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Abstract—The present work investigates the physical layer security of
wireless communication systems over non-homogeneous fading envi-
ronments, i.e. η-µ and λ-µ fading models, which are typically encoun-
tered in realistic wireless transmission scenarios in the context of con-
ventional and emerging communication systems. This study considers
a single-input multiple-output system that consists of a single-antenna
transmitter, a multi-antenna legitimate receiver, and an active multi-
antenna eavesdropper. To this end, novel exact analytical expressions
are derived for the corresponding average secrecy capacity and secrecy
outage probability, which are corroborated by respective results from
computer simulations. Capitalizing on the offered results, the physical
layer security is quantified in terms of different parameters, which leads
to useful insights on the impact of non-homogeneous fading environ-
ment and the number of employed antennas on the achieved physical
layer security levels of the underlying system configuration. The offered
results and insights are useful for the design of such systems as well
as for the computational requirements and sustainability relating to such
systems, since emerging communications are largely characterized by
stringent quality of service and complexity requirements.

Index Terms—Multipath fading, secrecy capacity, secrecy outage prob-
ability, physical layer security, multi-antenna communications, computa-
tional complexity.

1 INTRODUCTION

Physical layer (PHY) security has received a great deal of attention
in the past few years since it can address the issues of privacy and
security in wireless communication networks, without necessarily
relying on encryption techniques. Owing to this fact, several
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reported contributions have investigated the secrecy performance
over small-scale fading channels and large-scale fading channels
( [1]–[6] and references therein). However, the aforementioned
fading conditions do not typically encompass various fading types
that are experienced in practical communication scenarios. This
also concerns the effects of non-homogeneous fading environ-
ments such asα-µ [7], and κ-µ and η-µ [8], which although
they are encountered in realistic communication scenarios, they
are typically neglected for the sake of complexity reduction. As
a result, several simplistic assumptions have led to results that
are largely inaccurate, which is a critical issue in the context of
secure communications since the reliability of modeling effects
is of paramount importance. To this end, recent emphasis on
generalized fading distributions that do not necessarily assume
homogeneous fading environments has generated a considerable
interest in analyses relating to PHY security, which constitutes a
critical topic of interest in emerging communication technologies
(see for instance, [9]–[18] and references therein). Specifically, the
authors in [9] derived analytical expressions for the lowerbound
of the secrecy outage probability (SOP) and the probabilityof
strictly positive secrecy capacity (SPSC) over generalized Gamma
fading channels. Likewise, the secrecy performance analysis over
generalized-K fading channels was investigated in [10], while
the effects ofκ-µ andα-µ fading conditions were investigated
in [11] and in [12], respectively. Considering a different con-
figuration from the above studies [9]–[12], the authors in [13]–
[16] investigated the PHY security problem in a single-input
multiple-output (SIMO) system over the generalized-K, κ-µ, κ-
µ shadowed andα-µ fading channels, respectively. In [17], the
secrecy performance of stochastic MIMO wireless networks over
α-µ fading channels was studied in terms of the connection
outage probability (COP), the probability of non-zero secrecy
capacity (PNZ) and ergodic secrecy capacity. Most recently, a
comprehensive and unifying fading model introduced in [19], i.e.,
theα-η-κ-µ distribution, was investigated in the context of secure
wireless communication systems (e.g. [18]). In [18], the authors
obtained novel and exact expressions for the secrecy performance
metrics of the classic Wyner’s wiretap model.

Other types of versatile fading distributions are the so-called
η-µ andλ-µ fading models [8], [20], which can accurately model
the small-scale variations of the wireless signal under non-line-of-
sight conditions. The generality of these models is also evident by
the fact that they include as special cases well-known multipath
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fading models such as Rayleigh, Nakagami-m and Nakagami-q
i.e. Hoyt distributions. Because of their wide applicability and
versatility [8], their consideration in the context of PHY security
arises as an interesting issue to be investigated. However,none of
the above-cited works (i.e., [9]–[18]) has studied the performance
analysis of secure wireless communication in eitherη-µ or λ-µ
fading conditions. Importantly, it is expected that the proposed
investigations will be also insightful in terms of the computational
complexity and sustainability associated with the determination of
secure communications in the context of emerging communication
systems. Besides the traditional communication-based perspective,
such insights on the related computations are of paramount im-
portance since modern communication systems and networks are
typically characterized by stringent quality of service requirements
and increased computational complexity and costs, which render
their sustainability a challenging task. Thus, the core aimof the
present analysis is to provide the necessary tools for an in-depth
quantification of the computational sustainability associated with
physical layer security in emerging communications in realistic
propagation media, which will be useful in the effective and
sustainable deployment and operation of future communication
systems, both independently and as part of the generic Internet of
Things (IoT) paradigm.

To the best of the authors’ knowledge, the secrecy performance
of wireless communication systems overη-µ andλ-µ fading mod-
els remains vastly unexplored. Motivated by the above, the present
work conducts an investigation into the physical layer security
of SIMO systems under generalized multipath fading conditions
characterized byη-µ andλ-µ distributed fading conditions. The
main contributions of this work are as follows:

• Novel analytical expressions for ASC and the secrecy outage
probability (SOP) of the considered setup are derived. These
expressions are given in terms of infinite series representa-
tions, which are fully convergent and involve elementary and
known special functions. Also, a small number of terms is
required to ensure a sufficiently low truncation error.

• Simple closed-form upper bounds for the truncation errors
of the involved infinite series are also derived in order to
enable precise determination of the number of truncation
terms required to achieve certain accuracies. The derived
analytical expressions are subsequently employed to quantify
the ASC and the SOP under the considered fading conditions.

• Simple and explicit expressions of the asymptotic SOP in the
high-SNR regime are obtained under both theη-µ andλ-µ
fading models.

• The validity of the offered results is verified through exten-
sive comparisons with respective results from computer sim-
ulations. It is shown that the number of antennas is criticalto
the level of achieved security as it improves the performance
when they increase at the legitimate user, and they degrade
it as their number increases at the eavesdropper. Also, it
is shown that the effects of non-homogeneous fading have
a non-negligible effect on the ASC and SOP performance.
However, the effect of fading conditions in both cases is,
as expected, smaller when the number of antennas at the
legitimate and at eavesdropper’s links is not small.

The remainder of the paper is organized as follows: Section
2 describes the considered system and channel models, while
Section 3 focuses on the analysis of the ASC over generalized
multipath fading channels characterized byη-µ and λ-µ fading

models. Likewise, the corresponding exact and asymptotic SOP
under these fading conditions are analyzed in Section 4, followed
by corresponding numerical results, and insightful discussions are
provided in Section 5. Finally, concluding remarks are provided in
Section 6.

2 SYSTEM AND CHANNEL MODELS

As shown in Fig. 1, we consider a SIMO wiretap channel in
which the transmitter (Alice) sends confidential messages to the
legitimate receiver (Bob) with a transmit power denoted byP ,
while the eavesdropper (Eve) overhears the transmission through
the eavesdropper channel. In this context, it is assumed that
Alice is equipped with a single antenna whereas Bob and Eve
are equipped with multiple antennas, denoted asLB and LE,
respectively. Also, both the legitimate (Alice-Bob) channel and
the eavesdropper (Alice-Eve) channel are assumed to undergo
independent and identically distributed (i.i.d.) quasi-static gener-
alized η-µ andλ-µ fading conditions. In this context, an active
eavesdropping scenario is considered, in which the channelstate
information (CSI) of both the main and wiretap links are known
at Alice. Also, a maximal-ratio combining (MRC) scheme is
employed at the involved receivers in order to exploit the antenna
diversity and to maximize the probabilities of secure transmission
and successful eavesdropping. The latter probability represents the
worst-case scenario in the context of physical layer security, and it
is paramount to investigate wireless communication systemunder
such circumstances.

Fig. 1: Illustration of a SIMO wiretap channel, where a single-antenna trans-
mitter (Alice) communicates with a multi-antenna legitimate receiver (Bob) in
the presence of an active multi-antenna eavesdropper (Eve).

The encountered fading conditions in the underlying setup are
assumed to beη-µ andλ-µ distributed with arbitrary values of
fading parameters. These two models represent physical measures
and have been distinct for their generality since they have been
shown extensively, both theoretically and experimentally, capable
of providing accurate characterization of versatile multipath fading
channels [8], [20]–[22], and the references therein. Specifically,
these fading models consider that the signals are composed of
clusters of multipath waves propagating in a non-homogeneous
environment. Within any one cluster, the phases of the scattered
waves are random and have similar delay times with delay-time
spreads of different clusters being relatively large. Furthermore,
the in-phase and quadrature components of wireless signalswithin
each cluster are assumed to: i) be independent to each other
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and have different powers, in theη-µ fading model; ii) have
zero mean and identical power but they are correlated, in the
λ-µ fading model. In this context,µ represents the number of
multipath clusters, in both fading models,η denotes the power
ratio of the in-phase and quadrature components of the wireless
signal within each cluster andλ denotes the correlation coefficient
between the scattered-wave in-phase and quadrature components
in each multipath cluster [8], [20]. Different from theη-µ andλ-µ
fading models, theα-µ fading model accounts for the nonlinearity
and clustering of a propagation channel, while theκ-µ fading
distribution is better suited for line-of-sight (LOS) applications.
In the former model, the nonlinearity is described in terms of a
power parameter, so that the resulting signal intensity is obtained
in two ways: (a) modulus of the sum of the multipath components,
(b) modulus to a certain given exponent. In the latter model,each
cluster of multipath waves is assumed to have scattered waves with
identical powers and a dominant component found within.

The signal-to-noise ratio (SNR) probability density functions
(PDF) of theη-µ andλ-µ fading distributions are obtained using
[22, Eq. (1)] and [22, Eq. (2)], respectively and settingα = 1, and
are expressed as

fγ(x) =
(η + 1)µ+

1
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√
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whereΓ(·) andIn(·) denote the Euler Gamma function and the
modified Bessel function of the first kind, respectively andγ̄ =
E{γ} represents the average SNR, withE{·} denoting statistical
expectation. Based on the above representations and with the aid
of [23, Eq. (8.445.1)] and [24], the corresponding PDFs of the
SNRγi, i ∈ {B,E}1, at the receiver’s combiner output for each
case are given by
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respectively. Based on (3) and (4), the corresponding cumulative

1. Henceforth, the subscriptB is associated with Bob’s measures, while the
subscriptE refers to Eve’s measures.

distribution functions (CDF) are expressed as follows:
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and
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respectively, whereγinc(α, x) denotes the lower incomplete
Gamma function2 [23, Eq. (8.350.1)].

3 AVERAGE SECRECY CAPACITY

In this section, the scenario wherein the CSI of the eavesdropper
channel is available at Alice is considered. This scenario is
applicable to wireless networks where Eve is active and Alice
has access to her CSI [25]. In this case, a fundamental perfor-
mance metric used to evaluate the secrecy performance is the
ASC, which is defined as the instantaneous secrecy capacity
CS averaged over the instantaneous SNRsγB and γE , where
CS = max{CB − CE , 0} with CB = log2(1 + γB) and
CE = log2(1 + γE) denoting the capacities of the main and
eavesdropper channels, respectively. In what follows, we will
determine the ASC for the case ofη − µ and λ − µ fading
conditions, which are encountered in practical communication
scenarios.

3.1 Exact ASC over η-µ fading channels

It is recalled that the ASC can be formulated as follows:

C̄S =

∫ ∞

0

∫ ∞

0
CSfγB (γB)fγE (γE)dγBdγE (7)

=
1

ln(2)

∫ ∞
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+
1
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− 1
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∫ ∞

0
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J3

. (8)

Based on this, the ASC in the considered set up for the case of
η-µ fading conditions can be derived with the aid of the PDF and
CDF representations in (3) and (5), respectively. To this end, it
is evident that the ASC for the considered case can be obtained
by deriving analytical expressions for theJ η

1 , J η
2 andJ η

3 terms3

2. The subscript “inc” is used in order to differentiate the instantaneous SNR
γi from the lower incomplete Gamma functionγinc(·, ·).

3. TheJ η
n andIη

n terms account forJn andIn for the case ofη-µ fading
channels, whereas theJ λ

n andIλ
n terms account forJn andIn for the case

of λ-µ fading channels.
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Therefore, by substituting appropriately (3) and (5) into (8), the
J η
1 term can be expressed as

J η
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AE =
µE(ηE + 1)2

2ηE γ̄E
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By denoting the integral in (9) asIη
1 , making use of [23, Eq.

(8.352.4)], and carrying out after some algebraic manipulations, it
follows that
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It is noticed that both integrals in (12) have the form:
∫∞

0 ln(1 +
x)xae−bxdx, wherea > 0 andb > 0. To this effect and using
[26, Eq. (78)], the first integral of (12), denoted byIη

11, can be
derived as

Iη
11 =

Γ(2LBµB + 2k)

e−AB

×
2LBµB+2k
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Γ (m− 2LBµB − 2k,AB)

Am
B
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Similarly, the second integral in (12) can be derived so thatIη
1 can

be expressed as in closed-form as follows:
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]
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Then, by replacing (15) into (9), an analytical expression for J η
1

can be obtained as (16), shown at the top of the next page (see p.
5), whereΓ(·, ·) denotes the upper incomplete Gamma function
[23, Eq. (8.350.2)]. Likewise, an expression forJ η

2 can also be
attained from (16) after replacingLB by LE, µB by µE , HB by
HE , hB by hE, andγ̄B by γ̄E , and vice-versa.

Next, by substituting appropriately (3) into the expression of
J η
3 in (8), and using [26, Eq. (78)] along with some algebraic

manipulations,J η
3 can be derived as

J η
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Therefore, by substituting (16) and (17) into (8) leads to the
corresponding analytical expression for thēCS for the case of
η-µ fading channels.

It is evident that the derived analytical expression for theC̄S

is expressed in terms of an infinite series representation. However,
this is not a detrimental issue in practice since this seriesis fully
convergent and it requires few terms to achieve sufficient levels
of accuracy. In fact, fairly accurate results can be obtained by
truncating the series after 50 terms, which yields a relative error
due to truncation [27] of less than 0.002%. Also, the algebraic
representation of the derived series is tractable since it consists
of well-known elementary and special functions, which render it
convenient to handle both analytically and numerically.

3.2 Exact ASC over λ-µ fading channels

Capitalizing on the derived analytical expression for the ASC over
η-µ fading channels, we can also derive a similar expression for
the ASC for the case ofλ-µ fading channels. To this end, by
substituting (4) and (6) into (8) and following the same process as
in the previous subsection, it follows that
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B)

2µB

)m

×Γ

(

m− 2LBµB − 2k,
2µB

γ̄B(1− λ2
B)

)

−
2LEµE+2j−1

∑

n=0

2LBµB+2k+n
∑

ι=1

Γ(2LBµB + 2k + n)

n!

e
2µB

γ̄B(1−λ2
B

)

e
−

2µE
γ̄E(1−λ2

E
)

×Γ

(

−2LBµB − 2k − n+ ι,
2µB

γ̄B(1− λ2
B)

+
2µE

γ̄E(1− λ2
E)

)

×
(

2µE

γ̄E(1− λ2
E)

)n ( 2µB

γ̄B(1− λ2
B)

+
2µE

γ̄E(1− λ2
E)

)−ι
]

.

(20)

To this effect and after some long but basic algebraic manipu-
lations, one obtains (21), at the top of this page. Likewise,an
expression forJ λ

2 can be deduced from (21) after replacingLB

by LE , µB by µE , HB by HE , hB by hE , andγ̄B by γ̄E , and
vice-versa, whereasJ λ

3 can be expressed as

J λ
3 =

2
√
π

ln(2)Γ(LEµE)(1− λ2)LEµE

×
∞∑

k=0

λ2k
E µ

2LEµE+2k
E Γ(2LEµE + 2k)

k!(1− λ2
E)

2k−mΓ(LEµE + k + 0.5)

×
2LEµE+2k
∑

m=1

Γ
(

m− 2LEµE − 2k, 2µE

γ̄E(1−λ2
E)

)

γ̄
2LEµE+2k−m
E e

−
2µE

γ̄E(1−λ2
E

)

. (22)

Therefore, by substituting (21) and (22) into (8) and after some
algebraic manipulations, the corresponding analytical expression

for theC̄S overλ− µ fading channels is deduced.

3.3 Upper Bounds for the Truncation Errors

As already mentioned, the derived expression for the ASC is given
in terms of infinite series. Depending on the value of the involved
parameters, this series requires different number of termsto
ensure acceptable truncation that leads to accurate results. Unlike
error rate measures that typically require several decimaldigits
accuracy, the derived ASC measure only requires, at most, a two-
decimal digit accuracy. Nevertheless, even though the involved
series achieves a sufficient accuracy for a relatively low number
of terms, deriving a tight closed-form upper bound for the exact
truncation error of this series will allow the determination of the
exact accuracy for a specific number of terms at given scenarios.
Based on this, we derive a tight and tractable closed-form upper
bound for the truncation error of the derived series representation
in (8). In this case, the truncation error of (8) can be bounded by
deriving closed-form bounds forJ η

1 , J η
2 andJ η

3 , for the case of
η-µ fading.

To this end, the truncation ofJ η
1 after p − 1 terms results to

the truncation error in (23), at the top of the next page, i.e., p.
6. It is evident that (23) can be upper bounded by (24), shown
at the top of the next page (see p. 6). To this effect, we use the
Pochhammer symbol identities in [28] and after some algebraic
manipulations, the resulting expression with the two infinite series
can be expressed in terms of the hypergeometric function [23],
which yields a closed-form upper bound forJ η

1 . By following
the same methodology, it follows that the upper bound ofJ η

2

can be also obtained in closed-form. The aforementioned two
representations can be expressed in a more compact form as
in (25), at the bottom of the next page (see p. 6), where the
superscript “Tr” denotestruncate.
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J η
1 =

∞∑

k=p

∞∑

j=p

µ2k
B (2LEµE + 2j − 1)!(1− ηE)

2j

k!j!22jΓ(LBµB + k + 1
2 )Γ(LEµE + j + 1

2 )(1 + ηE)2j

(
1− η2B
4ηB

)2k

×
[

(2LBµB + 2k − 1)!eAB

2LBµB+2k
∑

m=1

Γ (−2LBµB − 2k +m,AB)

Am
B

−
2LEµE+2j−1

∑

n=0

2LBµB+2k+n
∑

i=1

Γ(2LBµB + 2k + n)An
E

n!(AB +AE)ie−AB−AE
Γ (−2LBµB − 2k − n+ i,AB +AE)

]

. (23)

J λ
1 <

∞∑

k=0

λ2k
B µ2k

B

k!(1− λB)2kΓ(LBµB + k + 1
2 )

∞∑

j=0

λ
2j
E Γ(2LEµE + 2j)

j!22jΓ(LEµE + j + 1
2 )

×
[

Γ(2LBµB + 2p)e
2µB

γ̄B(1−λ2
B

)

2LBµB+2p
∑

m=1

(
γB(1− λ2

B)

2µB

)m

Γ

(

m− 2LBµB − 2p,
2µB

γB(1− λ2
B)

)

−
2LEµE+2j−1

∑

n=0

×
2LBµB+2p+n

∑

i=1

Γ(2LBµB + 2p+ n)

n!

(
2µE

γ̄E(1 − λ2
E)

)n

e
2µB

γ̄B(1−λ2
B

)
+

2µE
γ̄E(1−λ2

E
)

×
(

2µB

γ̄B(1− λ2
B)

+
2µE

γ̄E(1− λ2
E)

)−i

Γ

(

−2LBµB − 2p− n+ i,
2µB

γ̄B(1− λ2
B)

+
2µE

γ̄E(1 − λ2
E)

)]

. (24)

{
J1

J2

}η

Tr

k = j = p
<

Γ
(

2
{
LEµE

LBµB

})

Γ
(
LBµB + 1

2

)
Γ
(
LEµE + 1

2

) 0F1



;
{
LBµB

LEµE

}

+
1

2
;







(

1−η2
B

4ηB

)2

µ2
B

(

1−η2
E

4ηE

)2

µ2
E









 1F0

({
LEµE

LBµB

}

; ;
{
(1−ηE)2/(1+ηE)2

(1−ηB)2/(1+ηB)2

})

×






(

2
{
LBµB

LEµE

}

+ 2p− 1
)

!e

{

AB
AE

}

2
{

LBµB
LEµE

}

+2p
∑

m=1

({
A

−1
B

A
−1
E

})m

Γ
(

−2
{
LBµB

LEµE

}

− 2p+m, 2
{
AB

AE

})

−
2
{

LEµE
LBµB

}

+2j−1
∑

n=0

2
{

LBµB
LEµE

}

+2p+n
∑

i=1

Γ(2
{
LBµB

LEµE

}

+ 2p+ n)

n!

An
Ee

AB+AE

(AB +AE)i
Γ
(

−2
{
LBµB

LEµE

}

− 2p− n+ i,AB +AE

)




 .

(25)

Similarly, a closed-form upper bound for the truncation error
of J η

3 can be derived as

J Tr,η
3 <

µ
2LµE

E Γ(2LµE) 1F0

(

LµE ; ;
(

2µE
1−η2

E

4ηE

)2
)

Γ
(
LµE + 1

2

)
γ̄2LµE+2pe−AE

×
2LµE+2p
∑

m=1

2γ̄mηE

µm
E (ηE + 1)2

Γ (−2LµE − 2p+m,AE) . (26)

Having derived closed-form upper bounds for the truncation
error of the infinite series representation for the ASC overη-µ
fading channels, we can readily deduce a similar expressionfor the
truncation error of the ASC for the case ofλ-µ fading channels.
To this end, by following the same procedure and after long but
basic algebraic manipulations, the closed-form bounds in (27) (top
of the next page, i.e., p.7) and (28) are deduced

J Tr,λ
3 <

µ
2LµE

E Γ(2LµE)e
2µE

γ̄E(1−λ2
E

)

Γ
(
LµE + 1

2

)
γ̄2LµE+2p 1F0

(

LµE ; ;
4µ2

Eλ
2
E

(1 − λ2
E)

2

)

×
2LµE+2p
∑

m=1

γ̄m(1− λ2
E)

m

(2µE)m
Γ

(

m− 2LµE − 2p,
2µE

γ̄E(1− λ2
E)

)

.

(28)

The derived bounds for the considered ASC cases are tight and
can be readily computed in popular software packages (such as
MATHEMATICA and MATLAB ) that include the involved elemen-
tary and special functions as built-in functions. Thus, theaccuracy
of the derived series can be determined precisely at any given case.

4 SECRECY OUTAGE PROBABILITY

4.1 Exact SOP over η-µ fading channels

Having determined the ASC overη-µ andλ-µ fading channels, it
is next assumed that Eve acts in a passive manner and therefore
the CSI of the eavesdropper channel is not available at Alice.
The secrecy outage probability arises as an important performance
metric to evaluate the security performance in this scenario, and
it is defined as the probability that the instantaneous secrecy
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{
J1

J2

}λ

Tr

k = j = p
<

Γ
(

2
{
LEµE

LBµB

})

Γ
(
LBµB + 1

2

)
Γ
(
LEµE + 1

2

) 0F1

(

;
{
LBµB

LEµE

}

+
1

2
;
{
λ2
Bµ2

B/(1−λ2
B)2

λ2
Eµ2

E/(1−λ2
E)2

})

1F0

({
LEµE

LBµB

}

; ;
{
λ2
E

λ2
B

})

×




Γ
(

2
{
LBµB

LEµE

}

+ 2p
)

e

{

2µB/(γ̄B (1−λ2
B))

2µE/(γ̄E (1−λ2
E

))

} 2
{

LBµB
LEµE

}

+2p
∑

m=1

({
γB(1−λ2

B)/(2µB)

γ̄E(1−λ2
E)/(2µE)

})m

Γ
(

−2
{
LBµB

LEµE

}

− 2p+m, 2
{
µB/(γ̄B(1−λ2

B))

µE/(γ̄E(1−λ2
E))

})

−
2
{

LEµE
LBµB

}

+2j−1
∑

n=0

2
{

LBµB
LEµE

}

+2p+n
∑

i=1

Γ(2
{
LBµB

LEµE

}

+ 2p+ n)

n!

(
2µE

γ̄E(1− λ2
E)

)n ( 2µB

γ̄B(1 − λ2
B)

+
2µE

γ̄E(1− λ2
E)

)−i

×e
2µB

γ̄B(1−λ2
B

)
+

2µE
γ̄E(1−λ2

E
)Γ

(

−2
{
LBµB

LEµE

}

− 2p− n+ i,
2µE

γ̄B(1− λ2
B)

+
2µE

γ̄E(1 − λ2
E)

)]

.

(27)

P
η
out(RS) =

4πhLEµE

E

Γ(LEµE)Γ(LBµB)

∞∑

k=0

∞∑

j=0

22jηLBµB+2j
B µ

2LEµE+2k
E

(
1− η2E

)2k (
1− η2B

)2j
Γ(2LBµB + 2j)Γ(2LEµE + 2k)

k!j!24kη2kE (ηB + 1)2LBµB+4jΓ (LEµE + k + 0.5)Γ (LBµB + j + 0.5) γ̄2LEµE+2k
E

×
[

A−2LEµE−2k
E − e(1−2RS )AB

2LBµB+2j−1
∑

m=0

m∑

ι=0

(−1)m−ι2RSι

m!

(

m

ι

)

Am
BΨ(2LEµE + 2k, ι+ 2LEµE + 2k + 1;AE +AB)

]

.

(30)

Pλ
out(RS) =

2π

Γ(LEµE)Γ(LBµB)(1 − λ2
E)

LEµE

×
∞∑

k=0

∞∑

j=0

21−2LBµB−2jµ
2LEµE+2k
E λ

2j
B (1 − λ2

B)
LBµBΓ(2LBµB + 2j)Γ(2LEµE + 2k)

k!j!Γ (LEµE + k + 0.5)Γ (LBµB + j + 0.5) γ̄2LEµE+2k
E

(
λE

1− λ2
E

)2k

×
[(

γ̄E(1 − λ2
E)

2µE

)2LEµE+2k

− e
(1−2RS )

2µB
γ̄B (1−λ2

B
)

2LBµB+2j−1
∑

m=0

m∑

ι=0

(−1)m−ι2RSι

m!

(

m

ι

)

×
(

2µB

γ̄B(1 − λ2
B)

)m

Ψ

(

2LEµE + 2k, ι+ 2LEµE + 2k + 1;
2µE

γ̄E(1− λ2
E)

+
2µB

γ̄B(1− λ2
B)

)]

. (31)

capacity remains below a target rate denoted byRS . This can
be mathematically formulated as

Pout(RS) =

∫ ∞

0
fγE (γE)FγB

(

2RS(1 + γE)− 1
)

dγE .

(29)
Therefore, by substituting (3) and (5) in (29), and with the aid of
[23, Eq. (8.352.4)] and [23, Eq. (3.351.3)], the binomial expansion
(y − 1)a =

∑a
χ=0

(a
χ

)
(−1)a−χyχ, and [23, Eq. (9.211.1)], an

exact SOP is derived in (30), shown at the top of this page. In
this expression,Ψ(·, ·; ·) denotes the confluent hypergeometric
function of the second kind defined by [23, Eq. (9.211.1)]. It
is also worth noting that although (30) is expressed in termsof
infinite series, this converges rapidly and steadily with only a few
terms.

4.2 Exact SOP over λ-µ fading channels

Having derived an explicit expression for the outage exact SOP
over η-µ fading channels can lead to the derivation of a similar
analytical expression for the SOP overλ-µ fading channels. To
this end, by performing the necessary variable transformation in
(4) and (6) and substituting into (29) along with some algebraic
manipulations yields the explicit analytical representation in (31),
at the top of this page.

4.3 Upper Bounds for the Truncation Errors

In the previous section, we derived closed-form upper bounds
for the truncation error of the infinite series representations for
the ASC overη-µ and λ-µ fading channels. These bounds are
tractable and they can determine the required number of terms
for certain target accuracy. Based on this, similar closed-form
upper bounds can be also derived for the truncation error of the
derived SOP infinite series representations for the case ofη-µ and
λ-µ fading conditions. To this end and given that the algebraic
representation of the series representations for the considered ASC
and SOP scenarios are algebraically similar, we follow the same
procedure in bounding the series which ultimately leads to the
following simple upper bound

P
Tr,η
out <

Γ(2LBµB)Γ(2LEµE)

Γ
(
LBµB + 1

2

)
Γ
(
LEµE + 1

2

)

× 1F0

(

LEµE ; ;
(1− ηE)

2µ2
E

γ̄2
Eη

2
E

)

× 1F0

(

LBµB; ;
(1− ηB)

2

(1 + ηB)2

)

, (32)

for the truncation error of the SOP overη-µ fading channels.
Based on this, a similar closed-form upper bounds can be
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P
∞,η
out (RS) =

∞∑

m=0

πγ̄
2LBµB

E γ̄
−2LBµB

B Γ(2LBµB + 2LEµE + 2m)µ2LBµB−1
B (ηB + 1)2LBµB22LBµBRS−2m+1η

2LBµB+LEµE

E

m!LBΓ(LBµB)Γ(LEµE)Γ
(
LBµB + 1

2

)
Γ
(
LEµE +m+ 1

2

)
η
LBµB

B µ
2LBµB

E (ηE + 1)4LBµB+2LEµE
.

(37)

deduced for the truncation error of the SOP underλ-µ fading con-
ditions. Hence, by performing the necessary change of variables
and after some algebraic manipulations, the following inequality
is deduced

P
Tr,λ
out <

Γ(2LBµB)Γ(2LEµE)

Γ
(
LBµB + 1

2

)
Γ
(
LEµE + 1

2

) 1F0

(
LBµB; ;λ

2
B

)

× 1F0

(

LEµE ; ;
(2λEµE)

2

γ̄2
E(1 − λ2

E)
2

)

. (33)

It is evident that the derived closed-form upper bounds in (32) and
(33) are rather compact and tractable.

4.4 Simple Asymptotic SOP Representations

Capitalizing on the exact derived expressions for the SOP over
η-µ andλ-µ fading channels, we can investigate their behavior
at the high SNR regime in order to develop useful insights on
the role of the involved parameters on the system performance.
To this end, assuminḡγB → ∞ and fixedγ̄E4, our aim is to
find an approximate expression ofPout(RS) in the form [29]
P∞

out(RS) ≈ Gcγ̄
−Gd

B , whereGc represents the secrecy array gain
andGd denotes the secrecy diversity gain. The secrecy diversity
gain is defined as [30]

Gd
.
= − lim

γ̄B→∞

log
(
P∞

out(RS)
)

log(γ̄B)
, (34)

where P∞
out(RS) will be determined subsequently for both

η-µ and λ-µ fading conditions. First, note that (29) can be
approximated using the expression of the lower bound5

P∞
out(RS) =

∫ ∞

0
fγE(γE)FγB (2

RSγE)dγE . (35)

Next, an approximation for the CDFFγB (γE) will be derived
since it is dependent on̄γB . To this end, as the PDF in (3) is
dominated by the term corresponding tok = 0 in the summa-
tion, for γ̄B → ∞, such expression can be used to obtain the
corresponding CDF, i.e.,

FγB (γE) ≈
√
πµ

2LBµB−1
B (1 + ηB)

2LBµBγ
2LBµB

E

LBΓ(LBµB)Γ(LBµB + 0.5)(4ηB)LBµB γ̄
2LBµB

B

.

(36)
Finally, substituting (3) and (36) into the aforementionedapprox-
imated SOP expression and using [23, (Eq. 3.381.4)] along with
some algebraic manipulations, the asymptotic SOP can be derived
in (37), at the top of this page. It is evident that the secrecydiver-
sity gain is given byGd = 2LBµB , which provides useful insights
on the effect of the involved key parameter on the overall system
performance. To this effect and recalling the Pochhammer symbol
identities and the properties of the hypergeometric functions as

4. Intuitively, due to the high probability of successful eavesdropping, the
diversity gain associated with the case whereinγ̄E → ∞, is zero.

5. It has generally been shown that the lower bound of the SOP is in close
agreement with the exact SOP over the entire SNR regime (see [11], [14] and
the references therein). Since finding a solution for the lower bound of the SOP
is easier than the exact SOP one, we use the former to derive our asymptotic
expressions of the SOP at high SNR.

well as carrying out some algebraic manipulations, the following
compact closed-form asymptotic expression can be deduced for
the SOP overη-µ fading channels at the high SNR regime:

P
∞,η
out (RS) =

πΓ(2LBµB + 2LEµE)η
2LBµB+LEµE

E

Γ
(
LEµE + 1

2

)
(1 + ηE)4LBµB+2LEµEη

LBµB

B

× γ̄
2LBµB

E µ
2LBµB−1
B 21+2LBµBRS−2LEµE (1 + ηB)

2LBµB

LBγ̄
2LBµB

B µ
2LBµB

E Γ(LBµB)Γ(LEµE)Γ
(
LBµB + 1

2

)

× 2F1 (LBµB + LEµE , LBµB + C1; C1; C2) . (38)

whereC1 andC2 are constant values given by

C1 = LEµE +
1

2
, (39)

and

C2 =
(1− ηE)

2

(1 + ηE)2
. (40)

The above expression provides useful insights on the impact
of the involved parameters on the overall system performance.
Furthermore, it can be used to derive a similar expression for the
SOP overλ-µ fading channels. Thus, by performing the necessary
variable transformation and after some algebraic manipulations,
the following closed-form expression is deduced

P
∞,λ
out (RS) =

Γ(2LBµB + 2LEµE)(1 − λ2
E)

2LBµB+LEµE

Γ
(
LEµE + 1

2

)
(1 − λ2

B)
LBµB

× πγ̄
2LBµB

E µ
2LBµB−1
B 21−2LBµB(1−RS)−2LEµE

LBγ̄
2LBµB

B µ
2LBµB

E Γ(LBµB)Γ(LEµE)Γ
(
LBµB + 1

2

)

× 2F1

(

LBµB + LEµE , LBµB + LEµE +
1

2
; C1;λ2

E

)

.

(41)

To the best of the authors knowledge, the above analytical ex-
pressions have not been previously reported in the open technical
literature.

5 NUMERICAL RESULTS AND DISCUSSIONS

In this section, representative numerical examples are plotted
along with Monte Carlo simulations to assess the accuracy of
the derived mathematical results. Without loss of generality, it
is assumed thatRS = 1bit/s/Hz throughout the paper, unless
otherwise stated. In this section, we present the ASC and SOP
performance metrics for various values of the fading parameters
η, λ and µ. It is worthwhile to recall thatη represents the
scattered-wave power ratio between the in-phase and quadrature
components of the wireless signal within any one cluster and
has real positive values, i.e.,0 < η < ∞. On the other hand,
−1 < λ < 1 represents the correlation coefficient between
the scattered-wave in-phase and quadrature components of any
multipath cluster, whileµ > 0 is the number of multipath clusters
in both fading models.

Fig. 2 shows the average secrecy capacity for various number
of antennas at Bob and Eve, and different fading parameters.It can



9

be seen that the analytical results are in good agreement with the
Monte-Carlo simulations across all the scenarios, which verifies
the validity of the derived expressions. Although the fading pa-
rameters for the main and eavesdropper links vary, we note that as
the number of antennas at Eve increases, the ASC decreases. This
is expected since a high number of antennas at Eve yields some
antenna diversity and therefore a secure eavesdropping which can
be detrimental to the security performance of the system.

In addition, different combinations of the fading parameters
for the main and eavesdropper channels are considered. The ASC
corresponding toηB = 1.6, µB = 3 andηE = 0.7, µE = 0.5
outperforms the other ASC performances corresponding to other
fading parameters. This observation shows that the fading param-
eters affect the overall security performance of the underlying
system. In the same context, Fig. 3 illustrates the achievedASC
for different antennas values underλ-µ fading conditions. It is
shown that the number of antennas is critical also in this case as
the achieved ASC doubles in the moderate and high SNR regimes
whenLB = 2 is changed toLB = 8 for fixed fading conditions
andLE = 2.

Fig. 4 illustrates the impact ofη andµ fading parameters on
the achieved ASC. It is evident that the power ratio of the in-phase
and quadrature components of the wireless signal in the two paths
affects the overall system performance even for a fixed number
of used antennas. Particularly in the case of considerably higher
ηE compared toηB , a non-negligible ASC degradation occurs
across all SNR regimes. Likewise, this is also the trend regarding
the effects of the correlation between the scattered-wave in-phase
and quadrature components in Fig. 5. It is noticed that changes of
over 20% for fixed number of antennas. Therefore, the variations
of the number of antennas along with the fading parametersη,
λ andµ affect the achieved ASC levels significantly. Moreover, a
performance comparison between the underlying system overη-µ,
λ-µ and the one over Rayleigh fading channels is provided. It can
be seen that there is a performance improvement or deterioration
of theη-µ or λ-µ over the Rayleigh depending on the values the
fading parameters of the generalized fading. For example, the ASC
with ηB = 1, µB = 1.5 andηE = 3, µE = 0.5 outperforms the
ASC corresponding to the Rayleigh from medium to high-SNR
regimes, while the ASC corresponding toηB = 4, µB = 0.5 and
ηE = 2, µE = 1.5 is outperformed by the one in the Rayleigh
case. From these observations, one can infer the scenarios under
which the generalizedη-µ provides a better security performance
with respect to the well-known fading models.

Fig. 6 and Fig. 7 demonstrate the effect ofγ̄E on the corre-
sponding ASC performance for fixed fading conditions and two
different antenna combinations. It is evident that the values of
γ̄E is, as expected, rather critical on the achieved ASC levels.
For example, an over 20% ASC enhancement or degradation is
observed when the value ofγ̄E decreases or increases, respectively
at both severe and light fading conditions. Furthermore, itbecomes
evident that the value of̄γE is comparably crucial to the number
of selected antennas at Bob and Eve.

The above behavior is also observed in Fig. 8 and Fig. 9,
which demonstrate the SOP for the considered fading conditions.
It is noticed that changing the value ofγ̄E typically leads to SOP
variations of about an order of magnitude across allγ̄B values.
In addition, it is shown that high̄γB values can ensure acceptable
SOP levels even at moderate to highγ̄E values. Conversely, low
γ̄B values lead to dramatically poor performance even for low
γ̄E values since the achieved SOP is shown to lie around unity.

Therefore, besides ensuring thatγ̄B must be considerably greater
than γ̄E , it must be also ensured that the value ofγ̄B is not low
since the corresponding SOP will be rather poor regardless of the
value ofγ̄E and the number of antennas. These figures also exhibit
the accuracy of the derived closed-form asymptotic expressions
for the SOP, which exhibit a tight match with the respective exact
results in both moderate and highγ̄B regimes.

The behavior of the SOP overη-µ andλ-µ fading conditions
is also illustrated in Fig. 10 and Fig. 11. It is evident that the
derived secrecy diversity gain is confirmed, i.e.,Gd = 2LBµB .
Moreover, it is verified, as in the ASC case, that for a fixed number
of antennas at Bob, an increasing number of antennas at Eve
reduces considerably the overall security performance, whereas
an increasing number of antennas at Bob (for a fixed number
of antennas at Eve), improves the overall system performance.
Furthermore, since it has been shown that the diversity gainis a
function ofµB , an increasing value ofµB yields a performance
improvement. Fig. 12 shows the SOP performance for various
target secrecy ratesRS in η-µ conditions. It can be noted that as
RS increases, the SOP increases due to the fact that the outage
event is likely to occur. It is worth noting that the aforementioned
behavior can also be seen for different fading parameters and
number of antennas.

Fig. 13 shows the SOP versusγ̄B for different values of the
target secrecy ratesRS for some well-known fading distributions,
i.e., One-sided Gaussian, Rayleigh and Nakagami-m. In this
scenario,LB = 4, LE = 2, and γ̄E = 10 dB and it can be
seen that under the Rayleigh distribution (ηι → 1, µι = 0.5), the
results coincide with the ones in [31, Fig. 3]. Moreover, this figure
depicts the SOP performance under the one-sided Gaussian and
Nakagami-m with m = 2. It is noted that asRS decreases, the
SOP performance improves in all scenarios, which corroborates
the results in Fig. 12.
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Fig. 2: Exact average secrecy capacity versusγ̄B for different number of
antennas andηB = 1.6, µB = 2.5, ηE = 0.7, µE = 0.5 at γ̄E = 10
dB.

Finally, the overall impact of the involved different parameters
on the overall performance under the effects ofη-µ andλ-µ fading
is demonstrated in Table 1, which depicts the correspondingASC
and the SOP for different values ofηB , ηE , µB , µE againstLB,
LE , γ̄B andγ̄E values. The two considered cases are analyzed for
the following realistic scenarios: (a) severeηB andµB with favor-
ableηE andµE ; (b) favorableηB andµB with severeηE andµE ;



10

TABLE 1: Effects of Fading parameters on the SOP and ASC for different system parameters.
Fading System Parameters γ̄B (dB) ASC (bits/s/Hz) SOP

η
−
µ

F
ad

in
g

C
o

n
d

iti
o

n
s

severeηB-µB , light ηE-µE

LB = 1, LE = 1
15 3.81980 0.893285
25 7.08452 0.021604

LB = 2, LE = 2
15 4.31824 0.950617
25 7.61596 0.001489

LB = 3, LE = 3
15 4.51655 0.976031
25 7.82320 0.000115

light ηB-µB , severeηE-µE

LB = 1, LE = 1
15 4.01385 0.815588
25 7.29112 0.003253

LB = 2, LE = 2
15 4.43691 0.909554
25 7.73743 0.000073

LB = 3, LE = 3
15 4.60384 0.952317
25 7.91168 1.8091e-6

λ
−
µ

F
ad

in
g

C
o

n
d

iti
o

n
s

severeλB-µB , light λE-µE

LB = 1, LE = 1
15 3.35750 0.864553
25 6.41581 0.047707

LB = 2, LE = 2
15 1.16424 0.692372
25 4.55584 0.006152

LB = 3, LE = 3
15 0.214783 0.371675
25 1.441140 0.000886

light λB-µB , severeλE-µE

LB = 1, LE = 1
15 3.84456 0.705777
25 6.92600 0.001010

LB = 2, LE = 2
15 3.24434 0.565260
25 5.53814 5.7843e-8

LB = 3, LE = 3
15 1.86507 0.295097
25 3.09455 1.919e-13
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Fig. 3: Exact average secrecy capacity versusγ̄B for different number of
antennas andλB = 0.4, µB = 0.5, λE = 0.1, µE = 1.5 at γ̄E = 10
dB.

(c) severeλB andµB with favorableλE andµE ; and (d) favorable
λB andµB with severeλE andµE . Without loss of generality,
the following parameters are used:γ̄B = {15dB, 25dB} and
ηι = 4, µι = 2 (severe),ηι = 1, µι = 5 (light or favorable) for
the case ofη−µ fading, whereι = {B,E}, andλι = 0.9, µι = 2
(severe) andλι = 0.1, µι = 5 (favorable) for the case ofλ-µ
fading. In addition, we assumēγE = 0dB for the case of ASC
and γ̄E = 15dB for the case of SOP. In this context, it is first
verified that the ASC performance is affected by the different
values of the fading parametersηι, λι andµι. For example, in
theη-µ case, it can be noted that for various number of antennas
or main link SNR values, the ASC under severeηB , µB and light
ηE , µE outperforms the one with favorableηB, µB and severe
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Analytical
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Fig. 4: Exact average secrecy capacity versusγ̄B for different fading conditions
andLB = 4, LE = 4 at γ̄E = 10 dB.

ηE , µE . Similar observations are made for the case ofλ-µ fading.
Furthermore, as the number of antennasLB andLE increases,
the ASC improves regardless of the scenario and the values ofthe
main link SNR (e.g. 15dB, 25dB). More importantly, it is seenthat
in both cases and for any number of antennas, the ASC in scenario
(b) outperforms the one in scenario (a). It is worth mentioning that,
the performance difference between the two scenarios increases
with the number of antennas between the corresponding values of
the main link SNR.

In the same context, the effects of the fading parameters on
the SOP are discussed. In theη-µ case, it can be seen that as
the number of antennas increases, the SOP performance slightly
deteriorates for̄γB = 15dB. Intuitively, this can be explained as
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Fig. 5: Exact average secrecy capacity versusγ̄B for different fading conditions
andLB = 4, LE = 4 at γ̄E = 10 dB.
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Fig. 6: Exact average secrecy capacity versusγ̄B for different γ̄E values and
number of antennas forηB = 2.5, µB = 3.5, ηE = 0.85, µE = 0.5.
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Fig. 7: Exact average secrecy capacity versusγ̄B for different γ̄E values and
number of antennas forλB = 0.1, µB = 2.5, λE = 0.1, µE = 1.5.

follows: the wiretap SNR is set to 15dB, i.e., the eavesdropper
channel has the same quality as the main link. However, as
the main link SNR improves (i.e.,̄γB = 25dB), a substantial
performance improvement is noted as the number of antennas
increases in both scenarios.
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Fig. 8: Exact secrecy outage probability versusγ̄B for different γ̄E values and
ηB = 0.5, µB = 0.5, ηE = 1.5, µE = 2, and system parametersLB = 2,
andLE = 4.
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Fig. 9: Exact secrecy outage probability versusγ̄B for different γ̄E values and
λB = 0.2, µB = 0.5, λE = 0.1, µE = 2, and system parametersLB = 2,
andLE = 2.
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Fig. 10: Exact secrecy outage probability versusγ̄B for different LE values
andηB = 0.8, µB = 1.5, ηE = 0.5, µE = 2.5, andLB = 1 at γ̄E = 10
dB.

As aforementioned, it is seen thatηι, λι andµι have affect
the PHY security of the underlying system. It is noted that such
effects can be detrimental or can improve the system performance
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Fig. 11: Exact secrecy outage probability versusγ̄Bfor differentLE values and
λB = 0.8, µB = 1.5, λE = 0.5, µE = 2.5, andLB = 1 at γ̄E = 10 dB.
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Fig. 12: Exact secrecy outage probability versusγ̄B for various secrecy target
ratesRS . LE values andλB = 0.8, µB = 1.5, λE = 0.5, µE = 2.5, and
LB = 1 at γ̄E = 10 dB.
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Fig. 13: Exact secrecy outage probability versusγ̄B for various well-known
fading distributions.LB = 4, LE = 2 at γ̄E = 10 dB. Solid lines correspond
to RS = 0.1 and dashed lines correspond toRS = 1.

depending on the values ofηι andµι for the main and wiretap
channels. The offered conclusions on the effects of the fading

parameters on the system performance provide interesting insights
that might be useful to future designs since the issue of security is
addressed in this work.

6 CONCLUSIONS

This contribution addressed the secrecy performance of a wireless
communication system over the generalized fading conditions
characterized by theη-µ andλ-µ fading models. Novel analytical
expressions were derived for the ASC and SOP, which have
been validated through comparisons with respective results from
Monte-Carlo simulations. Also, the asymptotic analysis for the
SOP has shown to approximate well the exact SOP at the high
SNR regime. The offered analytical results were then used in
quantifying the effects of the different parameters on the achieved
PHY layer security. It was shown that PHY depends significantly
on these parameters, which verifies the need for accurate charac-
terization and modeling of multipath fading conditions. Also, the
offered results are expected to provide insights on the involved
computational complexity and sustainability, since emerging com-
munication systems are largely characterized by stringentquality
of service and computational complexity requirements. Possible
future extensions to this work involve multiple-input multiple-
output (MIMO) wiretap channels with transmit antenna selection.
MIMO systems have emerged as good candidates for current and
future communication systems and therefore, its consideration in
the context of physical later security is of paramount importance.
Another direction of research could investigate the impactof
outdated channel information in transmit antenna selection.
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