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Abstract. In this chapter, we motivate the use of densely-sampled light field as
the representation which can bring the required density of light rays for the cor-
rect recreation of 3D visual cues such as continuous parallax and focus cues and
can serve as an intermediary between light field sensing and light field display.
We consider the problem of reconstructing such representation from a sparse set
of camera views and approach it in a sparsification framework. More specifically,
we demonstrate that the light field is well structured in the set of so-called epipo-
lar images and can be sparsely represented there by a dictionary of directional
and multi-scale atoms called shearlets. We present the corresponding regulariza-
tion method, along with its main algorithm and speed-accelerating modifications.
Eventually, we illustrate its applicability for the cases of holographic stereograms
and light field compression.
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1 Introduction

Human observers interact with the visual world through light. It is light what is sensed
by photoreceptors and converted into neural impulses to be further processed by the
brain. A number of visual cues, such as stereopsis, focus, motion and head parallax help
the human to perceive, understand and navigate through the three-dimensional world.
These cues all depend on the way how light is presented and sensed. And it is light
what contemporary displays emit in their attempt to recreate the visual world. The aim
in designing 3D displays, such as multi-view, light field, holographic, or head-mounted
has been to generate visual cues as realistically as possible. Generally speaking, this is
achievable by generating and controlling a high amount of directional light rays to meet
the visual acuity of the human visual system. This brings the question how to formalize
and represent light in such a way so to effectively drive 3D displays and how to sense
visual scenes in order to generate that display-driven representation.

In this book chapter, we advocate the use of densely-sampled light field: an over-
complete, yet discrete representation of light in terms of ray optics. The densely-sampled
light field can play the role of intermediary between the light as captured by (multiple)
cameras and light as recreated by 3D displays. It comes within the framework of the
plenoptic function, and as a result of a particular effective light field parameterization.
Therefore, in Section 2, we overview the mathematical formalization of the plenoptic
function, and its various aspects of parameterization, approximation and sampling. By
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discussing the spectral support of 4D light field in different cases, we come up with
the corresponding sampling conditions. We overview also recent methods for spatial
and angular light field reconstruction which employ various approaches: from depth
estimation, through machine learning to sparsity.

Section 3 presents our take on the problem of densely-sampled light field recon-
struction. We motivate a sparsification-based approach and discuss the corresponding
transform and regularization method. Eventually, we present a few applications to illus-
trate the applicability and performance of the proposed method.

The presented chapter originates from a doctoral thesis with the same title [56].

2 Basics of Light Field Processing

2.1 Light field modeling and parameterization

Plenoptic function, as a concept to describe the space of all possible light rays, was first
presented by E. Adelson and J. Bergen in [1]. The idea arised from observation that
information about the scene, can be modeled as a dense array of light rays of various
intensities. Plenoptic function was introduced as tool for efficient mathematical param-
eterization of light. In such setup, all light rays are parameterized by their location
(Vx, Vy, Vz) and direction (θ, φ). By adding wavelength λ of light and time instance t,
the plenoptic 7D function describing light intensity in a given space is defined in the
form

P = P (Vx, Vy, Vz, θ, φ, λ, t)

This function can be simplified, as shown by L. McMillan and G. Bishop in [45], by
considering still light field (fixing time) and replacing the intensity (wavelength) by an
RGB representations. Moreover, in practice we tend to discretize positions and angles,
which in turn, results in a discrete 5D light field function.

Two plane parameterization M. Levoy and P. Hanrahan remarked in [41], that the
aforementioned 5D light field function can be further reduced to only 4 dimensions
assuming that the medium through which light rays propagate is completely transparent.
Since in this case the ray intensity is constant, a ray can be simply parameterized using
corresponding intersection points with two planes - see Figure 1 (b) for illustration.
This is referred to as the two-plane light field parameterization L(s, t, u, v) with the
(s, t) and the (u, v) plane being also referred to as the camera and the image plane,
respectively.

A special case of two-plane parameterization is the so called Lumigraph presented
by S. J. Gortler et al. in [24]. Lumigraph enables a convenient description for scene
or object that is placed inside a virtual cube. Each of six cube faces is parameterized
using a two-plane parameterization with the planes itself being the sides of the cube as
illustrated in Figure 1 (a). Therefore, having 4D Lumigraph description of a scene, an
arbitrary view can be formed by selecting required samples directly from the Lumigraph
thereby avoiding complex calculations.
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Fig. 1: (a) Two-plane parametrization, where an arbitrary ray is parameterized using
intersection points with two parallel planes. (b) Light radiance information described
by considering radiance over the rays intersecting the sides of the cube.

A two-plane parameterization is a simple and efficient tool especially useful in the
problems of analysis and synthesis of views (continuous lightf field) from a given dis-
crete light field. This is achieved by first considering discrete subdivision in each of the
s, t, u, v dimensions and second associating each discrete sample (i, j, p, q) to coeffi-
cient xi,j,p,q with reconstruction kernel Bi,j,p,q(s, t, u, v). Consequently, reconstructed
continuous light field L̃ is obtained as follows

L̃(s, t, u, v) =
∑
i

∑
j

∑
p

∑
q

xi,j,p,qBi,j,p,q(s, t, u, v).

A comparision of the reconstruction quality for different basis functionsB has been
performed in [24]. It has shown that the use of as quadralinear kernel is beneficially in
terms of computational efficiency vs. compromise in quality due to lack of band-limited
property of light field function.

Two-plane parameterization is a convenient way to efficiently represent a light field
acquired with an array of cameras. Example of such an acquisition system is presented
in [60], where a single camera is moving on a plane using gantry, or in [61] where
instead of a gantry an array of cameras is used. Recently, a Light field camera (plenoptic
camera) capturing system is introduced in [46], [21]. The main difference of the light
field camera from the conventional camera is the additional layer of a microlens array
in front of the sensor. Obtained data from a light field camera can be interpreted as
uniformly sampled two-plane parameterized light field over a small baseline.

Epipolar plane images Epipolar constraint term comes from early stage analysis of
stereo images [27], where it is shown, that search of matching features between stereo
pair of images from two dimension problem can be reduced to one dimension, if loca-
tions of the cameras are available.
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In [6] epipolar constraint is generalized for the case of a light field captured by a
dense set of cameras that are strictly over a straight-line (t constant). Such special case
of the light field is also referred to as a Horizontal parallax only light field. Stacking
those images into cube (s, u, v) and slicing the cube along u the obtained 2D image
(s, v) is a so-called epipolar-plane images (EPI). Independent analysis / processing per-
formend on each EPIs can be combined into a three-dimensional representation of the
whole scene. More details covering the definition and morphological properties of EPI
will be presented in Section 3.

Alternative parametrizations The considered visual acquisition system usually one
of the main motivation for introducing new parameterizations of the light field func-
tion. Two notable examples are the spherical and cylindrical parameterizations that are
introduced for efficient parameterization of multiple captured images from the same
location.
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Fig. 2: Identical ray in different spherical light field parameterizations.

In concentric mosaic parameterization, introduced by He and Shum in [52], each
ray is described by only three parameters: radius, rotation angle, and vertical elevation,
thereby reducing the plenoptic function to three dimensions. The acquisition system
consists of a camera moving over planar concentric circles. Similar to view synthesis
in case of panoramic images, novel views are rendered by combining the appropriate
captured rays. Novel view synthesis works only when the corresponding viewpoint is
located inside the planar circular region with the quality of the reconstruction increasing
with the number of concentric circles.

Similar to the Lumigraph, spherical parameterizations assume a finite size scene,
such that a unit sphere ecapsulates the whole scene. As shown by Ihm in [31], in a
spherical parameterization the position of the light ray emanated from a scene is param-
eterized using an intersection point on the positional sphere (θp, φp) used as a convex
hull of the scene and the direction of the ray is identified by the intersection point with
the directional sphere (θd, φd). This is illustrated in Figure 2 (a). Thus, the two-sphere
or spherical 4D light field parameterization is defined as lsphere(θp, φp, θd, φd) function.

Alternative sphere-sphere parameterization (2SP) and sphere-plane parameteriza-
tion (SPP) are presented in [10]. In 2SP parameterization each light ray is parameter-
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ized by its two intersection points with the same sphere, as illustrated in Figure 2 (b). In
SPP parameterization, light ray is parameterized by its angle and 2D coordinate of the
intersection point of the ray and orthogonal plane, as illustrated in Figure 2 (c).

The spherical LF parametrizations are easily applicable to synthetic data, though,
they can also be used when recording real scenes, one example of a sensing setup being
the Stanford spherical gantry [41]. More recently Debevec et. all in [47] also presented
a spherical LF capturing system. In the proposed new capturing system, two cameras
are rotated over the sphere surface in the space, which allows capturing spherical LF of
the outside environment. Captured LF data provides information to efficiently generate
novel views located within the recorded spherical volume.

2.2 Light field sampling and reconstruction
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Fig. 3: (a) Two plane parameterization of a light field for fixed values of s and u axis.
(b) Radiance of same 3D point observed from different position of camera.

The two-plane parameterization is instrumental when defining light field sampling.
Consider the camera plane (s, t) plane and the image plane (u, v), as illustrated in Fig-
ure 3 (a). For the purposes of sampling, it is suitable to define the (u, v) plane relatively
to (s, t) coordinates [16]. A discrete uniform grid is considered on the camera plane
(s, t), where each point on the grid represents a pin-hole camera location. Pixels corre-
sponding to the camera form a uniform grid on the image plane (u, v). Each pixel value
is formed by the weighted sum of the light radiance arriving at a certain angle to the
camera plane. Thus, an arbitrary ray intersecting both planes uniquely determines the
quadruple q = (u, v, s, t).

A simplified spectral analysis of the 4D LF function can be carried out if assuming
occlusion-free scenes with Lambertian reflectance. The former assumptions implies that
the same 3D point can be observed from any location of the camera plane and latter
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implies that the radiance of a point is constant in all directions. Then, the observed 4D
LF function has a distinct form, which can be easily explained using the EPI notion.
Recall that EPI is formed by fixing the parameters s, u and varying parameters t, v for
the LF function, such as E(s,u)(t, v) = l(u, v, s, t) is conventionally called horizontal
EPI. Identically, vertical EPI is defined as E(v,u)(t, v) = l(u, v, s, t). An EPI example
is presented in Figure 3. In EPI, any scene point is represented by a corresponding line
with an intensity proportional to the light radiance from the point in different directions.
For Lambertian scenes, this line has constant intensity. The disparity d between two
images located at (s, t1) and (s, t2) of the same observed 3D point is

d = v2 − v1 = (t1 − t2)f/z,

where z = z(q) represents the scene depth, i.e. the distance of the surface point corre-
sponding to the ray q from the camera plane.

Assuming t1 = 0 to be the origin of the axis t,

l(q) = l

(
u+

f

z(q)
s, v +

f

z(q)
t, 0, 0

)
.

For a simplified case of constant-depth plane z(q) = z0, it can be shown that:

L(Ωu, Ωv, Ωs, Ωt) = 4π2L
′
(Ωu, Ωv)δ (Ωs − fΩu/z0) δ (Ωt − fΩv/z0) (1)

where L
′
(Ωu, Ωv) is the Fourier transform of l

′
(u, v) = l(u, v, 0, 0) and δ is the Dirac

delta function. Thus, for the constant-depth plane scene, the 4D function L support on
the 2D plane (Ωv, Ωt) is bounded by the line Ωt = Ωvf/z0, as shown in Figure 4 (a).
The same is true for (Ωu, Ωs) plane and the corresponding line Ωs = Ωuf/z0.

Let’s assume an uniform 4D lattice ∆q = (∆u,∆v,∆s,∆t), and a sampling func-
tion p(q) = III∆q(q), where IIIT (t) is the Dirac comb function, [44], and ls(q) =
l(q)p(q).

The Fourier transform of the sampled LF Ls at angular frequency
Ωq = (Ωu, Ωv, Ωs, Ωt) is

Ls(Ωq) = L(Ωq) ∗ III2π/∆q(Ωq).

The convolution with the Dirac comb function implies that Ls consists of periodical
replicas of L at a 4D uniform lattice defined as{

2π

∆u
m1,

2π

∆v
m2,

2π

∆s
l1,

2π

∆t
l2

}
m1,m2,l1,l2∈Z

,

as illustrated in Figure 4 (b) for the case of constant depth.
For the case of multiple depth planes, instead of single line, there will be multiple

lines on the Fourier plane. It has been proved that all of them are confined between the
lines Ωt = fΩv/zmax, Ωt = fΩv/zmin corresponding to the minimum and maximum
depth [zmin, zmax], c.f. Figure 4 (c) [16]. This bow-tie support shape forms the baseband
of the light field. Its periodical replicas would be generated during sampling and have
to be filtered out during reconstruction. To avoid aliasing, the sampling intervals have
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to be chosen with respect to the min and max depth of the scene. This is specifically
important for the distances between cameras on the camera plane, i.e. along the t and s
axes. It has be shown that

∆tmax =
1

Kfvf
(
z−1min − z−1max

) .
where Kfv = min (Bsv, 1/(2∆v), 1/(2δv)) is the maximum frequency in axis Ωv . Kfv

depends on the complexity of texture information represented with the highest scene
texture frequency Bsv and on the rendering camera resolution δv. If textural complexity
is ignored and full resolution images are rendered then the maximal frequency isKfv =
1/(2∆v) [16].

Figure 5 illustrates cases of different reconstruction filters [16]. Figure 5 (a) presents
direct interpolation when the constant-depth plane is at the infinity. Figure 5 (b) de-
picts an optimal filter support of a constant-depth plane rendering at zopt, where z−1opt =

(z−1min + z−1max)/2. For the case of the optimal filter, camera spacing can be increased
such that replicas are placed compactly as shown in Figure 5 (c).
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Fig. 4: The Fourier transform support on (Ωt, Ωv) plane, (a) continuous light field with
a constant depth, (b) sampled light field with a constant depth, (c) depth varies between
zmin and zmax.

Further optimization of the sampling rate and corresponding reconstruction filters
can be achieved by considering depth layering. Narrower bands corresponding to dom-
inant depth layers can be specified and then each depth layer can be processed by the
corresponding optimal filter, as illustrated in Figure 6 (a). Thus, for Nd number of lay-
ers, the minimum sampling rate is decreased and corresponding maximum distance of
camera spacing is increased. ∆tmax,Nd

= ∆tmaxNd.
The fundamental relation between the number of depth layers Nd and number of

camera images Ni has been derived in [16] in the form Nd
√
Ni = Kfv , resulting in

the so-called optimal sampling curve, c.f. Figure 6 (b). The curve particularly suggests
that the number of required images in classical plenoptic sampling is still high and more
advanced methods are required for achieving similar reconstruction quality with smaller
number of images.
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Fig. 5: (a) Direct reconstruction filter with implicit assumption of infinite depth. (b)
Filtering using zopt. (c) Optimal packing in frequency domain is achieved in case of
critical camera spacing distance ∆tmax.
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Fig. 6: (a) Uniform multi-layer depth decomposition represented in the frequencies do-
main. (b) Minimum sampling curve for different rendering resolutions. Any point in
the highlighted region represents redundancy for rendering in joint image and geomet-
ric space.

More recent works have attempted addressing the problem of the high number of
images needed for LF sampling and reconstruction. Alternatively to depth layering,
the concept of surface light field has been proposed in [62]. The approach makes a
connection between surface geometric modeling and the corresponding radiated light
field. A scene surface is modeled by a simplified base meshK0, which is projected onto
the more complex geometric surface M Figure 7. The latter gives rise to a surface light
field L(u, ω), which represents the radiance of a light ray in direction ω at a point u
on K0. L(u, ω) is considered piecewise-linear and composed of LF primitives, called
lumispheres, parameterized by the ray direction ω). Lumispheres are recovered from
given images by least-squares approximation. The model is applicable to non-Labertian
scenes with complex radiance functions, however the reconstruction quality heavily
depends on the accuracy of the approximated scene geometry.

The relation between the two-plane parameterized light field and surface light field
along with the corresponding spectral analysis has been developed in [15]. In sum-
mary, the work has aimed at approximating the non-bandlimited Fourier transform of
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Fig. 7: Surface light field as presented in [62].

the surface light field and to modeling occlusions in the spectral domain. Further, more
accurate LF bandwidth estimations have been developed for the cases of essential band-
width [18], finite field of view [23] and finite scene width [22].

2.3 General methods for light field reconstruction

In this section, we present an overview of recent approaches and methods which deal
with light field reconstruction. The majority of methods uses depth in one or another
form and therefore the accurate depth estimation from light field is also discussed. More
recent methods employ also modern machine learning approaches. Continuous light
field reconstruction through sparsification is discussed as well.

Depth based methods Wanner et al. [58] have proposed a method for disparity estima-
tion directly from the light field. A structure tensor is applied on epipolar plane images
for fast local disparity estimation. Then, globally consistent disparity maps with sub-
pixel precision are obtained from local estimates through convex regularization. They
are used in a variational inverse problem aimed at spatial and angular super-resolution.
The method has been developed for processing data from plenoptic cameras, therefore
relatively small disparity range has been considered.

Conventional disparity estimation methods employ a three-step framework compris-
ing cost volume construction based on hypotheses, cost volume filtering (i.e. regulariza-
tion using aggregation in the spatial domain), and label selection (i.e. selection of most
probable hypothesis, typically winner-takes-all) [30]. A similar framework has been
used in [32] for an accurate disparity estimation from light fields acquired by plenoptic
cameras (i.e. relatively small disparity range between sub-aperture images). To handle
such data, an accurate sub-pixel displacement algorithm using 2D Fourier transform for
the cost volume construction. Suitable depth hypothesis layers are formed and used to
find per-pixel disparities. The latter are enhanced through a discrete multi-label opti-
mization based on graph cuts and iterative quadratic fitting. The final disparity map is
with sub-pixel precision and can be used for LF angular or spatial super-resolution.

Alternative methods for disparity estimation from plenoptic data have been pre-
sented in [53], [65].
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The case of wide field of view horizontal parallax LF capture has been addressed
in [34]. Conventional disparity estimation methods are inefficient for the high amount
of data in such imagery. Therefore, the proposed technique utilizes a fine-to-coarse
refinement technique with the aim to obtain accurate disparity maps from sufficiently
densely sampled light fields and avoid explicit global regularization. A novel sparse
representation for a set of adjacent EPIs has been presented, comprising a set of distinct
lines, obtained by considering densely sampled LF. This representation is obtained at
edges on the high-resolution image first and then further proceeded to successive coarse
EPI resolutions to obtain disparity estimation on smooth spatial areas, where edges are
not well-defined. The proposed technique implies EPI constraints between images and
is especially efficient for processing high spatio-angular LF datasets.

Machine learning methods The machine learning instrumentation has proven quite
effective for solving the problem of light field reconstruction. Kalantari at. al. [33] have
proposed a learning-based approach aimed at synthesizing intermediate views from sub-
sampled plenoptic images, e.g. such captured by the Lytro Illum camera. The work uti-
lizes two neural networks: one for disparity estimation and another for view synthesis
using the estimated disparity. Both networks have been trained simultaneously by mini-
mizing the error between synthesized and ground truth views. The disparity-estimating
CNN, which consists of four convolutions layers with decreasing kernel sizes followed
by a rectified linear unit, has generated high quality disparity maps. Even though, a sub-
sequent color prediction CNN is required to model the complex relationship between
the final image and warped images around occlusions. The method has demonstrated
superior results when compared with [58], [32], especially around occlusion bound-
aries.

In [64], the LF angular super-resolution has been formulated as a problem of EPI
high-frequency details reconstruction. The given low resolution EPI is considered as a
subsampled version of the densely sampled EPI. The former undergoes a covolution
with a smoothing kernel (e.g. Gaussian kernel) with the aim to extract low-frequency
features. The result is processed by a CNN, which acts as a high-frequency reconstruc-
tion operator. It is designed as a residual neural network with three convolution layers
with decreasing kernel sizes together with a rectified linear unit. This network is used
only to predict angular domain detail information from blurred and upsampled EPI.
Further, the spatial detail of the EPI is recovered through a non-blind deblur operation
based on the method from [35]. The whole densely sampled light field is reconstructed
by applying the proposed ”blur - restoration - deblur” framework for every EPI in both
horizontal and vertical directions.

The so-proposed method has demonstrated good reconstruction results for to 5 pix-
els disparity between adjacent views. For higher disparities, the deblurring kernel has
proven inefficient. This limitation, has been addressed in [63], by proposing a depth-
assisted rendering technique for multiview imagery with large disparity range [57]. The
method uses a roughly discretized disparity map, obtained using the method in [30].
For each discrete disparity region, appropriate shearing is applied on corresponding
EPI region, to get a disparity range small enough to be processed by the original ”blur
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- restoration - deblur” method. The final result is formed by blending together multiple
super-resolved EPIs regions.

A two-step method for disparity estimation by EPI analysis has been presented in
[25]. For a given 4D LF, hyperplane orientations are predicted for the central image
using a CNN applied on horizontal and vertical EPIs. The predicted orientations (i.e.
disparities) are then refined by a generalized total variation regularization procedure
based on the method in [7]. The approach has been improved in [26] by designing a
neural network working on 3D subsets of the 4D LF (using 2D spatial and one angular
dimension). This allows to effectively suppress artifacts in spatial domain.

An end-to-end neural network architecture for disparity estimation from 4D light
field has been proposed in [51]. The input data consists of views containing horizon-
tal, vertical and two diagonal images in stucks, always containing the central view.
The designed network has a multi-stream structure, such that every 1D image stack
subset is processed through three convolution layers in order to get sets of features de-
scribing the corresponding image stack. The feature sets are concatenated together and
processed together by additional convolution layers followed by a rectified linear unit.
The work discusses also the optimal number of input views. The proposed method has
demostrated high-quality results for the HCI 4D Light Field Benchmark [29].

Extraction of non-Lambertian scene properties from LF has been attempted in [4].
The authors have proposed an encoder-decoder network aimed at decomposing the LF
data into disparity, diffuse and specular components. The encoder part reduced the mul-
tidimensional structure of the light field. Further, multiple decoders extract the targeted
intrinsic components. The encoder is applied on each epipolar-plane independently. It
contains 18 residual blocks, which are gradually decreasing the input epipolar volume
to in spatial domain and increasing its feature domain. The encoder features are fur-
ther processed by the multiple decoder pathways. The auto-encoder path reconstructs
the original input data, while the three other decoders generates disparity, diffuse and
specular components, respectively. All decoders are constructed of residual blocks with
transpose convolution layers. A dichromatic reflection model is considered, such that
the final radiance is formed by the sum of the diffusion and specular information.

Light field reconstruction by sparsification in Fourier domain Shi et al. [50] have
proposed for the first time to cast the LF reconstruction as a problem of sparsification
in a transform domain. The authors have motivated the choice to seek LF sparsity con-
tinuous Fourier domain rather than in discrete Fourier domain.

A signal of length N is k-sparse in the continuous Fourier domain, if it can be rep-
resented as a combination of k < N frequencies, not necessarily located at integer
coordinates (hence, continuous). Therefore, the signal reconstruction requires estimat-
ing both the frequencies and the corresponding transform coefficients. Consider the
reconstruction of a two dimensional signal {x[u, v],∀u, v = 0, . . . , N − 1} from a set
of measurements xS = {x[u, v],∀(u, v) ∈ S}. The sparsifying solution is obtained by
solving the following minimization problem

arg min
al,ωul

,ωvl

∑
(u,v)∈S

∥∥∥∥∥x(u, v)− 1

N

k∑
l=0

al exp

(
2πi

uωul
+ vωvl
N

)∥∥∥∥∥
2

2

,
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(a) (b) (c)

Fig. 8: Sampling pattern where every rectangle represents one view from a LF consist-
ing of 17× 17 views. (a) box and two diagonals pattern consisting of 93 views used for
method [50]. (b), (c) uniformly decimated setup consisting of 5 × 5 and 9 × 9 views
respectively.

which can be represented more compactly in matrix form

arg min
a,ω

‖xS −Aωa‖22 ,

where a = {al}kl=0 , ω = {(ωul
, ωvl)}kl=0.

The problem is solved by alternating minimization: for fixed k frequency locations
ω, the corresponding optimal coefficients a are estimated as a = A†ωxS , while the
optimal frequency locations ω are found by

ω∗ = arg min
ω

∥∥xs −AωA†ωxS∥∥22 .
The functional is minimized by gradient descent, where the gradient is approximated
by evaluating the error function over 8 directions around every frequency position and
updating it in most descending direction.

In [50], the sampling set S is composed from a set of 1D discrete sampling lines.
These lines are used in a voting scheme based on the Fourier slice theorem aimed at
obtaining reliable initial estimates for the frequency positions.

Using the proposed sparsification method, the 4D light field L(x, y, u, v) is recon-
structed at all angular locations (u, v) from the given sampling set S, illustrated by the
red squares in 8, by independently reconstructing each L̂ωx,ωy (u, v) 2D slice for fixed
spatial frequencies.

The proposed method has shown prominent reconstruction quality especially for
light fields representing non-Lambertian scenes.

3 Light field reconstruction trough sparse modelling

3.1 Problem formulation

Densely sampled light field (DSLF) refers to a regular light field representation con-
sisting of full-parallax camera views, where the maximum disparity between adjacent
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views is one pixel at most. This is an attractive representation since it allows generating
arbitrary rays by simple (quad-)linear interpolation [43].

Direct capture of a densely-sampled light field over a large baseline at full parallax
requires a high number of densely positioned cameras. Such setting is inefficient and in
many cases unfeasible. In reality, light fields have been captured by an array of cameras,
either unstructured or uniformly located on a line or 2D grid. This discrepancy between
a desired representation and physically limited capture settings sets the fundamental
problem of reconstructing, computationally, the densely sampling LF from multiper-
spective images, considered as LF samples on coarser grids. For the sake of simplicity,
these grids are usually assumed regular, which reflects the case of horizontally and ver-
tically aligned (rectified) cameras. As discussed in the previous section, rectified views
when put together, form LF slices referred to as EPIs, which implicitly represents the
scene geometry.

Hereafter, we set the DSLF reconstruction problem as problem of reconstructing
densely sampled EPI (DSEPI) from decimated (in angular dimension or in camera
plane) LF samples. The concept of densely sampled EPI is inspired by [43], where
the limit of necessary sampling in angular dimension is formulated in terms of depth.

For the sake of simplicity, in most derivations, we consider the horizontal parallax
case, where EPIs are formed after stacking all images together and taking 2D slices
along the horizontal and camera motion dimensions for a fixed vertical coordinate.
Rows in a particular EPI represents horizontal lines from different perspective views.
While put in the context of DSEPI, these rows are separated by blank areas of the miss-
ing intermediate views. An illustration of this sampling is presented in Figure 10 (a),(c).
Reconstructing DSEPIs for all vertical coordinates gives the fully-reconstructed DSLF.

We formulate the problem DSEPI reconstruction in terms of signal reconstruction
with sparsity constrains. More specifically, we consider the reconstruction in some suit-
able transform domain, where the LF in sparse. Based on the structural properties of
DSEPI, we adopt shearlet frames as the sparsification transform employing their direc-
tional sensitivity properties and present the main reconstruction method and its accel-
erations. While it is initially formulated to handle coarse sampling in angular domain,
the approach is flexible enough to address also the problem of LF super-resolution is
spatial domain.

3.2 Sparse representation

Various image processing problems, such as denoising, debluring, inpainting, super-
resolution can be formalized by a system of linear equations

y = Ax+ ε, (2)

where A is the process, modeled in some metric space, which acts on the input
(unknown) image x resulting in the available (distorted, undersampled, blurred) image
y, additionally contaminated by noise ε. The latter is usually modeled as an independent
and identically distributed Gaussian with zero mean and standard deviation of σ, i.e.
(ε ∼ N (0, σ2I)).
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The corresponding inverse problem of finding x can be formulated in least squares
(LS) sense

x̄ = arg min
x

‖y −Ax‖22 .

Typical image processing problems result in an underdetermined system of linear
equations, which implies an infinite set of solutions for x satisfying ‖y −Ax‖22 = 0.
Such cases are considered ill-posed and require additional regularization to determine
the desirable solution. In the general case, a minimization of a cost function, composed
of a fidelity term f and a penalty (regularization) term s is attempted:

arg min
x

f(x) + λs(x). (3)

The fidelity term f(x) ensures the consistency between the solution and the mea-
surements. The penalty term or regularizer s(x) guarantees the prior model of the sig-
nal. In line with the least squares formulation, the fidelity term can defined as f(x) =
1

2σ2 ||y − Ax||22. In order to solve Equation 3 given the model Equation 2, state of the
art approaches have been employing the Alternating direction method of multipliers
(ADMM) [59]. A more recent version, referred to as Plug-and-Play (P&P ADMM) has
proposed to avoid explicitly presenting s by introducing a regularization procedure in
the form of denoising thresholding [17].

Consider a dictionary given by a matrix D, the sparse representation of a signal x
refers to the coefficients α, such that

arg min ‖α‖0 , subject to x = Dα, (4)

where ‖α‖0 = #(αk 6= 0) denotes the pseudo-norm l0 which equals the number
of non-zero coefficients. The entries of the matrix D can be the analysis functions of
a fixed transform D = {φn}n∈Γ , such that (Dx)[n] = 〈φn, x〉. Finding the sparse
representation is an NP-Hard problem. A sufficiently sparse α can be found by replacing
the l0 pseudo-norm with the l1 norm, leading to what is known as Basis Pursuit (BP)
algorithm [11].

min
α
‖α‖1 , subject to x = Dα (5)

It has been proved that the problems 4 and 5 are equivalent in the case of sufficient
sparsity quantified as

‖x‖0 <
1

2

(
1 +

1

µ(D)

)
,

where µ(D) = maxk 6=l
〈φkφl〉

‖φk‖2‖φl‖2
represents the mutual coherence of the dictionary

[12].
The design of the sparsifying dictionary depends on the set of considered signals and

the application at hand. For signals representing natural images formed by conventional
digital cameras, various dictionaries have been proposed ranging from the widely-used
discrete cosine and wavelet transforms to more dedicated, usually directional transforms
such as curvelets, ridgelets, bandlets, etc. [44]. Dictionaries can be also learned through
approaches such as K-SVD algorithm [2] and sparse coding [38].
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Consider a transform in the form of a tight frame, which is a generalization of a
basis. The frame is defined by its analysis α = Φx and synthesis x = Ψα transforms,
such that in the general case ΨΦ = I and ΦΨ 6= I . The regularization term in the
minimizer in Equation 3 can be formulated in terms of sparse transform coefficients
s(α) = ||α||p, where p = 0, 1. The regularization is implemented in the form of a
thresholding operator Tt(·), acting on the transform coeffiecinets and yelding a denoised
version of the signal D(x, σ) = ΨTt(σ)(Φx) [44].

Following the approach proposed in [8], the solution can be found by iterations

xk+1 = ΨTλΦ(xk +A(y − xk)) (6)

It has been shown that the convergence of Equation 6 is equivalent to solving the
minimization problem

arg min
α

1

2
‖AΨα− y‖22 +

κ
2
‖(I − ΦΨ)α‖22 + λ ‖α‖1 . (7)

with κ = 1, referred to as balanced approach [8], [49]. Its solution has been eventually
derived in the following iterative form [9]

a) xk = Ψαk

b) ηk = Φ

(
xk +

1

κ
(y −Axk)

)
c) ωk+1 = Tγλ (αk + γκ(ηk − αk))

(8)

3.3 Shearlet frame

Suitable sparsifying dictionaries (transforms) have been studied predominantly for the
case of natural images. For such images, dictionaries have been requred to optimally
approximate curvilinear singularities of the underlying 2D functions (images). The op-
timal approximation, in this case, is defined using the decay rate of l2 error of the best
N -term approximation. More specifically, the development of such systems has been
specified for cartoon-like functions consisting of C2 functions being compactly sup-
ported on the unit square, except for a closed C2 discontinuity curve. Examples of
developed systems include curvelets [14], and contourlets [19]. What is common for
such systems is their ability to handle directional properties in images.

The construction of discrete shearlet frame has followed a similar approach by con-
trolling the orientation of the system’s atoms trough a shear operator [36]. It is precisely
this property, which makes the shearlet frame particularly interesting for epipolar-plane
image representation, since EPI structure is formed by shearing rather than rotation or
other curve motion. The compactly-supported shearlet system is of special interest since
it contains atoms which are compacty supported in both spatil and Fourier domains [37].
Though it is not a Parseval frame, it is still applicable for approximating (sparsifying)
cartoon-like functions. The theoretical framework of the universal shearlet system has
been developed in [20]. It includes a parameterized systems family, which, for varying
parameter value, can describe the wavelet system, the parabolic shearlet system and the
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Fig. 9: (a) Outlined regions are corresponding to frequency plane separation for shearlet
transform design. Two cone-adapted regions are corresponding to Cψ, Cψ̃ set of filters
and central rectangle region corresponds to Cφ low pass filter. (b) Frequency plane
tilling obtained by whole shearlet transform using two scales of decomposition J = 2.

ridglet system [13]. Departing from the nonseparable shearlet transform described in
[42], hereafter we present a modified version, which has been purposefully designed
for efficient representation of functions having singularities along straight lines, in con-
tract to the image-inspired case of parabolic curves approximated by ridges.

The cone-adapted discrete shearlet system SH is defined as a set of 2D functions
formed by shearing S, translation and parabolic scalingA transforms applied on genera-
tor functions: a scaling function φ and two shearlets ψ, ψ̃ ∈ L2(R2). For c = (c1, c2) ∈
R2

+, the system is defined as

SH(φ, ψ, ψ̃; c) = Φ(φ; c1) ∪ Ψ(ψ; c) ∪ Ψ̃(ψ̃; c), (9)

. With reference to Figure 9 (a), the subset Ψ(ψ; c) corresponds to the cone-shaped
region Cψ , the subset Ψ̃(ψ̃; c) corresponds to the region Cψ̃ and Φ(φ; c1) - to the central
part Cφ. This division of the frequency plane is achieved using the following definitions

Φ(φ; c1) = {φm = φ(· − c1m) : m ∈ Z2}
Ψ(ψ; c) = {ψj,k,m = 23/4jψ(SkA2j · −Mcm) : j ≥ 0, |k| ≤ d2j/2e,m ∈ Z2}
Ψ̃(ψ̃; c) = {ψ̃j,k,m = 23/4jψ̃(Sᵀ

k Ã2j · −M̃cm) : j ≥ 0, |k| ≤ d2j/2e,m ∈ Z2}

where A and Ã are scaling matrices, Sk is shearing matrix, Mc = diag(c1, c2) and
M̃c = diag(c2, c1) are (translation) sampling matrices, as follows

A =

(
2j 0
0 2j/2

)
, Ã =

(
2j/2 0

0 2j

)
, Sk =

(
1 k
0 1

)
.

This construction is suitable for images with parabolic singularities. By modifying the
scaling matrix to becomeA = diag(2j , 2−1), the shearlet system can be tuned to handle
images with line singularities, where the new scaling matrix would guide the required
number of shears in each scale of the frequency plane tilling.
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The above proposed transform is continuous however it has to handle discrete sig-
nals. A natural assumption to start with is to consider a sufficiently large J > 0, for
which a continuous 2D signal function f is represented by the discrete signal fd and
the scaling function φ

f(x1, x2) =
∑

(k1,k2)∈Z2

2Jfd[k1, k2]φ(2Jx1 − k1, 2Jx2 − k2).

In a further assumption, φ(x1, x2) = φ1(x1)φ1(x2). Then, the 1D scaling and
wavelet functions ψ1(x), φ1(x) are represented by two-scale equations

φ1(x) =
∑
k∈Z

h[k]
√

2φ1(2x− k) and ψ1(x) =
∑
k∈Z

g[k]
√

2φ1(2x− k).

The Fourier coefficients of the trigonometric polynomial Hj and Gj

H0 ≡ 1, Hj(ξ) =

j−1∏
i=0

H(2iξ), Gj(ξ) = G(2j−1ξ)Hj−1(ξ), j = 0, . . . , J (10)

are denoted by gj and hj .
For better performance, it has been suggested to select a 2D nonseparable wavelet

function ψ(x1, x2) corresponding to the scaling function φ(x1, x2) such as

ψ̂(ξ1, ξ2) = P (ξ1/2, ξ2)ψ̂1(ξ1)φ̂1(ξ2),

where P (ξ1, ξ2) is trigonometric polynomial representing 2D fan filter with wedge-
shaped essential support [42]. By appropriate selection of the sampling gridMc, the co-
efficients of the shearlet transform corresponding to the system elements {ψj,0,m}m∈Z2

can be calculated by applying a digital filter pj ∗
(
gJ−j ⊗ hJ−j/2

)
on the discrete signal

fd, where pj are the Fourier coefficients of a scaled 2D fan filter
P (2J−j−1ξ1, 2

J−j/2ξ2).
A poper discretization of the whole system [42], [55] eventually leads to the follow-

ing digital implementation:

Ψdj,k = Sdk2−(j+1) (pj ∗ (gJ−j ⊗ hJ+1)) , j = 0, . . . , J − 1, |k| ≤ 2j + 1.

This set of transform filters corresponds to the cone-shaped region Cψ of the fre-

quency plane highlighted in Figure 9 (a). The regionCψ̃ is covered by the filters ˆ̃
ψdj,k(ξ1, ξ2) =

ψ̂dj,k(ξ2, ξ1). The central region CΦ is dealt with a single filter φd = hJ ⊗ hJ .
The constructed discrete shearlet system is not orthogonal, therefore dual frame

elements are required for the synthesis transform. Using auxiliary notation

Ψ̂d = |φ̂d|2 +

J−1∑
j=0

∑
|k|≤2j+1

(
|ψ̂dj,k|2 + | ˆ̃ψdj,k|2

)
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Fig. 10: (a) Subsampled densely sampled epipolar-plane image, assuming that dispari-
ties between consecutive rows are no more than 16px. (b) Subsampled data can be in-
terpreted as every 16-th row if desirable densely sampled light field. (c) Corresponding
densely sampled light field with disparities don’t exceeding 1px. (d) Highlighted shear-
let transform atoms used in EPI reconstruction algorithm. Selected atoms correspond
to EPI structure. Each disparity layers (k = 0, 1, ...4) represented with one transform
atom in each scale (j = 0, 1).

the dual elements are defined as follows

ϕ̂d =
φ̂d

Ψ̂d
, γ̂dj,k =

ψ̂d

Ψ̂d
, ˆ̃γdj,k =

ˆ̃
ψd

Ψ̂d
.

Finally, the analysis operator corresponding to the construction shearlet frame is
given by

S(fdJ ) =
{
sj,k = fdJ ∗ ψ̄dj,k, s̃j,k = fdJ ∗ ¯̃

ψdj,k, s0 = fdJ ∗ φ̄d
}

and the synthesis operator uses the dual elements

S∗ ({sj,k, s0}) =

J−1∑
j=0

∑
|k|≤2j+1

(
sj,k ∗ γdj,k + s̃j,k ∗ γ̃dj,k

)
+ s0 ∗ φd.

3.4 Epipolar-plane image reconstruction

Main method The epipolar-plane image reconstruction can be formulated as a sparse
regularization problem utilizing the shearlet frame [55]. The input signal is a subsam-
pled EPI y with respect to the desired DSEPI x: y = Mx, where M is the masking or
subsampling matrix. The input EPI has disparities between adjacent views in the range
[dmin, dmax] pixels. A pre-shearing operation is applied to guarantee positive disparities
[0, drange], with drange = dmax − dmin. The subsampled EPI is organized to get the size
of the target DSEPI, i.e. the k-th row (view) takes kdrange-th row of the densely sampled
epipolar-plane image. This organization enforces the densely sampled condition, where
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the disparities are in the range [0, 1]px. An example of desirable densely sampled EPI
is given in Figure 10 (c) where every 16-th row is taken from input EPI at Figure 10 (a).

The sparsifying shearlet transform is implemented at J = dlog2(drange)e scales.
This number guarantees an alias-free central low-pass region. The participating shear-
let atoms are selected according to the desired disparity range [0, 1] pixels, c.f. Fig-
ure 10 (b) and Figure 10 (d).

The proposed algorithm is a version of the algorithm in Equation 8 and employs an
iterative scheme involving the analysis transform S and its synthesis (dual) counterpart
S∗[55]

xk+1 = S∗ (Tλk
(S(xk + αk(y −Mxk))) , (11)

where (Tλx) (k) =

{
x(k), |x(k)| ≥ λ

0, |x(k)| < λ
is a hard thresholding operator taking lin-

early decaying thresholding values λn in the range [λmax, λmin]. A large value of the
parameter αk provides additional convergence acceleration. This result is partially re-
lated to the sparsity of the measurements matrix M. Typically, the number of available
samples is significantly smaller than the number of reconstructed samples. Therefore,
significant amplification is required to increase the influence of available samples at
every thresholding iteration. Nevertheless, an unlimited increase of the parameter αk
diverges the series xk. The factor can be also made adaptive [5], [55].

Full parallax processing The presented reconstruction algorithm assumes EPI formed
by an 1D parallax. Full parallax light field data can be processed in consequent manner,
i.e. reconstructing the vertical DSEPIs after obtaining all horizontal DSEPIs. This direct
approach assumes the same disparity range in both directions. However, the number of
shearlet scales, and hence the computational cost, is directly determined by the dispar-
ity range. This motivates processing full-parallax EPIs in a hierarchical reconstruction
(HR) order [55]. Consider the example in Figure 11: there is a 5× 5 array of input im-
ages and the targeted DSLF contains an 17× 17 array of images. The reconstruction in
performed in three steps by alternating the reconstruction directions, thus making use
of the already twice-decreased maximal disparity. For large disparity range, the number
of alternating steps can be increased in the same fashion, building a hierarchy where
disparities of the subsequent step are reduced twice by the current step.

Performance This method has demonstrated a superior performance against the state
of the art and specifically against view interpolation methods relying on depth and hence
requiring multi-view depth estimation [55].

While the main method has been developed to handle uniformly-sampled LFs (i.e.
rectified views from equidistantly spaced cameras), non-uniform sampling can be han-
dle equally successfully [55]. It is worth mentioning that the required input parameter
drange has no direct interpretation in the case of non-uniform sampling and the number
of shearlet scales has to be determined by the maximum disparity between adjacent
views in order to increase the performance, c.f. Figure 12 (b).

The shearlet atoms are directly related with properties of LF imagery and the im-
posed sparsity allows avoiding any depth estimation, which might be required for view
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First Second Third

Fig. 11: Proposed fast processing order illustrated for 17 x 17 array of images. Recon-
struction is divided into three steps (blue, orange, green) to decrease the disparity range
in the successive steps.

interpolation otherwise. The LF views are reconstructed as a weighted combination
of atoms which can handle cases corresponding to non-Lambertian scenes, which are
challenging for depth estimation. Figure 13 illustrates the performance of the proposed
method for a semi-transparent scene and against a well-known disparity estimation al-
gorithm, referred to as semi-global block matching (SGBM) [28].

3.5 Acceleration methods

The basic reconstruction algorithm in Equation 11 is applied per EPI of a given LF.
However, there are correlations between neighboring EPIs as well as between differ-
ent color components in the same EPI, which can be further explored to achieve an
accelerated processing [54].

Colorization Colorization uses a grayscale image, which guides the reconstruction of
another image where the color information is available in isolated regions only [40],
[39]. The missing color information is recovered and propagated using the local struc-
ture of the guiding image [39]. Colorization is attractive and computationally efficient
approach for DSEPI reconstruction, considering the luminance channel as the appropri-
ate guidance map for the two chrominance channels [54].

Let E denotes the given luminance channel of DSEPI, which is fully reconstructed.
The unknown color image x is modelled as a linear function of the known guidance
map at every pixel within a small spatial window w,

x[i] ≈ aE[i] + b,∀i ∈ w.
Finding the unknowns is performed through a cost function minimization

min
x,a,b

J(x, a, b) =
∑
j

∑
i∈wj

(x[i]− ajE[i]− bj)2 + εa2j

 ,

where a regularization coefficient ε ensures the numerical stability. The minimiza-
tion problem can be reformulated in terms of matting Laplacian Λ matrix such as

min
a,b

J(x, a, b) = xᵀΛx,
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Fig. 12: Comparison of the DSLF reconstruction performance between uniform (a) and
non-uniform (b) sampling. Used ST 5 and ST 6 methods correspond to the used J = 5
and J = 6 number of scales in the shearlet transform.

where the symmetric matrix Λ depends on E and w only [39]. The proper choice of
the local window w plays a crucial role for the algorithm performance. Figure 14 (a)
illustrates possible windowing for DSEPI reconstruction, where the window shape has
been motivated in [54]. With structure and local windowing information represented in
Λ, the colorization problem can be formulated as constrained quadratic minimization,

min
x
xᵀΛx, subject to Mx = y, (12)

where M is the diagonal measuring matrix and y contains the available color informa-
tion. The problem can be solved by e.g. the conjugate gradient method (Λ + λM)x =
λMy with sufficiently high λ. Figure 15 illustrates the approach in terms of input
guidence map and color and output reconstructed (colorized) DSEPI. The quality of
the colorization is mainly dependent on the accuracy of the guidance map. Therefore in
order to provide an overall high quality accelerated reconstruction it is required to effi-
ciently distribute the processing resources between reconstructing the luminance chan-
nel Y and colorizing the RGB color channels. As seen in Figure 16, same or better
quality of reconstruction can be achieved for less time. Alternatively, the three decore-
lated channels Y UV can be reconstructed independently using the shearlet-based spar-
sification, with higher priority assigned to the Y channel reconstruction. As a rule of
thumb, it should be processed with twice more iterations than the U and V channels to
get decent reconstruction results.
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ts

Ground truth Shearlet SGBM

Fig. 13: Semi-transparent DSEPI reconstruction using the proposed method and SGBM
[28].

(a) (b)

Fig. 14: (a) Proposed w window (green) for modelling guidance map. (b) Neighbour-
hood (green) for forming matting Laplacian matrix entry with respect to reference pixel
(orange).

Decorrelation Transform Another acceleration can be considered by exploiting spa-
tial correlation between neighboring EPIs of the same light field. The winning idea
is to use one-dimensional wavelet transform along the vertical direction (i.e. between
EPIs), as illustrated in Figure 17 [54]. In this way, the imagery is decomposed in coarse
(low-pass) component and detail components. The coarse DSEPI approximation is re-
constructed first: per-EPI and then by inverse 1D wavelet transform to get a global
low-pass approximation which serves as an initial estimate for the sparsity-based re-
construction. This approach strongly depends on the spatial image structure. For scenes
containing objects with vertically uniform color, the wavelet based processing allows to

(a) (b) (c)

Fig. 15: (a) Grayscale DSEPI obtained by luminance channel reconstruction using
shearlet transform used as a guide for colorization. (b) Color information of the DSEPI
is available only from input coarse set of views. (c) Colorization result obtained by
solving problem Equation 12.
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Fig. 16: Average performance over multiple datasets of the colorization technique
(Y+Col.) compared with reference reconstruction method applied on every channel
independent (RGB) and efficiently reconstruction in YUV color space (YUV).

significantly decrease the computation time while for scenes with more complex struc-
tures in vertical direction, the method shows no significant acceleration [54].
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Fig. 17: Reconstruction flowchart using wavelet transform approximation (lowpass) co-
efficients as an initial estimation for original set reconstruction.

4 Applications

Densely sampled light field has a number of applications, where a dense set of views or
rays is required. Here, we present a few applications, to illustrate its use.
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4.1 Holographic stereograms

Holographic stereograms are printed digital holograms, where small holographic ele-
ments (so-called hogels) act as multi-view pixels when illuminated with proper light
[48]. In holographic stereograms, each ray of the LF is considered source of a win-
dowed plane wave with the corresponding amplitude and the entire LF is formed as a
superposition of plane waves. For convenience, the two planes of the LF parameteriza-
tion are located at the camera plane and the hologram plane. Thus, all rays intersecting
a point on the hologram plane form a hogel. A fringe pattern corresponding to a hogel
on the holographic stereogram is calculated using the superposition of the plane waves
generated by the rays in the hogel. The resolution of each hogel is directly related to
the angular resolution of the given LF and high angular resolution is needed for an ac-
curate calculation of the fringe pattern corresponding to each hogel. All fringe patterns
together form the entire holographic stereogram.

The method described in Section 3 has been used to generate synthetic holographic
stereograms and to compare with depth-based view synthesis methods [48]. The pre-
sented results have demonstrated the importance of using DSLF for the holographic
stereogram calculation and the efficiency of the proposed shearlet based algorithm for
obtaining DSLF, which performed better compared to the depth-based approaches [48].

4.2 Light field compression

Typically, the LF compression problem is interpreted as compression of the correspond-
ing sub-aperture views. By using an enhanced inter-view prediction scheme, significant
improvement in compression can be achieved. DSLF reconstruction can be used for
predicting views [3]. In this approach, the given LF is uniformly decimated in the an-
gular domain first to form a set of key views. This is aimed at decreasing the number of
images which go to the compression engine. The key views are converted further into a
pseudo video sequence and compressed using high-efficiency video coding (HEVC) en-
coder. At the decoding side, the full LF is obtained by decoding the key views and then
using them for DSLF reconstruction. Apparently, the interplay between view decima-
tion and encoding parameters is the key performance factor [3]. As an anchor method,
the direct encoding of the full set of the image from LF as a pseudo video sequence has
been considered. The obtained results have demonstrated the efficiency of the proposed
compression scheme especially in low bit-rates compared to the anchor method. Since
the reconstruction method based on the shearlet transform relies only on keys views, in
a low bit-rate scenario, the bit budget allows to achieve high quality for the key views
and, as a consequence, high quality for the reconstructed DSLF. On the other hand,
the anchor achieves effective compression in high bit-rates due to its various prediction
modes for highly correlated views and handling residual information in an effective
manner.
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