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Abstract—Nowadays, several indoor positioning solutions sup-
port Wi-Fi and use this technology to estimate the user position.
It is characterized by its low cost, availability in indoor and
outdoor environments, and a wide variety of devices support
Wi-Fi technology. However, this technique suffers from scalability
problems when the radio map has a large number of reference
fingerprints because this might increase the time response in
the operational phase. In order to minimize the time response,
many solutions have been proposed along the time. The most
common solution is to divide the data set into clusters. Thus, the
incoming fingerprint will be compared with a specific number
of samples grouped by, for instance similarity (clusters). Many
of the current studies have proposed a variety of solutions
based on the modification of traditional clustering algorithms
in order to provide a better distribution of samples and reduce
the computational load. This work proposes a new clustering
method based on the maximum Received Signal Strength (RSS)
values to join similar fingerprints. As a result, the proposed
fingerprinting clustering method outperforms three of the most
well-known clustering algorithms in terms of processing time at
the operational phase of fingerprinting.

Index Terms—Indoor Positioning, Wi-Fi fingerprinting, Clus-
tering, Computing Efficiency

I. INTRODUCTION

The rapid increase of mobile and Internet of Things (IoT)

devices, which use localisation services for indoor and outdoor

environments, demands efficient technologies and methods

which provides high positioning accuracy while having low

power consumption. This requirement has lead to the devel-

opment of several smart technologies in the past decade, that

includes Bluetooth Low Energy (BLE) [1], ultra-wideband

(UWB) [2], Visible light communication (VLC) [3], among

others. However, many Indoor Positioning System (IPS) still

use the well-know technology Wi-Fi in order to reuse the

infrastructure (Access Point (AP) or Wi-Fi routers) deployed

in the environment, specially in smartphone-based applica-

tions but also for robots and autonomous vehicles driving.

Additionally, the most common technique used with Wi-Fi

is fingerprinting.
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Fingerprinting is divided into two phases, off-line and online

phase. In the off-line phase, the reference fingerprints are col-

lected, generating a radio map. Different techniques are used

to reduce the data set dimensionality and/or form clusters [4].

The online phase is devoted to find the most similar fingerprint

between the incoming fingerprint at an unknown position and

the reference fingerprints with known positions.

The major limitation of Wi-Fi fingerprinting is related to

the number of fingerprints stored in the data set, given that

the performance of this technique might be affected when

there are hundreds or thousands of fingerprints in the data set

(radio map). It reduces the time response in the online phase of

Wi-Fi fingerprinting, due to the incoming fingerprint has to be

compared with each fingerprint in the radio map. As a result,

it is not an efficient approach for real-time indoor positioning

applications. In order to provide fast response in the online

phase of Wi-Fi fingerprinting, some authors have proposed a

wide range of solutions such as the use clustering methods (k-

Means, Density-based Spatial Clustering of Applications with

Noise (DBSCAN), C-Means, affinity propagation, etc.) [5]–

[7], dimensionality reduction, data compression [8], or rules

based on the signal propagation [9], [10].

Different research articles have proposed some alternative

to the existing clustering algorithms in order to improve the

execution time. For instance, [11] implemented some modifi-

cations to C-Means clustering in order to reduce the position

error without affecting the radio map integrity. Similarly, [12]

used k-Means to group similar points according to the real

position of the user instead of using the signal distance. As a

result, the improved in the position accuracy is demonstrated.

In contrast with traditional clustering algorithms, we pro-

pose a new clustering algorithm, namely fingerprinting clus-

tering (FPC) which is based on the maximum RSS values

and the APs or routers in common between samples. In

general, some clustering algorithms base their classification on

specific distance metrics such as Euclidean distance, city block

(Manhattan) or statistical methods to join similar points. The

proposed method attempts to group fingerprints taking into

account the RSS received in a specific point. The proposed

clustering algorithm does not require a pre-defined number of

clusters to form the groups. The number of clusters thus is

given by the maximum RSS values of each sample, and the

corresponding AP of that RSS value.



FPC was designed to be a lightweight clustering algorithm

that requires minimal computational resources, providing fast

time response with a tolerable rate of positioning error. FPC is

conceived to be used in low-profile devices (e.g., smartwatches

or basic smartphones). Thus, we also provide a comparison

between FPC algorithm and three traditional clustering algo-

rithms (k-Means, C-Means and DBSCAN) in this paper. This

comparison was carried out considering the time required to

form the clusters, the full time to estimate the user position by

combining these algorithms with k-nearest neighbors (k-NN),

and the average number of samples per cluster in each data

set.

The main contributions of this work are the following:

• A new clustering method based on the RSS values and

similar APs in common between samples.

• An extended analysis of the proposed algorithm in mul-

tiple open-source Wi-Fi radio maps.

This article is divided into four sections as follow. Section

II provides a general overview of clustering algorithms and

related work. Section III describes the proposal clustering

algorithms for Wi-Fi fingerprinting. Section IV describes the

experiments carried out in this work and their results. Sec-

tion V offers a brief discussion of the results. Finally, section

VI provides the main conclusions raised from the findings.

II. RELATED WORK

Clustering algorithms have been used to group data with

similar characteristics into some classes (clusters). These clus-

tering algorithms are widely used in number of applications,

they have also been adopted for indoor positioning, especially

with Wi-Fi fingerprinting. As a result of applying clustering,

the IPSs were improved in different dimensions.

For instance, Xue et al. [12] proposed a new method to

reduce the error in the position estimation for fingerprint-based

systems. This method is devoted to join the nearest fingerprints

to the reference points using the real physical distance between

points. Hence, this new clustering algorithm uses both k-NN

and k-Means in different processes to enhance the classes’

accuracy. As a result, the authors have demonstrated the

significant reduction of the positioning error in comparison

with the original algorithm (k-Means).

Tao et al. [13] used a clustering algorithm based on k-

medoids to detect outliers and find the correct cluster for

the operational fingerprint in the online phase. Unlike other

clustering algorithms (e.g., k-Means), their proposal does not

need a pre-defined number of cluster to form the classes.

Additionally, the authors propose a new distance metric for

clustering. Thus, that study achieved a low positioning error

by combining the clustering method with the system proposed.

Cui et al. [14] combined weighted k-nearest neighbor

(WKNN) and affinity propagation clustering (APC) to estimate

the user position. Thus, APC is used to determine the best

centroid and the similarities between the samples according

to two messages (responsibility and availability) given by the

centroid. Thus, this research proposed a robust method to form

the radio map based on crowd-sourcing data collection.

Wang et al. [15] proposed a novel method based on sig-

nal weighted euclidean distance (SWED) and position label-

assisted (PL-assisted) clustering. Thereby, the authors obtained

better performance than the traditional k-Means, and also,

the positioning error reported was lower than WKNN using

Manhattan and euclidean distance.

Ren et al. [11] provided a novel clustering method based

on C-Means. This clustering method aims to optimize the

radio map. The clustering algorithm proposed by the authors

is capable of creating a common area between fingerprints.

Thus, the proposed algorithm a better performance in terms

of position accuracy and time response.

Wang et al. [7] developed a new algorithm, namely

DBSCAN-KRF, combining three different approaches, the

first one is DBSCAN, k-NN and random forest algorithm.

Therefore, using DBSCAN the authors were able to remove

noisy samples from the radio map. The user position is

estimated using k-NN or random forest according to the

following criteria. k-NN is used when the region is sensitive,

which means that the clusters contain a low level of samples of

different reference points. In contrast, if the cluster contains

multiple samples of other reference points, a random forest

will be used as the main core IPS. The authors thus achieved

a low positioning error (error < 1.5m).

Recently, we have also modified the k-Means algorithm to

reduce the computational cost without degrading the perfor-

mance in the positioning accuracy [4]. We provided different

rules to not only reduce the time required to select the optimal

cluster, but also to reduce the number of reference fingerprints

within the winning cluster on-the-fly. The rules applied were

based on signal propagation properties.

As we can see, the clustering algorithms used in the

analyzed studies are based on traditional clustering approaches

such as k-Means, C-Means, APC or DBSCAN. Although the

clustering methods mentioned in earlier paragraphs provided

an acceptable positioning accuracy, the computational load

required to execute each of the proposed algorithm is not

mentioned in any of these articles. As most of the traditional

clustering algorithms were not developed for indoor position-

ing purposes, they need to be modified or improved to provide

better performance in IPS applications.

III. ALGORITHM

Given that Wi-Fi fingerprinting data sets may contain hun-

dreds or thousands of fingerprints, which are used in order

to estimate the user or device position. These data sets might

increase over the time when new environments are added or

update through crowdsourced data collection technique.

In order to reduce the match time in the online phase of

Wi-Fi fingerprinting, we propose a new clustering method

based on the radio signal intensity received in a specific point.

Unlike other clustering methods, this new approach is not

based on any distance metric, it takes into account RSS, and

similar APs in view in a particular position.

As each AP or router cover a specific area (radius of

coverage), which is given by the configuration and the standard



(802.11a/b/g/n) used in the access point, the coverage area

can be different in each environment. Thus, [16] provided a

comprehensive study of the empirical coverage area and the

RSS in it. The authors mentioned multiple factors that might

affect the signal propagation indoors, such as walls, antenna

direction, and people. The presence of people is a significant

source of attenuation and absorption [17]. Hence, indoor is a

challenging environment for signal propagation, and therefore,

for indoor positioning based on radio frequency technologies.

Despite this limitation, Wi-Fi technology and fingerprinting

technique are still widely used in many IPSs.

The fingerprints for the radio map are collected in the offline

phase. Each fingerprint is referenced with its position (x, y, z,

floor and building). This radio map will be used in the online

phase to match the operational fingerprint (unknown position)

with the reference fingerprints and estimate the user position.

Generally, a radio map data set (Ψ) is formed by m number

of samples and n number of APs (m×n). Each position in the

radio map belong to a RSS value (ψij), where i = 1, 2, ...,m
and j = 1, 2, ..., n.

Ψ =







ψ11 . . . ψ1n

...
. . .

...

ψm1 . . . ψmn







Thus, in order to divide the radio map into x number of

clusters, we propose a new clustering method described in

the following steps:

A. Data Preparation

1) Data Representation: In [18], the authors used three

main data representations exponential, positive and powed. The

data representation is linked with each radio map. For instance,

powed data representation was used for UJI 1, TUT 2 and

DSI 1. In this article, we used the same data representation

for each data set.

2) Remove features with zero values: In this step, if the

feature does not contain any valid RSS value, it is removed

from the data set. It will avoid delays in the data processing.

B. Initial clusters

Once the data is prepared, the next step is to form the initial

clusters. These clusters are formed according to the maximum

RSS value in each fingerprint, which is related to a specific

AP. Thus, the clusters will be formed if the maximum RSS

value of each fingerprint (sample) are in the same AP (feature)

(Ψi ∈ Cj ⇔ MAXΨi ∈ APj , where Cj represents a j-

th cluster). More restrictive clusters can be formed by using

more than one maximum RSS value (unique maximum RSS

values). When the initial clusters are available, we compute the

centroid for each initial cluster (i.e., the mean of all objects

in the cluster), similar to k-Means.

C. Joining small clusters

Suppose the number of fingerprints in some clusters are less

than the average number of fingerprints of all the clusters.

In that case, we compute the degree of relationship between

the centroids of the small clusters by using the correlation

coefficient (see Eq.1). Therefore, only those clusters with

a high level of similarity are joined in only one cluster

(see Figure 1). This process will end when the number of

fingerprints of the new clusters are greater than or equal to

the average number of fingerprints. Finally, the centroid of

each new cluster is computed. Algorithm 1 describes how the

FPC works.

ρ(CscA, CscB) =
cov(CscA, CscB)

σCscAσCscB

(1)

where, ρ is the correlation coefficient between two centroids

(CscA and CscB), Csc represents the centroid of an small

cluster, σ is the standard deviation, and conv is the covariance

between two centroids.
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Fig. 1. Basic operation of the proposed clustering algorithm

As it is given, the proposed clustering algorithm requires

three parameters: the data set, the data representation, and the

number of maximum RSS values used to form the cluster. If

the user does not specify the data representation, the positive

data representation is selected by default. Similarly, the default

number of maximum RSS values is set to 1. FPC returns the

clusters indexes (IDX) and the centroids of each cluster.

IV. EXPERIMENTS AND RESULTS

A. Experiment setup

The proposed algorithm has been evaluated over 17 Wi-Fi

and 3 BLE open-access data sets. The advantage of a com-

prehensive asssesment is given by the heterogeneity in both

scenarios and devices, which permit reaching more general

conclusions about the proposed algorithm [4], [8], [18]. The

datasets we use were collected by: U. Jaume I (LIB 1–2 [19],

UJI 1–2 [20], SIM [18]), Tampere U. (TUT 1–7 [21]–[26]),

Mannheim U.(MAN 1–2 [27], [28]), U. of Minho (DSI 1–

2 [29], MINT 1 [30]), U. of Extremadura (UEXB 1-3 [31]).

Additionally, we have compared the FPC with three tra-

ditional clustering algorithms which are: k-Means, C-Means

and DBSCAN. These traditional clustering algorithms have



Algorithm 1: RFP Clustering

Input: dataset, dataRep, numMaxRss

Output: IDX, centroids

1 Function

RfpClustering(dataset, dataRep, numMaxRss):

2 // Data preparation ⊲ First process

3 dataset←− data rep(dataset)
4 dataset←− remove zero features(dataset)
5 // Initial clusters ⊲ Second process

6 Ψi ∈ Cj ⇔MAXΨi ∈ APj

7 // Each cluster is denoted by a cluster index (IDX)

8 // Compute the centroid of each cluster (mean of

each cluster)

9 Cj =
1

|Cj |

∑

Ψi∈Cj
Ψi

10 // Join small clusters ⊲ Third process

11 // Compute the average number of samples in the

cluster

12 x = 1

M

∑M

j=1
Cj

13 // Compute the correlation coefficient between the

centroids of small clusters

14 Cj is small ⇔ the number of samples in Cj < x

15 ccm =

correlation coeff(centroids small clusters)
16 if small cluster x has high level of correlation

with small cluster y then

17 Cnewj = small cluster x ∪ small cluster y

18 update centroid

19 end

20 return IDX, centroids

21 End Function

been used in several research articles in the domain of indoor

positioning (see section II) and other research areas, acquiring

different levels of accuracy. Our proposal is compared with

these clustering algorithms in terms of execution time and po-

sitioning accuracy. The hyperparameters (Best configuration)

for k in k-NN were obtained from [4], [30], [31] and the Eps

and MinPts for DBSCAN from [32].

Given that the proposed algorithm does not require to

establish the number of clusters to form the groups, we

executed FPC to get the k for k-Means and the initial value

for C-Means. Due to that DBSCAN form the clusters based

in the two parameters (Eps and MinPts) it is difficult to set

a specific number of cluster. However, it is not a limitation

to compare DBSCAN with FPC. Table I shows data sets with

their number of fingerprints, APs and the number of maximum

RSS values used to form the clusters.

Once the hyperparameters were obtained for each clustering

algorithm, we executed them along with k-NN for each data

set in order to get the positioning error (2D and 3D) and

the execution time. The experiments were carried out using a

computer with the following characteristics: Intel® Core™ i7-

8700T @ 2.40GHz and 16 GB of RAM, the operating system

is Windows 10, and the software used is Matlab.

TABLE I
PARAMETERS TO RUN FPC

Database δ γ Num. Max. RSS

Wi-Fi data sets

DSI 1 1369 157 2
DSI 2 576 157 3
LIB 1 576 174 1
LIB 2 576 197 1
MAN 1 14 300 28 3
MAN 2 1300 28 4
SIM 10 710 8 4
TUT 1 1476 309 1
TUT 2 584 354 2
TUT 3 697 992 1
TUT 4 3951 992 2
TUT 5 446 489 2
TUT 6 3116 652 4
TUT 7 2787 801 3
UJI 1 19 861 520 3
UJI 2 20 972 520 4
MINT 1 4973 11 3

BLE data sets

UEXB 1 417 30 2
UEXB 2 552 30 2
UEXB 3 240 30 1

B. Results

We have defined three main parameters to carry out the

comparison between the algorithms. The first one is ǫ2D which

represents the positioning error 2D (meters), ǫ3D the position-

ing error 3D (meters) and τ the time in seconds of executing

k-NN plus the clustering algorithm. In this research work we

report the normalized values of the previous parameters, ǫ̃2D,

ǫ̃3D, τ̃ . Furthermore, we have compare the execution time of

each clustering algorithm without combining it with k-NN (see

Figure 2).

Other parameters used in this research work are: δ, which

represents the number of fingerprints in the training data set,

γ the number of APs in the training data set, and φ is the

number of clusters.

To run the FPC algorithm, we have used between 1 to 4

maximum RSS values to be compared in each fingerprint.

However, this parameter can be different for each data set to

reduce the time response or improve the positioning accuracy.

Data sets like LIB 1 require one maximum RSS value to form

the clusters, obtaining a positioning error of 2.68 m (baseline

2.49 m). However, other data sets require more than one

maximum RSS values to group the most similar fingerprints

into the cluster. For instance, in SIM, TUT 6, UJI 2 and

MAN 2 needed the maximum “Num. Max. RSS” value, 4

RSSs, used to form the groups or clusters.

Table II shows the results after running each clustering

algorithm with k-NN. In the first place, we have the number

of fingerprints and APs of each training data set, then we

have the results of executing k-NN with the best configuration

provided in [4]. The next results are k-NN + k-Means, here we

can observe that the 2D and 3D positioning error increased in

comparison with the baseline. However, the execution time



TABLE II
COMPARISON k-NN AND CLUSTERING METHODS

Baseline k-NN+k-Means k-NN+C-Means k-NN+DBSCAN k-NN+FPC

Database ǫ2D ǫ3D τ ǫ̃2D ǫ̃3D τ̃ φ ǫ̃2D ǫ̃3D τ̃ φ ǫ̃2D ǫ̃3D τ̃ φ ǫ̃2D ǫ̃3D τ̃ φ ǫ̃2D ǫ̃3D τ̃

Wi-Fi data sets

DSI 1 3.791 3.791 5.906 1 1 1 69 1.231 1.231 0.455 13 2.602 2.602 0.450 253 1.410 1.410 0.757 69 1.216 1.216 0.286
DSI 2 3.804 3.804 3.953 1 1 1 126 1.280 1.280 0.277 6 5.89 5.89 3.68 124 1.364 1.364 0.285 126 1.326 1.326 0.198
LIB 1 2.475 2.478 17.688 1 1 1 16 1.148 1.151 0.150 16 1.101 1.116 0.313 3 1.109 1.197 0.484 16 1.071 1.083 0.127
LIB 2 2.265 2.267 34.719 1 1 1 16 1.398 1.443 0.108 16 1.237 1.272 0.237 52 2.329 2.743 0.032 16 1.403 1.723 0.106
MAN 1 2.057 2.057 60.172 1 1 1 48 1.111 1.111 0.159 43 1.105 1.105 0.353 290 1.717 1.717 2.671 48 1.102 1.102 0.087
MAN 2 1.856 1.856 6.891 1 1 1 24 1.162 1.162 0.102 24 1.110 1.110 0.231 1 1.000 1.000 1.091 24 1.106 1.106 0.129
SIM 2.411 2.411 94.688 1 1 1 28 1.033 1.033 0.037 28 1.043 1.043 0.097 609 1.354 1.354 0.960 28 1.070 1.070 0.061
TUT 1 4.232 4.446 107.063 1 1 1 86 1.405 1.713 0.084 4 1.149 1.167 0.692 74 1.872 2.481 0.042 86 1.932 2.154 0.021
TUT 2 7.804 8.095 1.094 1 1 1 139 1.844 2.139 3.028 13 2.502 3.941 3.185 130 1.771 2.191 0.671 139 1.384 1.626 0.728
TUT 3 8.167 8.552 39.375 1 1 1 120 1.082 1.110 0.312 2 1.149 1.231 1.492 40 1.916 2.524 0.069 120 1.502 1.691 0.085
TUT 4 5.07 5.398 713.531 1 1 1 571 1.211 1.223 0.526 2 1.259 1.467 1.427 187 2.535 2.564 0.237 571 1.874 2.335 0.050
TUT 5 5.254 5.259 78.344 1 1 1 158 1.126 1.210 0.063 2 1.250 1.398 0.813 50 1.839 2.323 0.021 150 1.570 1.736 0.017
TUT 6 1.901 1.908 283.672 1 1 1 1077 1.270 1.268 1.509 3 2.185 2.306 3.237 306 2.263 6.358 0.129 1076 3.162 3.167 0.331
TUT 7 2.065 2.24 251.547 1 1 1 946 1.103 1.132 1.099 17 1.583 1.822 1.948 227 2.707 3.621 0.206 896 2.214 2.869 0.190
UJI 1 6.173 6.556 261.797 1 1 1 1467 1.185 1.407 18.384 73 2.196 2.633 2.665 214 6.289 10.102 4.105 1467 1.427 1.781 0.714
UJI 2 5.603 6.089 1634.641 1 1 1 2972 1.317 1.284 4.486 62 1.656 1.601 1.215 205 7.053 4.604 0.796 2972 1.489 2.095 0.409
MINT1 1 2.46 2.46 35.438 1 1 1 8 1.017 1.017 0.146 8 0.977 0.977 0.205 251 1.163 1.163 0.554 8 1.037 1.037 0.116

BLE data sets

UEXB 1 3.439 3.534 0.469 1 1 1 51 1.065 1.084 0.400 35 1.210 1.225 5.430 2 5.866 5.841 0.800 51 1.434 1.442 0.300
UEXB 2 4.576 4.639 0.688 1 1 1 56 0.997 0.993 0.477 36 1.287 1.288 4.406 4 4.337 4.353 0.522 56 1.400 1.405 0.250
UEXB 3 7.393 7.55 0.156 1 1 1 19 0.918 0.947 1.202 4 1.011 1.020 4.607 24 1.988 2.034 2.704 19 1.200 1.242 1.002

Avg. 1 1 1 1.138 1.188 1.572 1.595 1.725 1.747 2.471 2.902 0.816 1.425 1.581 0.248
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Fig. 2. Execution time clustering algorithm

is significantly reduced in most of the data sets with the

exception of TUT 2, UJI 1 and UJI 2. For instance, in DSI 1

and DSI 2 the positioning error increased around 30%, but the

execution time was reduced in more than 60% approximately.

Similarly, C-Means reduced the execution time in compar-

ison with the baseline and increased the positioning error.

However, the performance of this clustering algorithm is

slightly worse than k-Means in most of the cases with the

exception of LIB 1, LIB 2, MAN 1, MAN 2 and TUT 1 where

the 2D and 3D positioning error was better than that of k-

Means. DBSCAN also provides a better performance in terms

of execution time in most of the data sets, but the positioning

error increased in all the data sets with an average normalized

2D (ǫ̃2D) and 3D (ǫ̃3D) positioning error of 2.471 and 2.901

respectively. Despite the fact that the C-Means and DBSCAN

are well-known and widely used, it is not appropriated to

apply these algorithms as it is for fingerprinting. They need

some modifications. That is the reason for the number of

researchers proposed multiple changes to these algorithms to

achieve better results when they are used in this research field.

In the case of k-NN + FPC, the average 2D and 3D position-

ing error increased≈ 43% and 58% respectively in comparison

with the baseline. With regards to k-NN + k-Means 25% (ǫ̃2D)

and 33% (ǫ̃3D) approximately. However, FPC performs better



that C-Means, being the (ǫ̃2D) reduced in ≈11% and (ǫ̃3D) in

≈8%. Similarly, k-NN + FPC outperformed k-NN + DBSCAN

in ≈58% (ǫ̃2D) and ≈55% (ǫ̃3D).

In order to provide an extended analysis, we applied this

clustering algorithm to the aforementioned BLE data sets.

The results are similar to that obtained in Wi-Fi fingerprinting

databases. However, as these data sets are not as large as some

of the Wi-Fi data sets used in this article, it is not highly

relevant to use clustering algorithms on them unless required

to detect some anomalies such as outliers.

The full execution time is significantly reduced in compar-

ison with the baseline (≈ 75%), k-NN + k-Means (≈ 84%),

k-NN + C-Means (≈ 85%) and k-NN + DBSCAN (≈ 70%).

Figure 2 shows the execution time of each clustering algo-

rithm, i.e., the time that the algorithm takes to form the clusters

and return the result. The x-axis represents the data sets used

in this research work, and y-axis the average time to form

the clusters. As we can see, FPC is faster than DBSCAN,

k-Means and C-Means in 93% of the cases (approx.). For

instance, k-Means in TUT 1 took 7.42 seconds to form the

clusters, C-Means 23.78 seconds, DBSCAN 3.28 seconds, and

FPC needed only 0.48 seconds to process 1476 fingerprints.

k-Means were faster than FPC in UEXB 1, UEXB 3, MAN 2

and SIM.
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Fig. 3. Average number of fingerprints in each data set (Blue: WiFi Data
sets, Red: BLE data sets)

Figure 3 shows the average fingerprints distribution in the

clusters per data set. The x-axis represents the data sets used

to test the algorithms, and y-axis is the average number of

fingerprints in the clusters. Both k-Means and FPC share

similar characteristics regarding the average number of fin-

gerprints in the groups formed by these algorithms. However,

it highly differs from C-Means and DBSCAN which have a

different distribution of fingerprints between the cluster given

their algorithms.

In the same fashion, Figure 4 depicts the standard deviation

of the clusters in each data set, where the x-axis represents the

data sets and the y-axis the standard deviation. Here we can

observe that none of the clustering algorithms offer an equal

distribution of fingerprints across the clusters.
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Fig. 4. Standard deviation of clusters in each data set (Blue: WiFi Data sets,
Red: BLE data sets)

In fact, some data sets present a standard deviation similar to

the average, which might be an indicator of a significant imbal-

ance between classes, especially for C-Means and DBSCAN

clustering algorithms. This behaviour should be avoided as

the time required to obtain a position estimate will depend

on the operational fingerprint and best-matched cluster. In

some cases, the combination of a high average number of

fingerprints and extremely low standard deviation indicate

those cases where the clustering algorithm failed and only

formed 1 cluster was generated.

V. DISCUSSION

Considering that there is a trade-off between positioning

accuracy and computation time, it is complex to develop

lightweight algorithms which also provide a high level of accu-

racy. As discussed in the previous section (see Section IV), the

traditional algorithms minimized the execution time in most

of the cases, but the positioning error increased in those data

sets or at least in most of them. In section II, we can see

that different authors have offered various modifications to

traditional algorithms to reduce the positioning error. How-

ever, these modifications add the cost additional processes,

which increase the algorithm complexity, and therefore, the

computational time.

Similar to other algorithms, FPC has both advantages and

disadvantages. For instance, this clustering algorithm offers

the lowest execution time if we compare it with DBSCAN, C-

Means and k-Means. Therefore, FPC uses less computational

resources than the compared traditional clustering algorithms

in more than 93% of the cases (see Section IV-B). Similarly,

if FPC is combined with k-NN, the full execution time

(clustering + positioning estimation) is much lower than the

other compared algorithms. However, the positioning error has

slightly increased in all the data sets.



Although the proposed algorithm does not provide the

lowest positioning error in all the cases, it is more efficient than

C-Means and DBSCAN in terms of computational load as it is

more than 66% faster and the positioning error is reduced by

an 8%. However, the positioning error obtained with k-Means

clustering is still better than FPC, C-Means and DBSCAN.

The results obtained after applying the proposed FPC with

BLE data demonstrates that this algorithm can be used with

other technologies with a similar performance than using it in

Wi-Fi fingerprinting. However, it is preferable to use FPC in

large databases where a fast response is required.

According to the results, FPC presents an acceptable per-

formance in many of the data sets, despite their heterogeneity.

Nevertheless, in some data sets, the 3D error is two or three

times higher than the baseline and k-Means. It could be

because of the methodology of data collection, for example,

in systematic data collection (e.g., LIB 1 and LIB 2), the

positioning error was lower than crowdsourced data collection

(e.g., TUT 1, TUT 3, TUT 4, and UJI 2). Although FPC

takes into account only the maximum RSS values to join

samples with similar characteristics, the fluctuation of RSS

and outliers can affect the positioning error. These adverse

effects have to be examined in depth in future modification of

this algorithm to enhance the positioning accuracy without a

significant increment in the computation load.

Despite the fact that the efficiency of FPC in crowdsourced

data sets is lower than other data sets, it could be used in

devices where the computational efficiency is a must, and they

do not require a high level of accuracy. Generally, low-profile

devices require high efficient and lightweight algorithms to

avoid the overload of computational resources and keep the

battery life. Considering this fact, many mobile devices (in-

cluding wearables and smartphones) use some positioning and

localisation services, it is indispensable to develop or modify

existing algorithms to provide computing efficiency at all the

positioning steps.

VI. CONCLUSIONS

In this work, we presented a new lightweight clustering

algorithm for Wi-Fi Fingerprinting, namely FPC. Unlike some

traditional algorithms, which used different distance metrics

such as euclidean distance, city block (Manhattan distance) or

other methods, FPC is mainly based on the maximum RSS

values to form the clusters. Therefore, if the maximum RSS

values in different samples are in the same feature (AP), these

samples are used to generate a cluster. Given that there could

be small clusters (i.e., the number of samples in a cluster is

less than the average number of samples in all the clusters),

they are merged using the coefficient correlation matrix.

This new clustering algorithm outperforms DBSCAN, C-

means and k-Means in terms of computational load, minimis-

ing the time to generate the clusters. Hence, FPC is faster than

k-Means in ≈ 92%, ≈ 75% in comparison with C-Means and

≈ 66% in contrast with DBSCAN. However, the positioning

accuracy was affected in all the data sets, increasing the

positioning error (see section IV-B).

Given the computational efficiency of the proposed al-

gorithm, it can be used in low-profile devices where it is

indispensable lightweight algorithms. Therefore, IPSs can

implement the proposed clustering algorithm if there is no

stringent requirement of position accuracy.

Future work will analyse a method to identify outliers in

the data sets in order to reduce the error. It will be useful in

crowdsourced data sets where there are hundreds of outliers

exist. This method has to be efficient enough to avoid the

computational overload in the proposed clustering algorithm.
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