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Abstract—In this paper, we propose a machine learning (ML)
based physical layer receiver solution for demodulating OFDM
signals that are subject to a high level of nonlinear distortion.
Specifically, a novel deep learning based convolutional neural
network receiver is devised, containing layers in both time-
and frequency domains, allowing to demodulate and decode the
transmitted bits reliably despite the high error vector magnitude
(EVM) in the transmit signal. Extensive set of numerical results
is provided, in the context of 5G NR uplink incorporating
also measured terminal power amplifier characteristics. The
obtained results show that the proposed receiver system is able
to clearly outperform classical linear receivers as well as existing
ML receiver approaches, especially when the EVM is high in
comparison with modulation order. The proposed ML receiver
can thus facilitate pushing the terminal power amplifier (PA)
systems deeper into saturation, and thereon improve the terminal
power-efficiency, radiated power and network coverage.

Index Terms—5G NR, deep learning, EVM, machine learning,
nonlinear distortion, OFDM, power-efficiency, power amplifier

I. INTRODUCTION

Improving the network coverage and terminal power-
efficiency are of fundamental importance in all mobile cellular
systems. This is particularly so in wide-area macro deploy-
ments as well as in emerging millimeter-wave (mmWave) net-
works due to the challenges with propagation losses and trade-
offs between hardware implementation costs, power consump-
tion and transmit signal quality. Specifically, in the current 4G
LTE/LTE-Advanced and 5G NR networks, the uplink coverage
is primarily limited by the available user equipment (UE)
transmit power while still meeting the unwanted emission and
transmit signal inband quality requirements [1].

Interestingly, while the feasible transmit power in below
3 GHz networks is commonly limited by the out-of-band
(OOB) emission measures, the role of the passband error
vector magnitude (EVM) is becoming more and more crit-
ical when the networks evolve towards the mmWave and
later even the sub-THz bands. This is primarily because the
nonlinear distortion is subject to beamforming [2] as shown
through concrete measurements, e.g., in [3]. Inspired by this,
in this article we develop a novel machine learning (ML)
aided physical-layer receiver, referred to as HybridDeepRx,
for efficiently demodulating orthogonal frequency-division
multiplexing (OFDM) signals subject to substantial trans-
mitter distortion. Specifically, the HybridDeepRx receiver is
equipped with processing layers in both time- and frequency-

domains, such that high-EVM signals can still be demodulated
and detected efficiently. Extensive set of numerical results
are also provided, in the context of 5G NR uplink, where
measurement-based power amplifier (PA) models are deployed
while experimenting with different levels of saturation and
corresponding nonlinear distortion in the transmitter system,
utilizing HybridDeepRx as the base station (BS) receiver.
Based on the obtained results, the proposed hybrid ML re-
ceiver system clearly outperforms the classical linear minimum
mean-squared error (LMMSE) receiver as well as earlier ML-
based receivers. Finally, we note for clarity that there are many
alternative technical approaches for coverage enhancements
[4], while in this work we specifically focus on new deep
learning based physical layer receiver technology.

Notation: Matrices are represented with boldface uppercase
letters and they can consist of either real- or complex-valued
elements, i.e., X ∈ FN×M , where F stands for either R or C.

II. STATE OF THE ART

ML-aided radio reception has already been considered in
several works, which have investigated implementing certain
parts of the receiver chain with learned layers. For instance,
channel estimation with neural networks has been studied
in [5], [6], while [7] utilizes convolutional neural networks
(CNNs) [8] for equalization. ML-based demapping has been
considered in [9], where it was shown to achieve nearly the
same accuracy as the optimal demapping rule, albeit with
greatly reduced computational cost. Some works also propose
augmenting the receiver processing flow with deep learning
components [10]–[12] and show improved performance in
comparison to conventional benchmark receivers.

A fully convolutional neural network based receiver, entitled
DeepRx, was proposed in [13], [14], and it was shown
to achieve high performance especially under sparse pilot
configurations. In addition to that, there are also other ML-
based solutions for learning larger portions of the receiver,
such as the work in [15], where channel estimation and
signal detection are carried out jointly using a fully-connected
neural network. There it is shown that the proposed ML-
based receiver outperforms the conventional receiver when
there are few channel estimation pilots or when the cyclic
prefix is omitted. In addition, it is shown to be capable
of handling rather well with clipping noise, a type of hard



nonlinearity. The work in [16], on the other hand, applies
CNNs to implement a receiver that extracts the bit estimates
directly from a linear time-domain RX signal by learning the
discrete Fourier transform (DFT). The prospect of learning
the transmitter and receiver jointly has also been investigated
by various works [17]–[20]. Such schemes do not assume any
prespecified modulation scheme or waveform, but instead learn
everything from scratch. Such end-to-end learning has been
shown to have potential to outperform traditional heuristic
radio links, e.g., by learning a better constellation shape [19]
or by learning to communicate under a nonlinear PA [20].

Despite the wide body of literature regarding ML-based
radio receivers and the various demonstrations of their high
performance, the effects of nonlinearities have been largely
omitted in the analysis thus far. With the exception of the
rather preliminary results in [15] and the end-to-end learned
system in [20], there have been no tailor-made ML-based
receivers for handling nonlinearly distorted RX signals, partic-
ularly when the level of distortion is substantially higher than
what is allowed by the current 5G NR EVM specifications
[21]. In this paper, we fulfill this gap and show a specific CNN-
based receiver architecture that is capable of accurate signal
detection even under heavy PA-induced nonlinear distortion.

III. SYSTEM MODEL

Figure 1 depicts the general framework of the considered
receiver architecture. The upper part of Fig. 1 illustrates a
conventional OFDM receiver, for reference, while the lower
part shows the proposed receiver system with partially learned
components. Let us first describe the basic signal model and
also the conventional receiver processing. Using baseband-
equivalent modeling, the received nonlinearly distorted time-
domain signal can be expressed as

y(n) = h(n) ∗ φ
(
x(n)

)
+ w(n), (1)

where h(n) denotes the multipath channel response, ∗ is the
convolution operation, φ (·) is the nonlinear response of the
transmitter PA, x(n) is the undistorted transmit waveform,
and w(n) is the noise-plus-interference signal. Considering
the signal during a single transmission time interval (TTI),
the received time-domain signal can be denoted by a matrix
Yt ∈ C(NCP+N)×Nsymb , where NCP is the maximum cyclic
prefix (CP) length within the TTI, N is the FFT size and
Nsymb is the number of OFDM symbols. That is, the elements
of Yt consist simply of the received signal samples, ordered
based on their corresponding OFDM symbols. In case the
symbols have different CP lengths, zero-padding is used to
align the total symbol lengths to NCP +N .

Having first removed the CP, the signal is converted to its
frequency-domain representation with a fast Fourier transform
(FFT), after which it can be expressed as follows:

Yf = H� X +N, (2)

where Yf ∈ CND×Nsymb and X ∈ CND×Nsymb are
the received and transmitted symbols, respectively, H ∈

CND×Nsymb is the frequency-domain channel matrix, � de-
notes element wise multiplication, N ∈ CND×Nsymb is the
noise-plus-interference signal, and ND denotes the number of
data-carrying subcarriers. The noise-plus-interference term in-
corporates also the effects of nonlinear distortion not captured
by the linear part of the signal model.

In a conventional receiver, the demodulation reference sig-
nals (DMRSs) are extracted from Yf for channel estimation,
as illustrated in the upper part of Fig. 1, after which the signal
is equalized and the soft bits are extracted. In this work, we
consider the widely-used LMMSE receiver as the baseline or
reference. For a description of such a receiver, see, e.g., [13].
As a final outcome, the receiver will provide the so-called
log-likelihood ratios (LLRs) for each data-carrying resource
element (RE).

IV. PROPOSED HYBRIDDEEPRX RECEIVER

The goal of the proposed neural network (NN)-based Hy-
bridDeepRx is to detect the raw bits from the nonlinearly
distorted RX signals collected during a TTI, represented by the
matrix Yt. A high-level depiction of the receiver architecture
is shown in the lower part of Fig. 1. As the nonlinear distortion
caused by the PA is a time domain phenomenon, we believe
that neural network processing with time domain inputs is an
efficient method for learning to detect such distorted signals.
Moreover, since the target of the proposed receiver is to detect
the transmitted data, which is obviously modulated in the
frequency domain, the receiver utilizes NN-based processing
in both time and frequency domains. This is achieved by
including the FFT in the network as an untrainable layer, by
which the complete receiver can be trained jointly.

A more detailed depiction of the NN-based receiver is
shown in Fig. 2. The trainable parts of the receiver are
indicated with gray blocks, and they follow a residual network
(ResNet) structure [22]. The part of the NN in-between the
time- and frequency-domain ResNets consists of the CP re-
moval and FFT, and they are performed as in a regular receiver.
In the continuation, we shall refer to the two trainable parts
of the network as pre-FFT and post-FFT networks.

The pre-FFT network takes the received time domain RX
signals over one TTI as an input. Since the signals are complex
valued, we concatenate the real and imaginary parts of the
input along the third dimension. To take the varied CP lengths
of the 5G specification [23] into account, the OFDM signals
with the shorter CP are padded with zeroes, to match the length
of the longer CP. Thus the input to the pre-FFT network will
be a real valued array Zpre ∈ R(NCP+N)×Nsymb×2, where
NCP again refers to the longest CP length. The pre-FFT
network is built with 2D convolutional layers with residual
connections using pre-activation ResNet [22] blocks without
batch normalisation layers. The network has three ResNet
blocks with 64, 128 and 256 convolutional filters, respectively,
and the size of the filters is 3 × 3. The dimensions of the
outputs are kept the same size as those of the inputs. In Fig. 2
the number of filters for ResNet block i is denoted by Ni (i.e.,
N1 = 64, N2 = 128, and N3 = 256). The last layer of the pre-
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Fig. 1. High-level depiction of a conventional OFDM receiver and of the proposed ML-based HybridDeepRx architecture.
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Fig. 2. A detailed illustration of the HybridDeepRx receiver, where the
dimensions within each block correspond to its output. The gray blocks
represent the components of the learned architecture.

FFT network is a convolutional layer with two filters of size
1× 1 and no activations. The output of the pre-FFT network
is thus the same size as the input Zpre, which represents the
concatenated real and imaginary parts of the RX signal.

The output of the pre-FFT network is then fed to the FFT
layers of the network, which represent the CP removal and
FFT process of a regular receiver. First, the real and imaginary
parts are combined to a complex-valued signal, after which
the CP is removed. After the FFT, the unused subcarriers are
removed, and the real and imaginary parts of the output are

again concatenated and fed into the post-FFT network.
The post-FFT network takes in the output of the FFT layers

and the raw least squares DMRS channel estimates, whose
real and imaginary values are concatenated along the channel
dimension (for the data-carrying REs, the raw channel esti-
mate array contains zeros). Hence, the input to the post-FFT
network is a real valued array Zpost ∈ RND×Nsymb×4. This
post-FFT network follows the DeepRx architecture presented
in [13], which is also built with 2D preactivation ResNet
blocks. The output is a real valued array L ∈ RND×Nsymb×NB

consisting of the detected LLRs, where NB is the maximum
number of bits per symbol. In this work we have set NB = 8
similar to [13].

Training Procedure

The training is performed using the binary cross entropy
(CE) as the loss function. Although the actual output of the
post-FFT network consists of the LLRs, the training of the
neural network is performed using the ground truth bits as the
labels. In particular, denoting the set of trainable parameters
by θ, the loss function is defined as [13]

CE(θ) , − 1

#DB
∑

(i,j)∈D

B−1∑
l=0

(
bijl log

(
b̂ijl

)
+(1− bijl) log

(
1− b̂ijl

))
(3)

where D denotes the time and frequency indices of data-
carrying REs, #D is the total number of data-carrying REs,
and b̂ijl is the receiver’s estimate for the probability that the
bit bijl is one. The bit estimate is obtained by feeding the
corresponding LLR through the sigmoid-function as

b̂ijl = sigmoid (Lijl) =
1

1 + e−Lijl
, (4)



TABLE I
SIMULATION PARAMETERS FOR TRAINING AND VALIDATION

Parameter Value Randomization

Channel model AWGN Noise realizations

PA model Measured Dithered coefficients

SNR 0 dB – 30 dB Uniform distribution

Channel bandwidth 5 MHz None

Number of subcarriers (ND) 312 subcarriers None

FFT size (N ) 512 None

Subcarrier spacing 15 kHz None

Maximum CP length (NCP ) 40 None

OFDM symbol duration 71.4 µs None

TTI length (Nsymb) 14 OFDM symbols None

Modulation scheme 16-QAM, 64-QAM None

where Lijl denotes the LLRs which are the actual output of the
HybridDeepRx. The chosen stochastic gradient descent (SGD)
algorithm in this work is the widely used Adam optimizer,
which is updating the weights based on the CE loss in (3).

V. EXPERIMENTAL RESULTS

A. Data Generation

In order to generate training data, we simulated a 5G
physical uplink shared channel (PUSCH) link with Matlab’s
5G Toolbox [24], using the parameters specified in Table I.
Moreover, to simulate the nonlinear behaviour of the PA,
the response of a real-life PA module was measured under
a high input power. Then, a 17th order polynomial was fitted
to the measurements, representing the AM-AM and AM-PM
response of the PA. To ensure that HybridDeepRx does not
simply memorize the PA response, we introduce a dithering
term that is applied to the measured PA polynomial to produce
several slightly different PA models for training and validation,
as also the true PA realizations vary across the UEs in real
networks. The dithering is performed by adding a normally
distributed random number to each polynomial coefficient,
with a weight factor that is proportional to the magnitude of
the original polynomial coefficient, while also imposing an
applicable saturation level to the model such that physical PA
behavior is correctly mimicked. Moreover, it should be noted
that a different set of random PA polynomials are used for
training and validation.

The datasets for training employ 30 dithered PA models
with randomly chosen SNR in the range of 0 to 30 dB, the
total size of the training dataset being 30 000 TTIs. Validation
datasets employ 10 different dithered PA models and SNRs in
uniform grid in the same range, containing 15 500 TTIs in
total. Moreover, these datasets were generated separately for
the considered 16-QAM and 64-QAM modulation schemes.

B. Performance Evaluation

The performance of the proposed network is first evaluated
under varying levels of nonlinearity and an additive white
Gaussian noise (AWGN) channel. We consider uncoded bit
error rate (BER) as the main performance criteria. The results

TABLE II
EXAMPLE LINK BUDGET FOR ILLUSTRATING UPLINK COVERAGE

EXTENSION AT 3.5 GHZ

Parameter LMMSE HybridDeepRx

PA output backoff 4 dB 1 dB

PA output power 26 dBm 29 dBm

UE coupling losses 4 dB

UE antenna gain 0 dB

EIRP 22 dBm 25 dBm

Noise power -107 dBm

BS noise figure 2 dB

SNR requirement 19 dB

RX Sensitivity -83 dBm

BS coupling losses 3 dB

BS antenna gain 20 dB

Maximum path loss 125 dB 128 dB

Maximum distance, LOS 4731 m 5623 m (+19%)

Maximum distance, NLOS 723 m 865 m (+19%)

of the HybridDeepRx are compared with two alternative
receivers: (i) LMMSE with known channel, which in the
AWGN case consists only of the phase and amplitude response
of the PA, and (ii) DeepRx as presented in [13]. Moreover,
also the theoretical AWGN BER is shown for reference. The
comparison with DeepRx shows the impact of the time-domain
pre-FFT ResNet blocks, while the AWGN BER provides the
upper bound for the performance.

Figure 3 shows the BER performance when we set the
PA backoff value to 3 dB, which corresponds to an EVM of
roughly 8%. This is the highest allowed EVM value for 64-
QAM modulation in 3GPP 5G NR specifications. It is evident
that with both considered modulation orders, HybridDeepRx
has considerably better performance than the LMMSE or
DeepRx benchmark receivers. In fact, HybridDeepRx almost
achieves the AWGN bound. This clearly highlights the benefit
of the temporal processing, achieved by the trained layers
before the FFT.

Let us next investigate the performance with the higher-
order 64-QAM modulation, considering a specific BER value.
To this end, Fig. 4 shows the SNR required to achieve uncoded
BER values of 10% and 1% with respect to different levels
of nonlinear distortion. Lower PA backoff value indicates
higher nonlinearity. It can be observed that the proposed
HybridDeepRx receiver can achieve the target BER with
considerably lower SNR than the benchmark receivers. In fact,
in Fig. 4b, DeepRx and LMMSE receivers saturate before
reaching 1% BER within the studied SNR range if the PA
backoff is less than 3 dB. As opposed to this, HybridDeepRx
can achieve the BER target even under the most severe
nonlinear distortion considered in this work. This indicates
that the amount of nonlinear distortion is not a significant
bottleneck for the detection performance of HybridDeepRx,
thus allowing to push the transmitter PA system towards
saturation for improved power-efficiency and coverage.
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Fig. 3. Uncoded BER performance of the proposed HybridDeepRx in comparison with prior art and benchmarks, under a PA backoff of 3 dB with (a) 16-QAM
and (b) 64-QAM modulation schemes.
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Fig. 4. Performance of the proposed HybridDeepRx under varying levels of nonlinearity at (a) 10% uncoded BER and (b) 1% uncoded BER for 64-QAM.

We have also conducted preliminary analysis with multi-
path channels, utilizing the 3GPP tapped delay line (TDL)
channel models [25]. Figure 5 shows again the uncoded BER
performance of the different receiver solutions. In addition to
DeepRx and LMMSE with known channel, the BER is also
shown for a practical LMMSE receiver estimating the channel
from the DMRS symbols, and for LMMSE with known
channel, but without the nonlinear PA. The last effectively
represents an upper bound for the achievable performance.
The results are largely in line with the AWGN scenario,
the HybridDeepRx clearly outperforming the other solutions.
Interestingly, the uncoded BER of HybridDeepRx is only 1–
1.5 dB behind the case with a fully linear transmitter and
known channel, which illustrates the high accuracy with which
it can detect the distorted RX waveform.

Finally, to provide some further insight into the benefits
of the proposed HybridDeepRx receiver technology, in Table
II we show an example link budget for the 5G NR uplink
to illustrate the potential coverage extension enabled by the
reduced PA backoff. In the given link budget, we have assumed
a 5 MHz channel bandwidth at 3.5 GHz carrier frequency
with a rural macro (RMa) path loss model (with default
parameters) considering both line-of-sight (LOS) and non-line-
of-sight (NLOS) conditions, as defined in [25]. Moreover, the
considered SNR requirement is chosen based on Fig. 4b, where
the SNR of 19 dB indicates the required non-negative backoffs
for both the HybridDeepRx and LMMSE receivers to reach
1% BER. By taking into account the potential nonlinear power
increase at the PA output, the used PA output backoffs in the
link budget are approximated as 1 dB and 4 dB for the Hy-
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bridDeepRx receiver and the LMMSE receiver, respectively.
As shown in Table II, the proposed HybridDeepRx receiver
algorithm increases the link coverage by 19% compared to
the baseline LMMSE receiver. For example, in case of NLOS
propagation, this indicates an absolute coverage extension
from 723 m to 865 m in link distance.

VI. CONCLUSIONS

In this paper, we presented a novel deep learning based
receiver solution, the so-called HybridDeepRx, tailored for
accurate detection of nonlinearly distorted signals with high
EVM. This is achieved by introducing trainable convolutional
layers both in time and frequency domains, where the former
is particularly suited for handling the nonlinear distortion,
while the latter performs the actual signal detection. The
proposed receiver architecture is shown to be able to detect
even heavily distorted signals with a considerably high EVM,
while the benchmark receivers fail to detect such signals
reliably. Indeed, the performance gain compared to a con-
ventional linear receiver is several dBs even with reasonable
levels of nonlinear distortion. The proposed HybridDeepRx
also outperforms in the high-EVM scenario the previously
presented ML-based DeepRx receiver which utilizes convo-
lutional layers only in frequency domain. These findings pave
the way towards more power efficient radios where the effects
of hardware impairments can be handled with the help of deep
learning aided receiver solutions. Our future work will include
development of other related disruptive receiver schemes, such
as involving convolutional layers in time domain while having
more ordinary LMMSE receiver in frequency domain, as well
as devising corresponding training solutions for such concepts.
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