just point-in-time data. The performance metrics for
the unscaled predicted and true target values for each model architecture are given as in Table 4.
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Table 4. The performance metrics of the best-performing models resulting from model-specific
hyperparameter tuning process with samples from the test set. The trained models were evaluated
with a hold-out test set. Best performance was achieved with the 3D-CNN architecture. The number of
trainable parameters indicate the model complexity. Best performance values are in bold text.

Model Test RMSE
(kg/ha)

Test MAE
(kg/ha)

Test MAPE
(%)

Test R2

-
Trainable
Parameters

Pretrained CNN 692.8 472.7 10.95 0.780 2.72 × 106

CNN-LSTM 456.1 329.5 7.97 0.905 2.94 × 106

ConvLSTM 1190.3 926.9 22.47 0.349 9.03 × 105

3D-CNN 289.5 219.9 5.51 0.962 7.48 × 106

The most consistently fitting sequential architecture was the CNN-LSTM in terms of test set
performance with trained models. Other architectures produced occasional ill-fitted models with
errors several magnitudes higher than their best performing counterparts. The RMSE percentiles
depicting the general consistency in fitting for the spatio-temporal models are given in Table 5.

Table 5. The RMSE percentiles accross all trained spatio-temporal models. The RMSE percentiles
indicate the consistency of a model architecture in generalizing to unseen samples with the training
data. Out of the three, the CNN-LSTM was most consistent in how it was able to fit to the data and
produce generalizable results. The training of other model architectures produced occasionally ill-fitted
models. Best performance values are in bold text.

Model Test RMSE (kg/ha)
Min 25% 50% 75% Max

CNN-LSTM 456.1 655.1 1475.6 1623.7 2.152 × 103

ConvLSTM 1190.3 1477.8 1646.6 8750.2 1.334 × 106

3D-CNN 289.5 1355.4 1493.6 1649.0 1.926 × 106

Due to the training of the model architectures being a process of empirically evaluating randomly
drawn hyperparameter sets, visualization of the hyperparameters against a performance metric further
helps in understanding model fitting consistency. Out of the architectures, the CNN-LSTM and the
3D-CNN show similar behaviour in hyperparameter value distribution, the latter having a discernible
dispersion in the values against the performance metric. ConvLSTM, as already stated, exhibits clearer
sporadicity. The architecture-specific hyperparameter distributions plotted against the test RMSE are
given in Figure 6.

The best performing configuration of hyperparameters dictating how a model is to be initialized
and trained were sought by performing random search. In random search, each hyperparameter is
assigned with a distribution, from which a value is drawn for each independent training of the model.
The hyperparameters for the best performing models are given in Table 6.

In addition to performing comparative performance evaluation between the selected deep learning
architectures with data sequences spanning the time from sowing to harvest, we also evaluated the
performance of the best performing model configuration (architecture with hyperparameters) using
data from an actionable time frame. In other words, we combined various configurations of input data
sequences starting from image data acquisition dates closest to sowing (week 21) and ending at the
midsummer (week 25). The following sequence configurations were built using the aforementioned
time range:

• Weeks 21, 22, 23, 24, 25; five temporal frames.
• Weeks 21, 22, 23, 24; four temporal frames.
• Weeks 22, 23, 24, 25; four temporal frames.
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• Weeks 21, 22, 23; three temporal frames.
• Weeks 23, 24, 25; three temporal frames.
• Weeks 21, 23, 25; three temporal frames.

We trained ten iterations of the best model configuration, the 3D-CNN, for each input sequence
type to account for the effects of random model parameter initialization. The training was conducted as
before, utilizing 5-fold cross-validation with the training data and testing the generalization capabilities
with the hold-out test data, separately. The performance of these trained models with the test data
are given in Table 7, where each row corresponds to a distinct configuration of input frame sequences.
The best perfoming configuration in terms of RMSE and MAE is the four week long sequence taken
from the beginning of the season (weeks 21 to 24). In terms of MAPE, the best performing configuration,
however, consists of five weeks from the beginning of the season (weeks 21 to 25), although the
difference to the four week sequence is small.

Figure 6. The architecture-specific distributions of hyperparameters against the test RMSE (x axis).
(a,b) are the optimizer hypeparameters and (c) is the training length in epochs. (d,g,h) are the LSTM
architectural hyperparameters, while (e,f) are the CNN architectural hyperparameters. (d,e,f,h) contain
categorical values in y axis with values spread category-wise for easier observation of clustering.
The rest of the sub-figures have a continuous y axis.

Table 6. The architecture specific hyperparameter values for the best performing models. The value
types conform to the values given in Table 3. The feature extracting CNN of the CNN-LSTM was not
tuned for hyperparameters as tuning results from previous study were utilized.

Hyperparameter Pre-CNN CNN-LSTM ConvLSTM 3D-CNN

LSTM Architectural parameters
LSTM layers - 2 2 -
Dropout - 0.5027 0.9025 -
Bidirectional - 0 1 -

CNN Architectural parameters
CNN layers 6 * - 1 5
Batch normalization Yes * - No No
Kernels 128/64 * - 32 32

Optimizer parameters
Learning rate 1.000 × 10−1 7.224 × 10−4 1.361 × 10−3 1.094 × 10−4

L2-regularization 0.9 * 0.0 0.0 0.0

* Values taken from [2].
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Table 7. Retraining results of the best performing 3D-CNN configuration with various input sequence
configurations from the test set. The input data was constructed from the first five imagings (weeks 21
to 25). The composition of weekly data was varied and variations evaluated by fitting the best
performing 3D-CNN configuration to each variation. Best performance values are in bold text.

Weeks in
Input Sequence

Test RMSE
(kg/ha)

Test MAE
(kg/ha)

Test MAPE
(%)

Test R2

-

21, 22, 23, 24, 25 413.8 320.6 7.04 0.921
21, 22, 23, 24 393.9 292.8 7.17 0.929
22, 23, 24, 25 439.3 343.0 7.90 0.911
21, 22, 23 543.5 421.4 10.02 0.864
23, 24, 25 425.0 326.6 8.25 0.917
21, 23, 25 478.1 369.3 8.72 0.895

Operating with single frames, the models can be used to construct predictions for whole fields.
This is achieved by extracting frames from an image of the fields and feeding them as inputs to
the model. Re-arranging the predictions to original field shape yields a map of frame-wise yield
predictions. The performance of the best performing 3D-CNN configuration with both full length
and shortened sequences is illustrated in Figure 7 with a 10 m step between predicted points. As the
test set was constructed from frame sequences randomly taken from all extracted frame sequences,
the illustrations contain frames from both the training and the test set.

Figure 7. Frame-based 3D-CNN model performances against true yield data. (a) is the true yield map
of the field. (b) is the modelled prediction, utilizing the full length frame sequences. (c) is then the
actual in-season prediction utilizing four first frames of the weekly frame sequence. Units are absolute
values in crop yield kg/ha. One pixel in the images corresponds to a 10 × 10 m area. Images are
unsmoothed, represent the values as they were produced and contain samples from both training and
test sets due to how the sets were constructed.

4. Discussion

In this study we evaluated the feasibility of using spatio-temporal deep learning architectures in
modelling crop yield at the intra-field scale. Using sequences of UAV and weather data collected in
the vicinity of Pori, Finland, during the growing season of 2018, we split the fields to geolocationally
matched temporal sequences of frames of fixed width and height. We developed and trained three
different model architectures: CNN-LSTM, ConvLSTM and 3D-CNN. We first determined the best
performing architecture by performing hyperparameter tuning with complete temporal sequences of
frames (15 time steps). With the best performing model architecture and hyperparameter configuration
we then evaluated the predictive capabilities of the models by using a shorter temporal sequence of
frames from the beginning of the growing season.

Of the architectures, the 3D-CNN performed the best in full sequence modelling. The best
performing model consisted of five 3D-CNN layers using 32 kernels in the layers. Other architectural
configurations are given in Section 2.3.5. The model attained 218.9 kg/ha test MAE, 5.51% test MAPE
and 0.962 test R2-score. Compared to the study presented in [2] using just a point-in-time single
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frame predictor with 484.3 kg/ha MAE and 8.8% MAPE, the modelling performance was improved by
265.4 kg/ha MAE (54.8% improvement) and 3.29% MAPE (37.4% improvement). In terms of prediction
performance with smaller sequences from the beginning of the season, the 3D-CNN performed the
best using four first frames of the whole input sequences. With a shorter sequence the model attained
292.8 kg/ha test MAE, 7.17% test MAPE and 0.929 test R2-score. The respective improvements to
the best performing model presented in [2] were 191.5 MAE (39.5% improvement) and 1.63% MAPE
(18.5% improvement).

Recent studies make use of UAVs in a variety of imaging applications. The use of UAVs has
become more common, as shown in [31], a review of UAV thermal imagery applications in the domain
of precision agriculture. One of the reasons is the increased need of performing classification and
regression at scales more accurate than what is attainable by publicly available satellite data sources.
However, the use of point-in-time UAV data is common. Ref. [32] utilized UAVs to gather hyperspectral
data of potato tuber growth at the resolution of 2.5 cm/px. They utilized traditional ML methods, such
as linear models and decision trees, to perform tuber yield estimation using individual data points
gathered in-season at the intra-field scale, achieving 0.63 R2-score for the tuber yield prediction accuracy
with a Ridge regression. Ref. [33] used UAV to collect multispectral data from wheat and corn fields to
estimate intra-field crop nitrogen content using linear regression and point samples—spatial features
were not utilized. They fit multiple linear models to wheat and corn and attained 0.872 R2-score on
average. Ref. [34] performed wheat leaf area index and grain yield estimation with various vegetation
indices derived from point-in-time multispectral UAV data using multiple machine learning methods,
neural networks included. The highest performance they attained was 0.78 R2-score with a Random
Forest. However, they fed the input data as point samples.

Satellites perform frequent overflights over vast areas accross the globe. They are thus an ideal
source of automatically generated multi-temporal remote sensing data [35]. This is one of the reasons,
why spatio-temporal modelling is more notably present in the context of publicly available satellite
data sources, contrary to UAV data requiring manual collection. Spatio-temporal models akin to
the setting of our study have been utilized in various modelling tasks with remote sensing data in
the domain of agriculture. Performing county-scale soybean yield prediction, ref. [6] used a CNN,
an LSTM and a composite CNN-LSTM to model soybean yield with in-season satellite data. They
achieved an average 0.78 R2-score with the spatio-temporal CNN-LSTM model. Their input data
resolutions were from 500 × 500 m/px to 1 × 1 km/px. Ref. [7] performed crop type classification in
Europe and Africa with multi-temporal satellit data at resolutions from 3 × 3 m/px to 10 × 10 m/px.
They attained F1 scores 91.4 for the CNN-ConvLSTM and 90.0 for the 3D-CNN, averaged over crop
types in their Germany data set. Ref. [8] performed pre-season crop type mapping for the area of
Nebraska, US, employing a CNN-ConvLSTM to extract spatio-temporal features from multi-temporal
multi-satellite composite data set. Using prior years of crop type related data to predict a map of
crop types, they attained an average accuracy of 77% across all crop types in their data. The data was
processed to a resolution of 30 × 30 m/px. Ref. [9] utilized a 3D-CNN to classify crop types from
multi-temporal satellite data gathered from an area within China, acquiring a classification accuracy of
98.9% with the model. Their input data resolutions were from 4 × 4 m/px to 15 × 15 m/px. Ref. [36]
performed weekly UAV image collections in a controlled field experiment with soybeans, performing
seed yield prediction with multiple linear models fit the multi-temporal data. Thus, spatio-temporal
modelling with novel techniques was not performed. With seed yield prediction, they achieved 0.501
adjusted R2 score. The resolution of their data was 1.25 × 1.25 cm/px.

In remote sensing, the multitemporal aspect of satellite sensor data the has been well studied.
In their review of the applications of multisource and multitemporal data fusion in remote sensing,
ref. [37] show how studies utilizing the temporal feature of satellite data are rather common. However,
in terms of models and data usage settings, they only briefly mention how novel deep learning
architectures have only recently been applied in this data domain. They cite that both data and
methods, especially the latter, are still under development and a subject of further research. While some
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studies have not found additional benefit in using multitemporal data [38], partly due to selected data
utilization techiniques, others find benefit over using just point-in-time data [33,35–37].

Regarding the poor performance of the ConvLSTM in our study, the studies by [7,8] might provide
some basis for understanding the phenomenon. In both studies, the ConvLSTM was preceded with
an exclusively spatial feature extracting CNN model. The extracted feature maps were then fed to
the ConvLSTM for temporal feature extraction. While in our study we experimented with multiple
convolutional layers in the ConvLSTM model, it could very well be that using a pre-trained CNN akin
to CNN-LSTM is required for the ConvLSTM as well. Model complexity is another way to look at
this, as the 3D-CNN model was more complex compared to the ConvLSTM. This indicates that the
effective capacity of the ConvLSTM might indeed be too low. Thus, increasing the effective capacity by
either adding a spatial feature pre-extractor or increasing the gate-wise layer count could increase the
performance of this model architecture in similar study setting.

As we utilized weather information at city-scale, the precision of change in the growth phase
could be further improved with specifically located weather stations. Weather stations located in the
approximate vicinity of the fields under scrutiny could provide better and more accurate measurements
of the local temperatures and other climatological variables and thus might help the model produce
even better predictions when sequences are involved. Using other data sources, such as soil information
and topology maps, could also be further utilized to improve the predictive capabilities of the model.
As growing season provides information about how the crops have concretely developed, the soil and
topology maps provide more in terms of a prior that the UAV images are then used to further develop
as new samples emerge.

A limitation to our study is the use of aggregated crop type data collected from various fields.
Using a single model to predict for wheat, barley and oats prohibits both the inference with and the
performance analysis of the model on a per-crop basis. Additionally, the remote sensing data based
modelling approach doesn’t take into account any existing crop growth models. Those could well be
utilized to further provide better performance, akin to what has been done in [36], but this is outside
the scope of our study. That being said, the modelling task of this study was not that of crop growth,
but yield estimation with UAV remote sensing data.

5. Conclusions

Our study seeks to combine three increasingly common but yet seldom co-utilized concepts in
the domain of crop yield estimation: the use of high resolution UAV image data, time series regression
and novel spatio-temporal neural network architectures. It has already been shown that crop yield
prediction with spatial neural networks, i.e., CNNs, is feasible and produces results accurate enough
for performing actions in-season [2]. In this study, we show that adding time as an additional feature
not only improves the modelling performance with UAV RGB data (see Table 4) but also improves the
predictive capabilities (see Table 7). Furthermore, using weekly UAV data gathered during the first
month provides enough data for the model to build an accurately predicted yield map from which to
draw further conclusions.

To conclude, the use of multitemporal remote sensing data is not only common but also beneficial
in crop yield modelling and prediction. Furthermore, the easy accessibility of commercially available
UAVs with mounted RGB sensors enables image data acquisition in higher resolutions compared to
satellites. This in turn opens up the possibilities to perform modelling and predictions at intra-field
scale. As shown in our study, the use of UAV-based data and proper spatio-temporal deep learning
techniques is an enabler of more sophisticated Decision Support Systems in the domain of agriculture.
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Abstract The growing abundance of digitally available spatial, geological, and
climatological data opens up new opportunities for agricultural data-based input–
output modeling. In our study, we took a convolutional neural network model
previously developed on Unmanned Aerial Vehicle (UAV) image data only and
set out to see whether additional inputs from multiple sources would improve
the performance of the model. Using the model developed in a preceding study,
we fed field-specific data from the following sources: near-infrared data from
UAV overflights, Sentinel-2 multispectral data, weather data from locally installed
Vantage Pro weather stations, topographical maps from National Land Survey of
Finland, soil samplings, and soil conductivity data gathered with a Veris MSP3 soil
conductivity probe. Either directly added or encoded as additional layers to the input
data, we concluded that additional data helps the spatial point-in-time model learn
better features, producing better fit models in the task of yield prediction. With data
of four fields, the most significant performance improvements came from using all
input data sources. We point out, however, that combining data of various spatial or
temporal resolution (i.e., weather data, soil data, and weekly acquired images, for
example) might cause data leakage between the training and testing data sets when
training the CNNs and, therefore, the improvement rate of adding additional data
layers should be interpreted with caution.
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1 Introduction

The application of novel and performant deep learning techniques has seen an
increasing trend in the last few years in the domain of Smart Farming and Precision
Agriculture [16]. Multiple factors are at play: the abundance of open access satellite
system spatial data, availability of commercial unmanned aerial vehicles (UAVs)
mountable with external sensors, developments in the soil sensor and camera sensor
technologies, and the constant need to optimize the production of farms.

Convolutional neural networks (CNNs), being a subset of deep learning, have
been utilized in recent studies on crop yield prediction [16]. The spatial model
architecture has been used in predicting cotton yield from RGB data taken at close
proximity [14], cereal crop yield prediction from mid-altitude UAV RGB data [9],
rice grain yield estimation [18], and crop yield prediction using multisource inputs
on patch scale [2]. In [9], we compared intra-field crop yield estimation performance
with NDVI and RGB data from the earlier and later part of the growing season
with a variety of CNN configurations. The focus of that study was to assess the
generalization capability of a yield prediction model with UAV RGB data.

1.1 Objectives

In this study, we examine the effect of additional field-related spatial or spatial-like
data on the intra-field crop yield prediction capabilities using data gathered from
the earlier half of the growing season of 2018 (weeks 21–26). The objective of
this study is to assess crop yield prediction capabilities with the best CNN model
composition from [9] by varying the input data configuration. The focus of this
study is to see whether additional data, such as weather data, soil and ground
information, and open-access Sentinel-S2 data would improve the point-in-time
prediction performance compared to just using UAV-based RGB data. To limit the
scope of the study, architectural and hyperparameter tuning of the CNN model is
not addressed here to better isolate performance changes to data, and the tuned out
architectural and optimizer-related hyperparameters were thus taken from [9].

2 Material and Methods

2.1 Data Acquisition

For this study, four crop fields were selected for data acquisition in the vicinity of
Pori, Finland (61◦29′6.5′′N, 21◦47′50.7′′E) for the growing season of 2018. The
field information is provided in Table 1. Following the conclusions of [9], only data
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Table 1 The fields selected for the study in the proximity of Pori, Finland. The thermal time is
calculated as the cumulative sum of temperature between the sowing and harvest dates. Mean yield
has been calculated from processed yield sensor data for each field

Field no. Size (ha) Mean yield (kg/ha) Crop (Variety) Thermal time (◦C) Sowing date

1 7.59 5157.6 Wheat (Mistral) 1316.8 14 May

2 11.77 5534.3 Barley (Zebra) 1179.9 12 May

3 7.88 4166.9 Barley (RGT Planet) 1127.6 16 May

4 7.24 6166.0 Oats (Ringsaker) 1216.4 18 May

Table 2 General information
of data sources and their
original formats

Source Type Resolution/step Multitemporal

UAV Raster 0.3125 m/px Yes

Sentinel-S2 Raster [10, 20, 60] m/px Yes

Soil samples Vector 50 m No

Veris MSP3 Vector 20 m No

Topography Vector 2 m No

Weather Tabular – Yes

Yield Vector Varying No

from the earlier half of the growing season was considered for UAV and Sentinel-S2
data.

The multisource input data for the fields consists of UAV-based RGB images,
location data, multispectral Sentinel-2 [3] satellite data, sparsely collected and ana-
lyzed soil samplings, machine-collected soil information, topography information,
and local weather station data. General information about the original data sources
is given in Table 2. Some of the data were collected during the growing season of
2018 either manually or automatically, while other data were acquired within 1-year
time difference from the aforementioned season. A total of 39 layers constitute the
input data sets, while a single layer, the crop yield, is used as the ground truth. These
data are described next and the data layers are numbered for further reference.

2.1.1 UAV

It has already been demonstrated that UAV-based RGB data from the first half
of the growing season works better than the data from the second half of the
growing season and better than NIR only in crop yield prediction [9]. The UAV
data of this study has also been used in [8]. The images were taken at an average
height of 150 m with a minimum of three ground control points for geometric
calibration. Color correction was performed preflight and illumination sensors
were used for radiometric calibration. We selected UAV-based RGB data acquired
for the first weeks after sowing (weeks 21–26 of 2018). Thus, every imaged
field has five distinct UAV RGB rasters in the collected data set. The data were
acquired with overflights using a SEQUIOA (Parrot Drone SAS, Paris, France)
multispectral camera mounted on a Airinov Solo 3DR (Parrot Drone SAS, Paris,
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France) UAV. Field-wise orthomosaics were constructed with Pix4D (Pix4D S.A.,
Prilly, Switzerland) software. UAV data contain the following layers:

1. Red
2. Green
3. Blue.

2.1.2 Sentinel-S2

The Sentinel-S2 satellite data for the fields were acquired from the Copernicus Open
Access Hub (European Space Agency, Paris, France). The data were date-matched
to UAV images during acquisition, prioritizing images where the algorithmically
determined cloud probability was lowest. Thus, five Sentinel-S2 rasters with
temporal spacing similar to the UAV data were selected for the data set. With the
abbreviated names of product layers in brackets, the Level-2A Sentinel-S2 consists
of the following layers:

4. Wavelength 0.443 μm (B01)
5. Wavelength 0.490 μm (B02)
6. Wavelength 0.560 μm (B03)
7. Wavelength 0.665 μm (B04)
8. Wavelength 0.705 μm (B05)
9. Wavelength 0.740 μm (B06)

10. Wavelength 0.783 μm (B07)
11. Wavelength 0.842 μm (B08)
12. Wavelength 0.865 μm (B8A)
13. Wavelength 0.945 μm (B09)
14. Wavelength 1.610 μm (B11)
15. Wavelength 2.190 μm (B12)
16. Aerosol optical thickness at 550 nm (AOT)
17. Scene classification layer (SCL)
18. Water vapor map (WVP)
19. Cloud probability (CLDPRB)
20. True color, red (TCIR)
21. True color, green (TCIG)
22. True color, blue (TCIB).

2.1.3 Soil Samples

Soil samples were manually collected from the fields by ProAgria, an agronomic
counseling institution, and sent to a Eurofins (Eurofins Viljavuuspalvelu, Mikkeli,
Finland) laboratory for further analysis. Soil samples were collected with 50 m steps
so that a single sample represented an area of 50×50 m. The samples were collected
manually once during November 2018. Being point vectors, the data were rasterized
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with the gdal_warp program of the GDAL utility [17]. Soil sample data contain
the following layers:

23. Calcium
24. Copper
25. Potassium
26. Magnesium
27. Manganese
28. Phosphorus
29. Sulfur
30. Zink.

2.1.4 Veris MSP3

To get a finer map of soil characteristics, a MSP3 soil scanner (Veris Technologies,
Salina, Kansas, USA) was used to map the fields at depths of 0–30 cm and 30–
90 cm. The measurements were performed during April and May of 2019. The
MSP3 measures the soil’s electrical conductivity (EC), which is an indicator of
soil compactness, wetness, and soil type proportions. Additionally, the instrument
measures the pH of the soil. Being irregularly spaced point data initially, data had to
be rasterized from point vectors. The rasterization was done with the gdal_warp
program of the GDAL utility [17]. Each field was measured once. Veris MSP3 data
contain the following layers:

31. Shallow EC
32. Deeper EC
33. Ratio, (EC SH / EC DP)
34. Infra-red reflectance
35. Red reflectance
36. Soil pH.

2.1.5 Topography

The National Land Survey of Finland conducts light detection and ranging
(LiDAR)-based elevation mappings on a regular basis in Finland. This data is
openly available for anyone to download [10] and contains laser-scanned point
cloud data with approximately one point per 2 m2 [7]. The LiDAR data set was
acquired for each of the four fields. The LiDAR data were converted from point
cloud data to spatial rasters using the ArcGIS (Esri, Redlands, California, USA)
software. During the conversion, the data were interpolated to match UAV data in
terms of resolution. The topography data contain only the following layer:

37. Elevation information.



178 P. Nevavuori et al.

2.1.6 Weather Data

Weather data were collected with two separately located Vantage Pro2 (Davis
Instruments, Hayward, California, USA) weather stations. As the fields constitute
two distinct clusters, a weather station was placed in the immediate vicinity of each
field cluster. While the stations log multiple variables with a time resolution of
just minutes, we utilized accumulated daily statistics and matched data to UAV
acquisition dates. Thus, five weather data maps were constructed for each field
spacing matching the dates of the UAV data. The weather data contain the following
layers:

38. Cumulative temperature sum
39. Cumulative rain sum.

2.1.7 Yield Data

As the task of regression is that of supervised prediction, the training of the CNN
model requires information about the ground truth, the target values. These were
acquired during the harvest of 2018 via yield mapping sensor devices attached to
the harvesters, either with a CFX 750 (Trimble Navigation, Sunnyvale, California,
USA) or with a Greenstar 1 (John Deere, Molinde, Illinois, USA). CFX 750
utilizes optical sensors to measure yield throughput and moisture. Greenstar 1
utilizes a kinetic mass flow sensor to measure yield throughput and a separate
moisture sensor. The yield maps generated by the mapping equipment were initially
in the form of vector point clouds. The irregularly spaced points were filtered
prior rasterization to contain only points where the yield was between 1500 and
15,000 kg/ha and the harvester speed between 2 and 7 km/h, following the yield
preprocessing methodology of [9]. Rasterization was then done by interpolating the
yield data to form a raster image.

2.2 Data Preprocessing

2.2.1 Interpolation

The first step after the acquisition of data was to harmonize the spatial res-
olution across multiple different sources. The UAV data were initially down-
sampled to 0.3125 m/px or 32 pixels per 10 m. This is to match the method
of data processing in [9]. Main reasons are to limit the inputs to reasonable
size and to have the input dimensions conform to a power of 2 for GPU-based
computations. The coarser data, namely Sentinel-S2, soil samples, Veris MSP3,
elevation, and yield data, required upsampling via interpolation to match this
resolution. The interpolation was done using the GDAL utility’s gdal_grid
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Fig. 1 Examples of input data interpolations on field scale. (a) the interpolated phosphorus map,
(b) the interpolated calcium content in the field, and (c) the pH map as measured by the Veris
MSP3 soil mapper

program with invdist:power=3:smoothing=20 interpolation algorithm. As
with the input data, also the target crop yield data were interpolated to UAV
matching resolution. Example results of interpolation are depicted in Fig. 1.

2.2.2 Input Feature Normalization

After interpolation, the next step was to normalize the data. While absolute values
could also be directly used, scaling the input values close to the magnitude of the
model’s parameters (i.e., weights) helps the model converge faster. Input layers were
normalized using a function

dNORM = (d − μd)/(max(d) − min(d)), d ∈ D, (1)

where d is a layer in the set of all layers D in the data set and dNORM is the
normalized layer. However, the target crop yield values were not scaled, akin to
[9].

2.2.3 Frame Separation

The CNNs require input data to have fixed dimensions. Low number of fields and the
irregularities of field shapes led us to extract smaller, fixed dimension frames from
the field data. Following [9], we extracted overlapping 40 × 40 m (128 × 128 px)
frames with 10 m horizontal and vertical steps. Prior extraction, all input and target
data from various input sources were aligned in terms of geolocation and resolution
to ensure frame extraction from matching areas. Frames containing half or more
valid pixels were included in data, while those having less than half were discarded.
This resulted in a total of 16,375 input target frames.
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2.2.4 Data Sets

Extracted samples were then divided into training, validation, and test sets. Training
and validation sets were utilized during the training, while the test set was set aside
as the out-of-sample performance evaluation data set. As the number of unique
fields was low, we wanted to maximize the sample variability the model sees during
training. We first attempted to train the models with data separated on a per-field
basis with two fields for training, one for validation and one for testing. This led
to the model overfitting to the training data and poor generalization performance
due to low training data set variability. Similarly, a low performance was achieved
with splitting fields to separate training, validation, and test sections. Thus, we then
decided to divide the data temporally into distinct training, validation, and test sets
according to the UAV image acquisition week. The samples were then shuffled to
eliminate spatial autocorrelation in subsequent samples due to overlapping frame
extraction. Used weeks, sample counts, and sample count proportions for separated
sets are given in Table 3.

2.3 Model Architecture

Convolutional neural networks (CNNs) are a subset of spatial model architectures
within the broader context of deep learning. CNNs excel in tasks, where the inputs
fed to the model are either images or image-like data, i.e., spatial data [5, 13].
While the inner workings of the CNNs have already been well documented [9], we
quickly review the operating principles of a CNN. The architecture operates with
layers, like many of the deep learning architectures. Each layer is a combination of
a convolution operation, which is often followed by a pooling operation. At the heart
of the model are the trainable filters of the convolution operation, i.e., the kernels,
which produce feature maps for further use.

In our study, we implement and use the best performing CNN architecture
of [9]. The model consists of six convolutional layers, followed by two fully
connected (FC) layers. Convolutional layers consist of 2D convolutions, batch
normalization, and nonlinear activation with a rectified linear unit (ReLU). First
and last convolutional layers also employ max pooling with 2 × 2 kernel to extract
more robust features and reduce intermediate output data dimensions. First five
convolutional layers operate with 64 5 × 5 kernels and the last convolutional layer
with 12 85 × 5 kernels. The outputs of the last convolutional layer are then flattened

Table 3 Compositions of
training, validation and test
sets used to train and evaluate
the models

Data set Weeks Frames Proportion

Training 21, 23, 25 7561 46.2%

Validation 24 2938 17.9%

Test 22, 26 5876 35.9%
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to a single vector, which is then fed to two 1024 neuron FC layers, both having
ReLU activation. Last FC layer outputs the final prediction result. The model was
implemented with PyTorch [11] and trained with Skorch [15].

2.4 Training

To gauge the effects of multisource data on the crop yield prediction task with spatial
inputs, we performed trainings with four different input data configurations. The
data configurations and the input data sources included in them are further given in
Table 4. To elaborate, the derived data configurations were as follows:

– RGB only. As [9] was conducted with RGB data from UAVs only, we wanted
to make baseline performance evaluation with UAV RGB data only. No other
sources were included in this setting.

– No S2. Next, we wanted to see the effects of soil and weather data on the
predictive performance. We thus included all other sources of data (UAV, soil,
Veris MSP3, topography, and weather) but excluded the satellite data.

– S2 Raw. As Sentinel-S2 Level-2A products contain additional algorithmically
generated layers, we wanted to see the effect of including just the raw wavelength
bands with other input data sources.

– S2 Full. The last setting was to use all data acquired for this study.

Because data were distinct from data used in [9], we initialized and trained all
models anew for each data configuration. To account for the effects of randomized
network parameter initialization, we trained 10 models per data configuration, 40
trainings in total. We used Adadelta [19] as the optimizer, 0.58 for the learning rate,
0.001 for the weight decay, and 0.9 for Adadelta’s ρ coefficient as those were the
best performing hyperparameters in [9]. Similarly, we used early stopping with a

Table 4 The different data configurations used for training distinct models. RGB Only uses UAV
RGB data only. No S2 uses UAV, soil, Veris MSP3, topography, and weather data. S2 Raw adds
Sentinel-S2 raw wavelength band data to No S2. S2 Full adds calculated Sentinel-S2 Level-
2A product layers to S2 Raw. An X indicates the inclusion of an input data source to a data
configuration, while a dash indicates the exclusion

Source Channels RGB Only No S2 S2 Raw S2 Full

UAV 1–3 X X X X

Soil 23–30 – X X X

Veris 31–36 – X X X

Topo 37 – X X X

Weather 38–39 – X X X

S2 bands 4–15 – – X X

S2 other 16–22 – – – X

Band count 3 20 32 39
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patience of 50 stagnant epochs and continued the training once. The models were
trained with Nvidia Tesla V100 Volta and Pascal architecture server GPUs in a
distributed computation environment.

3 Results

The CNN models with distinct input data configurations were trained with data
of four unique fields. The model architectures, hyperparameters, and the training
procedures were identical to [9]. As the aim of our study was to evaluate the effects
of introducing multisource inputs to crop yield prediction, we trained spatial yield
prediction models with four distinct data configurations. The data configurations
are discussed in Sect. 2.4. As the training time loss function we used the mean
squared error (MSE). Other loss metrics were also calculated, including the square
root of the MSE (RMSE), mean absolute error (MAE), mean absolute percentage
error (MAPE), and the coefficient of determination (R2). These metrics (RMSE,
MAE, MAPE) were not monitored during training and, thus, did not influence model
selection.

The baseline model using UAV RGB data only attained 1055.7 kg/ha test RMSE,
18.2% test MAPE, and 0.343 test R2. Out of all data configurations, the best
performance of 364.1 kg/ha test RMSE, 5.18% test MAPE, and 0.922 test R2 was
achieved using all input data presented in our study (S2 Full). The performance
results for all data configurations with the held-out test data set are given in Table 5.

To gain a better view into how the models train with distinct data predicted,
we also examined the unseen test sample distributions of predicted values against
ground truth values, the true crop yields. With the data, the baseline RGB Only
model’s predictions resemble a Gaussian distribution centered around the mean
5140 kg/ha of true yield values. As more inputs are introduced, the predicted
distributions’ shapes align with the true values more closely, expressing multi-modal
peaks where the true values have them. The test set distributions are depicted in
Fig. 2.

Table 5 The test set performance of the same CNN architecture and hyperparameter configuration
with various data configurations. RGB Only is the baseline model. Out of the configurations, the
model performed best with all input data layers (S2 Full)

Data configuration Test RMSE (kg/ha) Test MAE (kg/ha) Test MAPE (%) Test R2

RGB only 1055.7 838.8 18.2 0.343

No S2 892.4 694.9 14.8 0.531

S2 raw 461.0 340.9 6.94 0.875

S2 full 364.1 274.3 5.18 0.922
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Fig. 2 Distributions of predictions against true yields with the holdout test set

4 Discussion and Conclusions

In this study, we evaluated the effects of using input data from multiple sources on
the task of spatial crop yield prediction. Using a CNN model architecture developed
for UAV RGB inputs from [9], we introduced additional data from sources like
soil samplings, Veris MSP3 soil scanner, topographical maps, weather stations, and
Sentinel-S2 satellites to the model. We trained ten models for each distinct input data
configuration: (1) a RGB Only baseline model, (2) a No S2 multisource model with
satellite data excluded, (3) a S2 Raw multisource model with raw satellite band data
included, and (4) a S2 Full multisource model with all input data. Out of each set of
ten trained models, we selected the models performing best. The model architecture
and hyperparameters for the training were taken from [9] and left unchanged to
constrain the variability in performance to data only. The only thing varying between
model trainings, in addition to four distinct input data source configurations, was the
initialized model weights.

The performance with a larger number of fields using UAV RGB data has already
been extensively studied in our previous studies [9] and [8]. Thus, training a model
with only UAV RGB data provides a studied baseline to which models trained with
additional data can be compared against. The best performing data configuration
was S2 Full with 364.1 kg/ha test RMSE, 5.18% test MAPE, and 0.922 test R2

using all 39 layers of input data for each extracted frame. Compared to the baseline
RGB Only model, the S2 Full attained 65.6% lower RMSE, 67.3% lower MAE,
71.5% better MAPE, and 0.579 higher R2 with the test set. Generally, every model
with multisource inputs performed better than the baseline model. This is shown in
Table 6.

Crop yield prediction with spatial data and spatial deep learning models has seen
an increase in the past few years [16]. Having been studied with a variety of different
architectures, from feed-forward networks to hybrid spatiotemporal models, studies
have also been conducted with CNN as the main architecture. In [9], a single CNN
model was developed to predict crop yields from fields with varying crop types
(wheat, barley, and oat) from UAV images collected from Finnish crop yields during
2017. Using smaller frames extracted from orthoimages, the best performance was
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Table 6 The relative performance of the models trained with distinct multisource input data
configurations to the baseline RGB Only model. Relative improvements in MAE, RMSE and
MAPE are given in proportion to the baseline error values. Improvement in R2 is given in absolute
units

Relative change from RGB only

Data setting Test RMSE Test MAE Test MAPE Test R2

No S2 -15.5% -17.2% -18.7% +0.188

S2 raw -56.3% -59.4% -61.9% +0.532

S2 full -65.6% -67.3% -71.5% +0.579

484.3 kg/ha MAE and 8.8% MAPE. Using soil nutrient data, seed rate, elevation
maps, soil’s electroconductivity, and satellite data in USA, the authors of [2] trained
a CNN to predict crop yields for nine fields. They report an average scaled MSE
of 0.70 which translates to 1145 kg/ha. The authors of [18] utilized RGB and
multispectral data acquired with a UAV from rice fields in China to predict rice
yields with a composite CNN model on field block scale. Feeding the multisource
data to distinct, parallelized CNNs, they report a rice yield prediction performance
of 0.50 R2 and 26.6% MAPE.

As we had sufficient data overlap across multiple input sources and the data
were acquired from only four unique fields, objective multisource crop yield
prediction performance evaluation requires more care in interpreting the results.
Relative increase in performance from best performing UAV data utilizing RGB only
model to the best No S2 model with additional soil and weather data was notably
small. Largest improvements were gained with the introduction of Sentinel-S2 data.
Adding raw Sentinel-S2 bands to the RGB, soil, and weather data increased the per-
formance by 40.8% RMSE, 42.2% MAE, 43.2% MAPE, and 0.344 R2 from No S2.
Thus, the increase in performance with Sentinel-S2 is considerably higher than what
was achieved with adding soil, topography, and weather data to UAV RGB data.

Data acquisition for remote sensing and multisource input data for smart farming
is generally laborious and resource intensive. While satellite data is generated
automatically, UAVs require semi-autonomous operation at best and the collection
of soil data requires extensive on-site manual labor. With more data from a variety
of sources, a more extensive and representative study can be conducted.

Another limitation stems from differences in spatial and temporal dispersion of
different input data sources. UAV, Sentinel-S2, and weather data vary temporally
in the data we have used, whereas soil samplings, Veris MSP3, and topographical
maps do not. As our data was split temporally to training, validation, and test
sets, the latter are present in all of these data sets. On the other hand, weather
data varies only temporally and constitutes spatial rasters with constant values
corresponding to the time of UAV imaging. This means that whether the data
is split temporally or spatially, some layer or part of data is always present in
training, validation, and test sets. As the authors of [12] point out, deep learning
models are able to implicitly learn linear and nonlinear couplings from data with
correlations. This means that the deep learning models learn sets of representative
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features from complex combinations of the inputs and not from single input values
on solitude. Furthermore, the performance gains with UAV RGB data combined
with temporally invariant soil and ground data is trumped by the performance
gains of data configurations using Sentinel-S2 data as additional inputs. This would
suggest that the combination of the inputs matters more than presence of distinct,
invariant data in training, validation, and test sets. However, the concrete effects of
simultaneous layer-level data existence in training, validation, and test data sets are
presently unknown to us and, thus, a subject of future research.

Regarding multisource data in the context of smart farming and crop yield
estimation, data itself is an evolving research topic. The use of multisource inputs in
remote sensing, while focusing on multispectral data acquired from satellite systems
orbiting the globe, has been extensively reviewed in [4]. The use of multispectral
data from UAVs and the prediction architectures thereof is also a developing topic
[6]. Another topic related to spatial data is that of autocorrelation [1]. To address
autocorrelation of spatial frames in a future study, the inclusion of pixel-wise
location information, as suggested in [1], should be sufficient to inform the deep
learning model whether data similarity is due to proximity or some other factors or
a combination of them.

In conclusion, our study indicates that increasing the number of input data
sources increases the performance of intra-field crop yield prediction. To draw
definite conclusions on the most optimal configuration of input data sources, more
data is required. With more representative data, generalizable conclusions are more
warranted. As the data in this study focuses on a single rowing season, a future
plan is to study the generalization of a multisource crop yield prediction model
with multiple years of data. Yet in this study, the relative increase from baseline
of using UAV RGB only as the input data was notable. Consolidating UAV RGB
data with soil and ground topology data already somewhat improves the prediction
performance, while largest performance gains were gained from using Sentinel-S2
in addition to UAV RGB, soil sampling, Veris MSP3 soil scanner, weather. and
topography data.
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