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Abstract—Long-horizon direct model predictive control (MPC)
has pronounced computational complexity and is susceptible
to parameter mismatches. To address these issues, this paper
proposes a solution that enhances the robustness of long-horizon
direct MPC, while keeping its computational complexity at bay.
The former is achieved by means of a suitable prediction model of
the drive system that enables the effective estimation of the total
leakage inductance of the machine. For the latter, the objective
function of the MPC problem is formulated such that, even
though the drive behavior is computed over a long prediction
interval, only a few changes in the candidate switch positions
are considered. The effectiveness of the proposed approach is
demonstrated with a medium-voltage (MV) drive consisting of
a three-level neutral point clamped (NPC) inverter and an
induction machine (IM).

I. INTRODUCTION

Over the last years, the advanced processing capabilities of

modern microprocessors, combined with a growing demand

for high-efficiency variable speed drive (VSD) systems have

stimulated the increasing interest of the power electronics com-

munity in model predictive control (MPC). This is reflected,

e.g., in the exponential growth of publications on the topic

since the early 2000s. The most extensively covered MPC

method by academia is direct MPC with reference tracking,

also known as finite control set MPC (FCS-MPC) [1].

Despite the fact that FCS-MPC appears as an attractive

alternative to established control methods [2], it has intrinsic

drawbacks. One of them stems from the fact that the compu-

tational complexity of the optimization problem underlying

FCS-MPC increases exponentially with the length of the

prediction horizon. As a result, one-step horizon is typically

used, but, alas, at the expense of improved performance and

guaranteed stability that long horizons can offer [1], [3]. Even

though, there have been some methods that attempt to facilitate

the real-time implementation of long-horizon FCS-MPC, such

as dedicated branch-and-bound techniques [4], or prediction

horizons of nontrivial form [5], keeping the associated com-

putational load (relatively) low remains a challenge [6].

Another drawback of FCS-MPC is that its performance

is dependent on the accuracy of the prediction model. The
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latter, even though typically accurate when power electronic

applications are of interest, is subject to model variations and

mismatches, that can adversely affect the system performance,

especially when long horizons are employed [6]. Hence, FCS-

MPC needs to be equipped with tools that can enhance its

robustness to such uncertainties. To this end, MPC can be

augmented with an element of integrating nature [7], or an

external disturbance observer [8]–[10].

An alternative is to employ system identification algorithms.

Such methods are either white-box model-based approaches,

since they assume full knowledge of the system [11]–[13], or

they do not depend on the model at all, i.e., they are black-

box methods [14], [15]. The former techniques, however,

cannot simultaneously estimate all the system parameters,

meaning that combinations of different sources of uncertain-

ties/model mismatches are usually not considered. As a result,

the performance of such methods is not the most desired

for a wide range of operating conditions. As for the black-

box methods, they require measurements of the input (e.g.,

applied voltage) and output (e.g., load current) and intrinsic

look-up tables. Moreover, the acquired data are processed by

computational demanding identification techniques, such as

data fitting methods, which further increase the computational

requirements of MPC. Hence, as can be understood, it is

desired that the aforementioned auxiliary tools should come

with low computational complexity not to further tax the

already high computational load of long-horizon FCS-MPC.

Motivated by the above, this paper proposes a long-horizon

FCS-MPC for medium-voltage (MV) induction motor (IM)

drives that (a) has modest computational complexity, and (b)

shows a high degree of robustness. To achieve the former, the

MPC problem is formulated by taking advantage of the fact

that MV drives need to operate at low switching frequencies of

a few hundred hertz. The latter is accomplished by deriving

a prediction model of the drive system that allows for the

adoption of a simple, yet effective, estimation algorithm. The

presented results, based on an MV drive that consists of a

three-level neutral point clamped (NPC) inverter and an IM,

highlight the potential of the proposed approach.

II. MODELING

To derive the model of the MV VSD (Fig. 1) that will

serve as a prediction model for the FCS-MPC algorithm,
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Fig. 1: Three-level NPC converter driving an IM.

the differential equations that fully describe its dynamics

are required. To do so, the per unit (p.u.) system and the

αβ-reference frame are adopted in this work. Moreover, for

simplicity, the neutral point potential vn is assumed to be zero

and the dc-link voltage constant and equal to Vdc.

Based on the above, the inverter output voltage vinv (which

is equal to the stator voltage vs) is1

vinv = vs =
Vdc

2
K̃ [ua ub uc]

T
, (1)

where K̃ is the reduced Clarke transformation matrix
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and uabc = [ua ub uc]
T is the three-phase switch position,

with ux ∈ U = {−1, 0, 1}, x ∈ {a, b, c}, being the single-

phase switch position.

Regarding the IM, when FCS-MPC algorithms are of inter-

est, the machine is most commonly modeled based on the

T-equivalent model, see Fig. 2(a) [16]. In this model, Rs

and Rr stand for the stator and rotor resistances, respectively,

while Xls, Xlr, and Xm are the stator leakage, rotor leakage,

and mutual reactances, respectively. However, this model is

overparametrized, while observability and identifiability of

the machine parameters are not achieved [17]. These issues,

nonetheless, can be tackled when using the so-called inverse-Γ
model, shown in Fig. 2(b). Note that the two representations of

the IM are equivalent and no loss of information or accuracy

is entailed [18].

The derivation of the inverse-Γ model is based on provid-

ing the same input impedance as the T-model. Hence, the

stator voltage vs, current is, and flux ψs are the same in

both IM representations. Moreover, the rotor current and flux

are defined with the help of the transformation coefficient

γ = Xm/Xr as īr = ir/γ and ψ̄r = γψr, where the overline

denotes variables in the inverse-Γ model, and Xr = Xlr+Xm.

Based on the above definitions, the equivalent circuit represen-

tation in Fig. 2(b) is obtained with the following parameters

1Note that to simplify the notation, the subscript for variables in the αβ-
plane is omitted. Variables in the abc-plane are indicated by the corresponding
subscript.

Rs Xls Xlr Rr

vsα Xm
−ωrψrβ

isα irα

Rs Xls Xlr Rr

vsβ Xm ωrψrα

isβ irβ

(a) T-model

Rs Xσ R̄r

vsα X̄m
−ωrψ̄rβ

isα īrα

Rs Xσ R̄r

vsβ X̄m ωrψ̄rα

isβ īrβ

(b) Inverse-Γ model

Fig. 2: Equivalent models of an IM.

X̄m = γXm , (3a)

R̄r = γ2Rr , (3b)

Xσ = Xs −X
2
m/Xr , (3c)

where Xσ is the total leakage reactance, and Xs = Xls+Xm.

By comparing Figs. 2(a) and 2(b), one important obser-

vation can be made. Namely, the impact of the rotor Xlr

and stator Xls leakage reactances in the T-equivalent model

is mostly captured by the total leakage reactance Xσ in the

inverse-Γ model, see (3c). This will be utilized when designing

the estimation algorithm, see Section V.

Given the equivalent circuit in Fig. 2(b), the state-space

model of the MV drive system can be derived. Specifically,

by defining the three-phase switch position uabc ∈ U = U3

as the input of the system, the stator current and flux as state

variables, i.e., x = [iTs ψ
T
s ]

T ∈ R
4, and the stator current

as the system output, i.e., y = is ∈ R
2, the continuous-time

state-space model can be derived by applying circuit analysis

to the inverse-Γ model in Fig. 2(b), i.e.,

dx(t)

dt
= Fx(t) + Guabc(t) (4a)

y(t) = Cx(t), (4b)
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Note that the state x in (4) does not depend on the leakage

rotor reactance Xlr incorporated in the γ coefficient since,

as mentioned, the stator current and flux are the same in

both models. This greatly benefits the design of the parameter

estimation algorithm in Section V, since knowledge of Xlr

is not required. Finally, to derive the prediction model for

the FCS-MPC algorithm, (4) is discretized with the sampling

interval Ts. To this end, exact discretization is used, yielding

x(k + 1) = Ax(k) + Buabc(k) (5a)

y(k) = Cx(k), (5b)

where A = e
FTs , and B = −F−1(I4 − A)G, with e being

the matrix exponential and k ∈ N. Finally, it is worth

mentioning that in case of an increased computational load,

the forward Euler discretization method can be used instead

to discretize (4) [6].

III. CONTROLLER DESIGN

In this section the formulation of the optimization problem

underlying FCS-MPC is presented. Moreover, the effectiveness

of the proposed objective function is assessed in terms of

the product of the produced stator current distortions and the

switching frequency.

A. Optimization Problem

The first aim of the controller is to track the stator

current reference is,ref, i.e., to minimize the tracking error

is,err = is,ref − is, while the second one is to minimize

the switching frequency, i.e., the control effort ∆uabc(ℓ) =
uabc(ℓ) − uabc(ℓ − 1). The former objective relates to the

current distortions, which have to be kept low for reduced

thermal losses, while the latter to the switching power losses,

which for an MV drive have to be as low as possible. These

objectives are captured in the following objective function

J =

k+Np−1
∑

ℓ=k

‖is,err(ℓ+ 1)‖22 + λu

k+Nc−1
∑

ℓ=k

‖∆uabc(ℓ)‖
2
2, (6)

where λu > 0 sets the trade-off between the two terms

of (6), i.e., the current distortions and the switching frequency.

Moreover, Np denotes the prediction horizon, i.e., the time

window wherein the future current trajectories are computed,

and Nc is the control horizon, i.e., the time window wherein

the possible future control actions are evaluated.

The controller finds the optimal sequence of control actions

U∗(k) =
[

u∗T
abc(k) u

∗T
abc(k+1) . . . u∗T

abc(k +Nc − 1)
]T

by solving the following optimization problem

minimize
U(k)

J(k) (7a)

subject to (5) (7b)

U(k) ∈ U (7c)

‖∆u(ℓ)‖∞ ≤ 1, ∀ℓ = k, . . . , k +Nc − 1, (7d)

where U = U × · · · × U is the 3Nc-times Cartesian product

of the set U , and represents the feasible input set.

Problem (7) is typically solved by evaluating all possible

solutions, i.e., 33Nc , to conclude to the one that results in

the minimum value of (6), i.e., the minimum current error

and switching effort. Doing this, however, in real time within

a few microseconds can be computationally intractable. To

keep the computational complexity low—in contrast to FCS-

MPC implementations where Np = Nc, see [1] and refer-

ences therein—we propose to use two different horizons, i.e.,

Nc < Np. This approach is tailored to the needs of MV drive

systems since, due to the targeted low switching frequencies,

only a few changes in the control action are anticipated within

the control horizon. Considering that the first steps of the

horizon are of more interest since—according to the receding

horizon policy [16]—only u∗
abc(k) is applied to the inverter,

keeping the same control action for the last Np − Nc steps

of the prediction horizon will not adversely affect the system

performance. Hence, with the proposed approach a favorable

performance of the drive is still achieved (since the prediction

horizon Np remains sufficiently long), while the complexity

of the optimization problem underlying long-horizon FCS-

MPC remains reasonable (since the control horizon Nc can be

kept relatively short), rendering its real-time implementation

feasible. Moreover, to further reduce the computational burden

of the MPC problem, more sophisticated solving methods, e.g.,

the sphere decoder [4], [19], can be employed, if needed.

B. Assessment of the Objective Function

To evaluate the performance of the proposed objective

function (6), the product of the current total harmonic dis-

tortion (THD) ITHD and the switching frequency fsw is used

as a metric, i.e., cf = ITHD·fsw. A lower cf indicates a

favorable steady-state control behavior. The parameters of

the drive system are given in Table I, while the sampling

interval is Ts = 25µs. Note that the total leakage reactance is

Xσ = 0.25 p.u. The metric is shown in Fig. 3 for FCS-MPC

with four different horizon combinations N = {Np, Nc} and

nominal parameters in the prediction model.

Based on Fig. 3, some noteworthy observations can be

made. First, for frequencies below 500Hz—which is the

most relevant range for MV applications—a long horizon,

such as the combination N = {5, 2} or N = {5, 5},



(a) Full range of studied fsw

(b) Zoomed in view of the frequency range below 500 Hz

Fig. 3: Performance metric cf as a function of the switching frequency fsw for
horizon combinations N = {1, 1}, {2, 2}, {5, 2} and {5, 5}. The individual
simulations are indicated with dots and their trend is approximated using
polynomials.

outperforms a shorter one (e.g., combinations N = {1, 1}
and N = {2, 2}) in terms of cf , with the exception of a

small frequency range around 350Hz. Therefore, it is evi-

dent that, as also reported [1], [3], a long horizon improves

the drive performance, whether the conventional combination

N = {5, 5}, i.e., Np = Nc, or the proposed configuration—

where Np > Nc—is used. Moreover, it is worth mentioning

that cf is lower for fsw ≤ 500Hz, implying a favorable drive

performance for this range of switching frequencies. This is

due to the higher granularity of switching, since the sampling-

to-switching frequency ratio is high, and close to 100, which is

the desired ratio [1, Section V]. Finally, an important remark

is that FCS-MPC with the horizon combination N = {5, 2}
achieves the exact same steady-state performance—in terms of

cf—as with N = {5, 5}, for up to almost 800Hz. Hence, it

can be deduced that long-horizon FCS-MPC with the proposed

objective function (6) fully utilizes the advantages associated

with long horizons, see [1, Section VI]. Therefore, only

N = {5, 2} and N = {1, 1} are analyzed and compared in

the following sections.

IV. ROBUSTNESS ANALYSIS

Depending on the motor operating point, its parameters can

vary considerably, e.g., as a function of the motor temperature

for resistances, or under the effect of magnetic saturation

for reactances. To identify the most important parameters for

an estimation algorithm design, the effect of the parameter

TABLE I: MV system parameters.

Parameter Value

Rated voltage VR 3300 V

Rated current IR 356 A

Real power PR 1.646 MW

Apparent power SR 2.035 MVA

Angular stator frequency ωsR 2π50 rad/s

Rotational speed ωmR 596 rpm

Number of pole pairs p 5

Stator resistance Rs 57.61mΩ

Rotor resistance Rr 48.89mΩ

Stator leakage inductance Lls 2.544 mH

Rotor leakage inductance Llr 1.881 mH

Main inductance Lm 40.01 mH

Dc-link voltage Vdc 5.2 kV

mismatches in the prediction model on the performance metric

cf of the proposed FCS-MPC is examined. To this aim, ±50%
variations in Xls, Xlr, Xm, Rs, and Rr are studied for the

chosen horizon combinations, and the IM operation at the rated

speed and torque is assumed for all simulations.

The results in Figs. 4(a), 4(b) and 4(c) show that, re-

gardless of the horizon combination, variations in Xls and

Xlr clearly detract from the controller performance metric,

whereas mismatches in Xm change it only slightly. Moreover,

it is seen that underestimated reactances lead to more substan-

tial performance deviations from the nominal behavior. On

the other hand, as shown in Figs. 4(d) and 4(e), variations

in the stator and rotor resistances have a negligible effect on

the performance metric cf , mainly due to their typically very

small value in MV drives.

The presented results are reasonable since an IM can be

considered as a load with essentially inductive behavior, where

the reactances can be modeled by the total leakage reactance

Xσ (3c). Note that the latter is mainly sensitive to deviations

in the stator and rotor leakage reactances, see [20]. Hence,

it can be concluded that the mutual reactance as well as the

stator and rotor resistances can be excluded from consideration

when designing the estimation algorithm. On the other hand,

the FCS-MPC robustness can be significantly improved by

correctly estimating Xlr and Xls, and updating the prediction

model accordingly. However, as mentioned in Section II,

owing to the adopted inverse-Γ model, only the total leakage

reactance Xσ needs to be accurately estimated to address the

adverse effects of mismatches in Xls and Xlr. The estimation

algorithm developed in Section V exploits this fact.

V. ESTIMATOR DESIGN

Motivated by the robustness analysis results, a simple es-

timation method is introduced in the following. By assuming

that the stator Rs and rotor Rr resistances are approximately

zero—which is a valid assumption for MV machines [16]—the

inverse-Γ-equivalent model in Fig. 2(b) can be represented as

in Fig. 5(a), where vemf is the back electromotive force (back-

EMF). The differential equation that describes the dynamics

of the stator current is

X̂σ

dis(t)

dt
= vs(t)− vemf(t), (8)



(a) A +50% (up) and −50% (down) variation in
the stator leakage reactance Xls

(b) A +50% (up) and −50% (down) variation in
the rotor leakage reactance Xlr

(c) A +50% (up) and −50% (down) variation in
the mutual reactance Xm

(d) A +50% (up) and −50% (down) variation in
the stator resistance Rs

(e) A +50% (up) and −50% (down) variation in
the rotor resistance Rr

Fig. 4: Performance metric cf as a function of the switching frequency fsw for horizon combinations N={1, 1} and {5, 2}. The individual simulations are
indicated with dots and their trend is approximated using polynomials.

where X̂σ denotes the total leakage reactance value to be

estimated and used in the prediction model (5).

The estimation algorithm is based on the assumption that

the back-EMF is sinusoidal and its amplitude remains constant

during the sampling interval Ts, see Fig. 5(b). Given this, the

total leakage reactance X̂σ can be devised from

‖vemf(k)‖
2
2 − ‖vemf(k − 1)‖22 =

v2emf,α(k) + v2emf,β(k)− v
2
emf,α(k − 1)− v2emf,β(k − 1) = 0 .

(9)

Each term in (9) can be found by discretizing (8) with the

forward Euler method, i.e.,

vemf,z(ℓ) = (X̂σ∆Az(ℓ+ 1) + vsz(ℓ))
2 , (10)

where

∆Az(ℓ+1) = −
isz(ℓ+ 1)− isz(ℓ)

Ts
, (11)

with z ∈ {α, β}, and ℓ ∈ {k, k − 1}. For example, for z = α
and ℓ = k − 1, vemf,α(k−1) is calculated as

vemf,α(k − 1) =
(

−X̂σ ·
isα(k)− isα(k − 1)

Ts
+ vsα(k − 1)

)2

.
(12)

With the help of (10) and (11), (9) can be written in the form

of the following quadratic equation [21]

X̂2
σA+ X̂σB + C = 0 , (13)
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Fig. 5: Principle of the proposed estimation algorithm.

where

A = ∆A2
α(k + 1) + ∆A2

β(k + 1)−∆A2
α(k)

−∆A2
β(k) , (14a)

B = 2
(

∆Aα(k + 1)vsα(k) + ∆Aβ(k + 1)vsβ(k)

−∆Aα(k)vsα(k − 1)−∆Aβ(k)vsβ(k − 1)
)

, (14b)

C = v2sα(k) + v2sβ(k)− v
2
sα(k − 1)− v2sβ(k − 1) . (14c)

After substituting (14) into (13), the total leakage reactance is

calculated with

X̂σ1,2 =
B

2A

[

−1±

√

1−
4CA

B2

]

, (15)

where the meaningful root is kept. The criterion for the latter

is based on the assumption that the back-EMF vector vemf

rotates counterclockwise by the angle corresponding to one

sampling interval when the correct value of X̂σ is used, i.e.,

ϕ = ωsTs , (16)

with ωs being the stator angular speed.

To implement the root-choosing criterion for (15), the

two possible angles between the back-EMF vectors at two

consecutive sampling intervals—vemf(k−1) and vemf(k)—are

calculated with

ϕσ1,2 = arccos

(

vemf1,2(k)
Tvemf1,2(k − 1)

‖vemf1,2(k)‖2‖vemf1,2(k − 1)‖2

)

. (17)

Note that in (17), the values of the back-EMF vectors are

computed by substituting the two possible values of X̂σ, i.e.,

Algorithm 1 Update Xpred
σ

if B = 0 or C = 0 or 4CA/B2 > 1 then

X
pred
σ ← X

pred
σ (k − 1)

return

end if

calculate X̂σ1,2 from (15) and |ϕσ1,2 − ϕ| with the help of

(17)

if |ϕσ1 − ϕ| < |ϕσ2 − ϕ| then

X̂σ ← X̂σ1

else

X̂σ ← X̂σ2

end if

Xpred
σ ← X̂σ

Fig. 6: Estimated values of X̂σ over one fundamental period (up) and its
zoomed in view (down). A variation of +50% is simultaneously introduced
in both Xls and Xlr , resulting in the wrong value of Xvar

σ = 0.38 p.u.,
whereas the actual machine reactance is Xmach

σ = 0.2548 p.u.

X̂σ1,2, from (15) into (10). Finally, the angles from (17) are

compared with (16), and X̂σ is chosen based on the smallest

difference |ϕσ1,2 − ϕ|.

Further analysis of (15) reveals supplementary conditions

which have to be addressed in order to guarantee feasibility

of the estimation algorithm results. Specifically, when a switch

position does not change between two consecutive sampling

intervals, i.e., uabc(k) = uabc(k − 1), (14b) is often equal

to zero, thus leading to an incorrect calculation. Moreover,

if a change in the switch position results in a stator voltage

vector of the same amplitude as the one last applied, i.e.,

‖vs(k)‖2 = ‖vs(k − 1)‖2, then (14c) gives zero. As a result,

for the given system parameters (see Table I), an estimation

error of about 15% is observed at some time instants. Addi-

tionally, cases where the root in (15) is negative are excluded

from consideration in the estimation algorithm.

Altogether, the above-mentioned conditions are summarized



(a) Three-phase stator current is,abc (solid lines)
and their references (dash-dotted lines)

(b) Stator current spectrum. The THD is 5.95% (c) Three-phase switch position uabc

Fig. 7: Simulation results with the proposed FCS-MPC augmented with the estimation algorithm during steady-state operation for a simultaneous variation in
both Xls and Xlr . Top row: +50% variation in Xls and Xlr . Bottom row: −50% variation in Xls and Xlr . The switching frequency is fsw = 250 Hz by
setting λu = 0.038, and the prediction and control horizons are Np = 5 and Nc = 2, respectively.

in Algorithm 1. In the end, these special conditions force

the estimator to be idle, i.e., to use the value of the total

leakage reactance from the previous step Xpred
σ (k − 1), for

the biggest part of the fundamental period, namely around

95% of the time for the chosen value of Ts, see the bottom

figure in Fig. 6. It is important to point out, however, that

this is acceptable, since due to the slower changes in the total

leakage reactance compared to the stator current dynamics,

the reactance value used in the prediction model Xpred
σ does

not need to be updated with a new estimation X̂σ at every

iteration of the MPC algorithm.

VI. ESTIMATOR PERFORMANCE EVALUATION

The effectiveness of the proposed estimation scheme is

demonstrated by the time- and frequency-domain results pre-

sented in this section, see Fig. 7. By simultaneously varying

both leakage reactances, Xls and Xlr by ±50%, variations

of approximately ±50% in the total leakage reactance Xσ

are introduced [20]. The tests performed relate to the VSD

system shown in Fig. 1, with the parameters in Table I, while

N = {5, 2} and Ts = 25µs are chosen. All results in this

section are shown in the p.u. system.

In the presence of these mismatches, the proposed estima-

tion scheme manages to estimate the correct value of Xσ,

update the prediction model accordingly, and, thus, ensure that

the FCS-MPC will remain robust to variations in the leakage

reactances, as also verified in Figs. 8 and 9. Specifically,

Figs. 8(a) and 9(a) show how the mismatches detract from

the controller performance with nominal parameters. As can be

seen, underestimating the reactances results in more significant

deviations in cf compared with overestimating them, which is

in line with the results in Section IV.

On the other hand, the FCS-MPC scheme performance

seems immune to any parameter mismatches when the es-

timation algorithm is activated regardless of the degree of

the said mismatches, see Figs. 8(b) and 9(b). These figures,

clearly demonstrate the effectiveness of the proposed estima-

tion algorithm, which in conjunction with the designed FCS-

MPC algorithm, result in a favorable drive behavior. Finally,

it is important to mention that the estimation scheme, and

subsequently the FCS-MPC algorithm, do not need to know

which leakage reactance is changed and by how much, since,

thanks to the adopted modeling, only knowledge of Xσ is

required. It can be concluded that this provides the proposed

controller with a high degree of robustness.

VII. CONCLUSIONS

This paper proposed a long-horizon FCS-MPC algorithm

for IM MV drives with (a) reduced computational complexity,

and (b) enhanced robustness to parameter variations and

mismatches. As shown, the former is achieved by tailoring the

optimization problem to the needs of the chosen case study.

The latter is fulfilled by appropriately modeling the drive

system which allows for an effective estimation algorithm

with low computational load. The presented results based on a

three-level NPC inverter driving an MV IM demonstrated the

effectiveness of the proposed approach, where a superior drive

performance is achieved and maintained, even in the presence

of significant variations in the system parameters.
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